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Abstract
Studies have linked exposure to air pollutants to short-term and sub-chronic health outcomes.
However, individual-level air pollution exposure is difficult to measure at a high spatial and
temporal resolution and for larger populations due to limitations in sampling techniques. We
presented a hierarchical model to capture spatiotemporal variability of nitrogen dioxide (NO2) and
nitrogen oxides (NOx) concentrations in Southern California by combining high temporal
resolution data from routine monitoring stations with high spatial resolution data from
investigator-initiated episodic measurements. In this model, the spatiotemporal field of
concentrations was first decomposed into a mean and residual and the mean representing the
seasonal trend was further decomposed into a constant and varying temporal basis functions. The
mean of the spatially varying coefficients of temporal basis functions were modeled by local
covariates using non-linear generalized additive model and least square fitting using
measurements from both routine monitoring and additional episodic sampling locations, while the
spatially-correlated residuals of the coefficients were co-kriged. We found traffic, land-use and
wind accounted for a large portion of the variance (beyond 35%) for the long-term average trend
of concentrations. Spatial residuals accounted for a large portion of the variance of the temporal
components (about 30% for NO2 and 20% for NOx). Leave-one-out cross validation produced an
R2 of 0.84 for NO2 and 0.81 for NOx when comparing the modeled weekly concentration with the
observed trends at all routine monitoring stations.
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1. Introduction
Exposures to air pollution have been linked to short-term and sub-chronic adverse health
outcomes, including daily respiratory and cardiovascular morbidity (Mahiyuddin et al.,
2013; Zanobetti et al., 2003), and adverse pregnancy outcomes (Ritz and Wilhelm, 2008).
Many time-series health effect studies relied solely on area-wide exposure measures that
failed to account for spatial exposure variability among individual subjects, and thus may
have underestimated the magnitude of estimated effects (Lindstrom et al., 2011). For urban
areas with spatially heterogeneous emission sources (e.g. Los Angeles, California), the
within-area variation of air pollutant concentrations was possibly larger than the between-
area variations (Jerrett et al., 2005). In these areas, it is essential to account for individual-
level exposure variation in air pollution epidemiological studies.

Spatial proximity, spatial interpolation, and land use regression (LUR) models have been
extensively used to assign exposure estimates to individual subjects that are more spatially
refined but generally ignore temporal patterns of variation. Some studies assign
measurements taken at the nearest monitoring station to a target location. This approach
usually allows one to generate exposure estimates at a moderate or high temporal resolution
while the spatial resolution is relatively low due to the limited coverage of the routine
monitoring stations. Spatial interpolation (e.g. kriging) derives unbiased exposure estimation
based on the existing measurements (Whitworth et al., 2011) with no additional spatial
information used; spatial resolution is thus still limited by the number of routine sampling
sites. The LUR models incorporate local covariates, including land-use/cover, population,
and traffic information, to predict intra-urban variation of air pollution based on
measurements at a high spatial resolution (Jerrett et al., 2005). Most previous LUR models
focused on characterizing long-term spatial (Hart et al., 2009) or seasonal exposures (Li et
al., 2012) and had no or low temporal resolution (Hoek et al., 2008). Some studies
superimposed temporal profiles from routine monitoring stations onto the long-term LUR-
estimated concentrations (Ghosh et al., 2012). These approaches may be inadequate because
they typically rely on measurements at fewer locations than used to develop the models
themselves or/and assume that temporal changes are constant across the study area (Wu et
al., 2011). Jerrett et al. (2012) applied LUR models repetitively on monthly measurements of
particulate matter <2.5 μm; Bayesian maximum entropy (BME) was further used to estimate
spatiotemporal variability of the residuals of LUR-estimated monthly means. BME is a local
spatiotemporal modeling approach that incorporates measurement data, prior knowledge of
neighbor information, and local spatiotemporal covariates. This study, however, did not
systematically integrate temporal variability in the models.

Only a few studies have systematically modeled spatiotemporal variability of air pollutants
at a high spatial and temporal resolution. BME was developed to estimate the spatiotemporal
concentrations of particulate matter <10 μm and ozone (Yu et al., 2009). Two-stage models
were developed for particulate matter with a second-order stationary and isotropic
assumption of spatiotemporal covariance and linear regression to correlate the covariates to
spatiotemporal trend of concentrations (Cameletti and Ignaccolo, 2010). Szpiro et al. (2010)
constructed a hierarchical model for nitrogen oxides (NOx) with a flexible correlation
structure and spatial stationary assumption. Lindstrom et al. (2011) adapted the hierarchical
model used in Szpiro et al. (2010) by adding a spatiotemporal covariate (i.e. estimated
concentration from a line-source dispersion model).

Most spatiotemporal models were trained using the routine monitoring data. In this paper,
we presented a hierarchical model that fully utilizes all available measurements (both long-
term data at routine monitoring stations and additional short-term data from the investigator-
initiated field campaigns) and spatial covariates to reliably estimate spatiotemporal
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variability of pollutant concentrations. The U.S. Environmental Protection Agency (EPA)
monitoring network provides long-term measurements for the criteria air pollutants at a high
temporal resolution throughout the country, although the sampling stations are usually
sparsely located. Investigator-initiated field campaigns, on the other hand, usually have a
relatively dense spatial coverage, but are often short-term and passive sampling only for one
or two types of pollutants. In this study, we developed hierarchical two-stage models based
on a couple of previous studies (Finkenstadt et al., 2007; Szpiro et al., 2010) that combined
dominant temporal trends at regional scale with spatial variability at local scale to improve
estimation of spatiotemporal variability of pollutant concentrations. The models were
developed for nitrogen dioxide (NO2) and NOx, two criteria air pollutants widely used in air
pollution health studies (Jerrett et al., 2012).

2. Materials
2.1. Study domain

This study covers the metropolitan Los Angeles area (160 × 161 km2; over 12 million in
population in 2010) including both Los Angeles and Orange counties in Southern California.
This region has serious air pollution problems due to high emissions (e.g. traffic, industrial
and port-related activities), unfavorable meteorology, and high population density. There are
six major commuter and truck transport freeways within this densely populated region.

2.2. NO2 and NOx measurements
2.2.1. Long-term routine measurements from government-operated
monitoring stations—We obtained routine measurements of hourly NO2 and NOx
concentrations (unit: ppb) from 2006 to 2009 from the South Coast Air Quality Management
District (SCAQMD) monitoring network at 32 stations in Southern California. The
measurements were conducted by federally designated automated chemiluminescence
methods with actively sampling instruments. Weekly average concentrations were
calculated based on hourly data using a 75% completeness criterion; a total of 209 weekly
concentrations were calculated from January 2006 to December 2009. Figure 1 shows the
SCAQMD monitoring stations in the study domain. Among the 32 SCAMQD stations, one
station was excluded because of the extreme values observed at this station based on the
criteria of outer fences (Iglewicz and Hoaglin, 1993). Weekly concentrations from the 25
routine stations with complete (<3% missing values) time series data were used in the first
stage of the hierarchical model to estimate the trend of constant and varying temporal basis
functions. The measurements from the rest 6 stations (excluding the one having outliers)
were used as episodic measurements due to more missing values (>3%).

2.2.2. Episodic measurements—Besides the measurements with >3% missing values
from the 6 SCAQMD sites, episodic measurements include 161 valid NO2 and NOx samples
from University of California, Los Angeles (UCLA) (collected in two continuous weeks, i.e.
September 16-October 1, 2006 and February 10–25, 2007) and 32 valid samples of
measurements for NO2 and NOx from University of California, Irvine (UCI) (collected at
outdoor home locations of subjects in south Los Angeles and Orange counties for four
weeks, i.e. July 10–18, July 24-August 1, November 13–21 and December 4–12 in 2009).
For details of episodic measurements from UCI and UCLA, and their adjustment for use in
combination with SCAQMD routine data, please refer to Supplemental Materials Section
2.1 and Table S1.

2.3. Spatial covariates
2.3.1. Covariates related to emission—Emission sources contribute significantly to
the variability of pollutant concentrations. Traffic was one of the major sources of air
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pollution in the Los Angeles area. Land-use data were used as surrogates of traffic and other
emissions.

1. Roadway covariates include total roadway length (meter) inversely weighted by the
distance to the sampling location within an optimal buffer size as well as the
shortest distances (meter) from the sampling location to each of four roadway
types, and all the four type of roadways (highway as A1, primary roads as A2,
secondary or connecting roads as A3 and local roads as A4, see Supplemental
MaterialsSection 2.2 for details). To estimate the optimal buffering distance,
Pearson’s correlations between the distance-weighted roadway length and the
concentrations were calculated within the buffers of increasing radii (from 50 m to
5 km with interval of 50 m or 100 m); an optimal buffering distance had the highest
correlation. We used 5 km as a threshold since a wider buffering distance might
include influence from background and regional sources. This method was also
used for the other spatial covariates that required buffer statistics. The ESRI
StreetMap™ North America 9.3 (http://www.esri.com) including 2003 TeleAtlas®

street polylines was used as the roadway data.

2. Traffic flow. We obtained annual average daily traffic (AADT) counts in 2005for
all the freeways, highways, and major surface streets from the California
Department of Transportation (Caltrans). AADT was weighted by the
roadwaylength with in an optimal buffer.

3. Land-use covariates. Land-use data were obtained from the Southern California
Association of Government (SCAG). The original 108 land-use types were
classified into five major categories: transportation, industry, agriculture including
open space and vacant, commercial area, and residential area. We calculated the
percentage of area for each land-use category within an optimal buffer size.

2.3.2. Meteorologicalc ovariates—Long-term meteorological covariates were derived
by averaging multiple-year (2006–2009) measurements of temperature (°C), wind speeds
(meters/second abbreviated as m/s), wind direction, relative humidity (%), and precipitation
(inch) from the Air Quality and Meteorological Information System managed by the
California Air Resources Board (http://www.arb.ca.gov/aqmis2/aqmis2.php). Wind data
were decomposed into two vectors by respectively multiplying wind speed with sine and
cosine of wind direction, with the sine value positive from the east and the cosine value
positive from north) (Carslaw et al., 2007). There were 67 sites for temperature, 77 sites for
wind speed and wind direction, 37 sites for relatively humidity, and 55 sites for
precipitation. Measurements at the nearest meteorological site were assigned to the
corresponding sampling location.

2.3.3. Other location-related covariates—We obtained elevation data at 10m×10m
resolution from US National Elevation Dataset (NED) (http://nationalmap.gov/) and
assigned the elevation (meter) to each sampling location. We also calculated the shortest
distance (meter) to shoreline for each sampling location.

3. Modeling approach
3.1. Stage one: decomposition of spatiotemporal field

A normally-distributed log-transformed spatiotemporal field yut (u=1,…,n site; t=1,…,m
time slice) was decomposed into the sum of a systematic mean component (μut) and residual
(ε̂ut) (Finkenstadt et al., 2007):
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[1]

The mean spatiotemporal field typically represents the dominant seasonal or long-term trend
of concentrations for the study domain (Szpiro et al., 2010). At the first stage, the mean
component was divided into one constant and two varying temporal basis functions using
the empirical orthogonal functions (EOFs) (a.k.a. independent temporal basis functions) and
the long-term weekly concentrations from the 25 SCAQMD routine monitoring stations.
EOFs were often used to present leading modes of variability in space-time processes in
meteorology; their smoothed curves are often used to reduce noise (Finkenstadt et al., 2007).
In [1], the mean μut is essentially a projection of time series at the location, u onto the space
spanned by the constant temporal basis function (represented by β0u) and varying ones fi(t)
(i=1,…,m) and corresponding spatially varying coefficient βiu at u for fi(t):

[2]

where β0u is an intercept (f0(t)≡1) representing spatial variability of the constant temporal
basis function. Similarly, the coefficient, β1u (β2u) representing spatial variability of the first
(second) temporal basis function. In [1], ε̂ut ~ N(0, σ), independent of μut, is assumed to be
spatially correlated after removal of temporal auto-correlation and it can be modeled using
kriging. Autocorrelation function (ACF) and partial autocorrelation function (PACF) were
used to test the temporal autocorrelation of the residuals. We found that the ACF and PACF
values were generally below 0.3, indicating very weak temporal autocorrelation of the
residuals.

In [2], singular value decomposition (SVD) was used to generate the independent temporal
basis functions. Iterative SVD (Finkenstadt et al., 2007) was also used to fill 1–5 temporal
missing values (<3%) for 13 routine SCAQMD stations. The derivative-based thin plate
spline penalty was applied to select a good degree of freedom to fit the temporal basis
functions. With a good degree of freedom, the smoothed curve will properly represent the
true temporal trend and meanwhile minimize over-fitting (Szpiro et al., 2010). We used
Wood (2002)’s integrated approach of model selection and automatic smoothing parameter
selection to select the degree of freedom with generalized cross-validation (GCV) criterion
to determine the smoothing parameters for the temporal basis functions. More details about
the temporal basis functions can be found in Supplemental Materials Section 2.3.

3.2. Stage Two: estimation of spatially varying coefficients for independent temporal basis
functions

At this stage, spatially varying coefficients at the routine stations and episodic sampling sites
were estimated using ordinary least square technique. We then applied a non-linear
generalized additive model (GAM) plus cokriging to model these coefficients using local
spatial covariates.

The product of the first three coefficients in [2], βiu (i=0, 1, 2) and their temporal basis
functions can usually capture the majority of spatiotemporal variability of concentrations
(Lindstrom et al., 2011; Szpiro et al., 2010). In practice, we only need to solve the following
linear equations to estimate the three coefficients at u, assuming observed values of L time
slices for u:

[3]
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Since εut is independent of μut, (εu ~ N(0,1)), we used the least square fit to solve βiu (i=0,
1, 2). A unique solution for βiu (i=0, 1, 2) is possible in equation [3] if we have a minimum
of three time slices of measurements at each sampling location according to the Rouché–
Capelli theorem (David, 2006).

The UCI and SCAQMD data had at least four weekly measurements and were directly used
to solve the βi coefficients in [3]. But the UCLA data had only two bi-weekly
measurements, fewer than a minimum of three required to solve βiu (i=0, 1, 2). Thus, the
initial ratios between the two continuous weekly averages of concentration and the ratios
were estimated using the linear spatiotemporal model and then used to interpolate four
weekly concentration averages from two bi-weekly measures of concentration averages. In
this spatiotemporal model, we derived temporal basis functions and spatial coefficients
using the 25 routine measurements of time series (no episodic data were used) and estimated
the spatial coefficients based on two or three significant spatial covariates (roadway length,
AADT or traffic land-use, and wind speed). We then estimated two continuous weekly
concentrations at the UCLA sampling locations and the initial ratios respectively for 2006
and 2007. The procedure was based on maximum likelihood without the incorporation of
spatial autocorrelation of residuals (Supplemental Materials Section 2.4).

Sensitivity analysis was conducted to examine the influence of the interpolation methods on
model performance. We compared the interpolation method above (i.e. linear spatiotemporal
model) with two other methods. One method assigned the two-week average concentration
to each of the two individual weeks, assuming no variation in the concentrations over the
two continuous weeks (i.e. initial ratio =1). The other one used the ratio of two weekly
measurements at the nearest SCAQMD station to split the data, assuming that the ratio of
concentrations at the nearest station properly reflected the variation of concentrations over
the two continuous weeks.

3.2.1 Removal of outliers in episodic measurements—Outliers from episodic
samples may affect the estimation of βiu (i=0, 1, 2). We estimated βi of the 25 routine
stations, which were then used as the reference values to exclude the outliers in episodic
measurements. The outer fences (Iglewicz and Hoaglin, 1993) of βi were used to filter the
outliers. A data point was treated as an outlier if the value of βi was outside the outer fences
(Q1-3*IQR, Q3+3*IQR; Q1 and Q3 are respectively the first and third quartiles, and IQR is
inter-quartile range). In total, we excluded 8 outliers (4 from UCLA and 4 from UCI) for
NO2 and 6 outliers from UCI for NOx.

The removal of too few outliers may cause poor model performance, while the removal of
too many outliers may over-fit the model. Sensitivity analysis was conducted for three
different definitions of outliers for βi: 1) No outliers removed from the UCI and UCLA
samples (reference); 2) Inner fences used to remove outliers (Q1-1.5*IQR, Q3+1.5*IQR); 3)
Outer fences as less conservative criteria to remove outliers, introduced above and used in
this study (Supplemental Materials Table S6). Compared to the models with no outlier
removal, the removal of outliers improved the model performance by 5% to approximately
20% (Supplemental Materials Table S6).

3.2.2. GAM: modeling local mean of spatially varying coefficients—The GAM
equation for prediction of spatially varying coefficients for temporal basis functions is:

[4]
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where β̂iu (i=0, 1, 2) is estimate of spatially varying coefficient for the ith basis function at

location u,  is the estimate of local mean at u for β̂iu, dependent on the set of p spatial

covariates, , ε̂iusis the estimate of spatial residual for β̂iu, determined by
spatial residuals of samples that belong to the neighborhood of u, Z ∈ Nb(u), ε̂iun is a
random residual at u, with normal distribution, ε̂iun ~ N(0,1).

We used the GAM package in R statistical software (Version 2.11.1) to develop and validate
the model. The following is to correlate local spatial covariates to the mean of β̂iun:

[5]

where μio is the model intercept, w_su ([wind speed] ·sine([wind direction]) and w_cu

([wind speed] · cosine([wind direction]) respectively represent two wind vectors, at u,  or

 are other local covariates, sj(…) is the smooth function to model the non-linear

relationship between  and , sw(w_su, w_cu) is a bivariate smooth function to model
the interaction between wind speed and wind direction, γk are the linear parameters used to

construct the linear relationship between  and g(E(β̂iu)), and p is the number of covariates.
For normally distributed β̂iu(i=0, 1, 2), the link function is g(E(β̂iu)). If β̂iu does not follow
the normal distribution, a power transformer can be used to make them normal
(Handelsman, 2002). For the degree of freedom in non-linear fitting of β̂i, we applied the
same approach that was used to fit the temporal basis functions.

For selection of covariates, we first used Pearson’s correlation of 0.1 as a threshold to filter
out the irrelevant ones and then selected optimal covariates by examination of multi-
colinearity and combinational tests. See Supplemental Materials Section 2.5 for details.

3.2.3 Kriging of residuals to minimize error variance
Spatial residuals ε̂ius in [4] were modeled by cokriging them with regional residuals at
nearby samples with the assumption of a stable spatial domain after removal of local means
(Christakos, 1990). Assuming ε = [εus|rs(ui)]~N(0,V(θ))(i = 0, 1, 2, …f), u0 is the location to
be estimated, θ is the vector of variogram parameters (characterized by range ф, partial sill,
σ2 and optional model efficient, τ; nugget supposed to be 0 given the assumption of highly
spatial correlation), Z = {u1,u2, … …, uf} is the set of spatial samples belonging to the
neighborhood of u0; ε̂us(ui) is the estimate of spatial residual at the neighboring location, ui,
and is derived by subtracting the GAM local mean from βkui at a sampling location; ε̂rs(ui)
is the estimate of the regional residual or total variation of βkui at the regional scale and
derived by subtracting the population’s mean from βkui at each sampling location. Cokriging
used maximum likelihood based on estimates of variogram, θ and we can get the estimate of
the residual for u0:

[8]

where  and  are the optimal cokriging weights estimated according to the minimum
unbiased optimal principle of Kriging.

3.3. Cross validation
For model evaluation, we used leave-one-out cross validation (LOOCV), which used an
observation as the validation data and the remaining observations as the training data. This is
repeated such that each observation in the sample is used once as the data point for which
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the validation is performed. In LOOCV, we validated how the estimated trend of
concentrations captured spatiotemporal variability of the observed time series for the 25
routine SCAQMD stations, by measuring the 95% confidence intervals of Pearson’s
correlations of time series for the 25 stations and R2 for all the temporal trends of all the
stations. We compared our approach with the spatiotemporal model based on linear
regression (Finkenstadt et al., 2007). Further, we calculated R2 of the estimated versus
observed averages of the concentrations over 4 years (2006–2009) and the corresponding
square root of the mean of the squared errors (RMSE).

4. RESULTS
4.1. Temporal basis functions and their spatially varying coefficients

Figure 2 depicts the first two varying temporal basis functions as trend curves smoothed by
GAM for the study domain. The first component (product of temporal basis function and its
spatially varying coefficient; the temporal trend alone unable to reflecting its seasonal trend)
of the temporal basis trends showed clear seasonal changes, i.e. high in the winter and low in
the summer. For NO2, the first component of temporal basis trend accounted for 59% of
variance. For NOx, the first component accounted for 56% (except outliers, its spatially
varying coefficient, β1 generally smaller than 0, Supplemental Materials Table S3). The
trend of the second temporal basis function explaining a much lower percentage of variance
(about 9% for NO2 and 9% for NOx), was inconsistent with the seasonal trend, and seemed
more complicated. Supplemental Materials Table S3 lists the descriptive statistics of βi
generated by least square fitting based on all routine and episodic measurement data.
Supplemental Materials Figure S1 presents the box plots.

4.2. Step one of spatial modeling: correlate local covariates to spatially varying
coefficients

Table 1 lists the variances explained in total and by local covariate and spatial
autocorrelation of the residuals. Figure 3 shows the non-linear relationship of change trend
between smoothed β0 and traffic factors, land-use and long-term average wind covariate
with the 95% confidence intervals (the gray area). Supplemental Materials Figure S2–S7
show the changing trends between βi and the covariates used as regressors.

For β0, significant local covariates included traffic-related factors (AADT, distance-
weighted roadway length, traffic land-use or distance to roadways), meteorological covariate
(long-term ambient wind covariate), shortest distances to the shorelines, land-use area
proportions (residential, commercial or agricultural/open field) or elevation. Traffic factors
together accounted for an important part of variance (32.9% for NO2 and 19% for NOx).
Except for traffic land-use, other land-use factors together accounted for about 17% of
variance for NO2 or 10% for NOx. Major traffic-related factors, residence land-use and
shortest distance to shorelines present positive correlation with β0. Wind speed and wind
direction were an important predictor, accounting for about 20.2–34.5% of variance. Lower
wind speed was associated with higher β0, while wind from the northwest was associated
with lower β0 (Figure 3e and 3f). Elevation and shortest distance to the shorelines together
explained 13.0% of the variance for NO2 and 19.9% for NOx.

For β1, the NO2 variance was more influenced by long-term average wind (25.2%), land-use
covariates (22.2%) and traffic-related factors (8.0%), while the variance of NOx was more
explained by long-term average wind (22.1%), weighted road length (15.4%) and land-use
(24.6%). Wind from the north had stronger influence on NO2, while wind from the west had
more influence on NOx.
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For β2, the variance of NO2 was more influenced by long-term average wind (21.1%),
commercial land-use (14.3%) and distance-weighted road length (6.8%), while the variance
of NOx was more explained by long-term average wind (33.5%), elevation (14.3%) and
traffic-related factors (16.8%; including traffic land-use). The south wind had major
contribution for β2 of NO2.

4.3. Step two of spatial modeling: variogram of spatial residuals
Although only explaining a small-modest part of variance for β0 (4.2–8%), spatial
autocorrelation of the residuals for β1 and β2 accounted for a considerable proportion of the
variance explained 19.4–31.8% (Table 1). Supplemental Materials Table S4 shows the
variogram models and relevant coefficients for spatial residuals of βi. We found that β0 for
the constant basis function had a longer range and smaller partial sills, indicating a more
gradual spatial variability. β1 and β2 of the varying temporal basis functions had a shorter
range and higher partial sills, indicating higher spatial variability, probably more affected by
wind.

4.4. Comparison of modeled vs. observed temporal trend
Figure 4 shows the typical curves of two SCAQMD stations (one in Orange County and the
other in Los Angeles County) simulated with our method based on the time series data at the
other 24 SCAQMD stations and episodic measurement data vs. the practical smoothed
curves derived from the observed time series. The simulated curves and the observed values
showed a strong association. For the temporal trends of the 25 routine SCAQMD stations,
the median of the correlation between the LOOCV predicted values and observed time series
was 0.90 (mean: 0.87) with the 95% confidence interval (CI) of [0.83, 0.91] for NO2 and
0.96 (0.92) with 95% CI of [0.88, 0.96] for NOx.

For all 5225 (25×209) weekly samples, our model had a CV R2 of 0.67 for NO2 and 0.66 for
NOx between the predicted time series and observed values, but the model had a better CV
R2 (0.84 for NO2; 0.81 for NOx) between our predicted time series and the GAM-smoothed
trend curves of weekly measurement data. Our model outperformed the linear
spatiotemporal model in predicting the smoothed trend curve (0.84 vs. 0.56 for NO2; 0.81
vs. 0.65 for NOxin Table 2).

4.5. Comparison of modeled vs. observed long-term means
For long-term average concentrations, CV R2 was 0.89 for NO2 (RMSE =2.28) and 0.77 for
NOx (RMSE =6.8). Supplemental Materials Figure S8 shows the plots between predicted
and observed long-term means for NO2 and NOx. Similar to our time-series predictions, we
found that GAM plus cokriging improved R2 by over 19% in variance (Table 2) for NO2
and NOx over linear regression to model spatially varying coefficients.

5. DISCUSSION
Our hierarchical two-stage models decomposed the spatiotemporal field into temporal
components (temporal functions and their spatially-varying coefficients) at the first stage
and then modeled the spatial fields of temporal components using a flexible spatial
correlation structure at the second stage. Compared to a similar hierarchical modeling
approach (Szpiro et al., (2010); Lindstrom et al., (2011)), our approach used the non-linear
GAM to estimate spatial coefficients (βi) of the temporal basis functions, incorporated
regional residuals using cokrigging, and examined additional spatial covariates including
long-term meteorology. The GAM provided a more flexible modeling framework than a
linear model. For example, in our study, long-term average wind covariate contributed 21.2–
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34.5% of the βi variability in GAM, but in the linear model it only accounted for about 8.0–
10.0%.

Our model’s R2 of 0.77 for the long-term average estimates of NOx was slightly better than
the reported R2 (0.58–0.67) from the spatiotemporal models of NOx for the similar Los
Angeles region (Lindstrom et al., 2011; Szpiro et al., 2010). Given different sources of
measurements, direct comparison is inappropriate although our approach outperformed the
linear model by over 15% in variance explained based on our data. Our estimation of long-
term NO2 had a R2 of 0.89, better than that for NOx.

In this study, traffic-related variables (such as traffic flow or roadway length), land-use,
meteorological or elevation factors had more or less influence on spatiotemporal variability
of NO2 and NOx (Table 1, Figure 3 and Supplemental Materials Figure S2–S7). As
expected, the shortest distance to roadways was negatively associated with the long-term
averages (β0), while the other traffic-related factors were positively associated. They
together accounted for a large portion of variance. β0 tended to be higher further away from
the shorelines since the predominant wind in Los Angeles Basin blows from ocean to inland
and wind carries emissions generated in the coastal and upwind regions to inland areas.
These results were consistent with the conclusion in Szpiro et al. (2010) and Lindstrom et al.
(2011). Among the meteorological factors, wind explained a large portion of variance on
spatial variability of the temporal basis functions. Lower wind speed limited the dispersion
of air pollutants, thus resulting higher long-term average β0. Elevation was negatively
associated with pollutant concentrations likely because of lower local emissions (e.g. a
sparse roadway network) and stronger pollutant dispersion in hilly or mountainous areas.
Since wind and elevation data are widely available in the U.S. (e.g. wind data from airport
measurements, certain air monitoring station and other sources and elevation data from
USGS), the exploration of such data in spatiotemporal modeling of air pollutant
concentrations is recommended for epidemiological studies about acute or sub-chronic
effects of air pollution. Further, since spatial autocorrelation contributed substantially to the
estimation of spatial varying coefficients, spatial autocorrelation should not be neglected in
similar modeling studies.

This study has several limitations. First, due to the unavailability of year-specific data, we
used the 2003 roadway and 2005 AADT data to derive traffic-related covariates for 2006–
2010. Although roadway and traffic data unlikely changed dramatically over the study
region, these temporally-mismatched data may influence the performance of the models.
Second, although we have examined the contribution of diesel truck emissions using
Caltrans weigh-in-motion (WIM) data on freeways and highways, the fraction of diesel
truck counts was not a statistically significant variable in any of the models. This is likely
due to large uncertainties in the estimated truck count data since there were only five WIM
stations in the study region (one in Orange County and four in Los Angeles). Third, the
approach of splitting two continuous bi-week measurements to the four weekly estimates for
the UCLA data may have introduced bias. The test using three different splitting methods
(Supplemental Materials Table S5) showed limited influence of the interpolation methods on
the prediction likely because of the small variation of concentration between two continuous
weeks in our datasets. Ideally more than two time slices should be included whenever
possible though. Fourth, the use of non-linear regression and residual spatial autocorrelation
might cause an over-fitting problem. We tried to avoid overfitting by using cross validation,
restricting the degree of freedom in the GAM and only incorporated non-linear covariates
when necessary. Furthermore, the mgcv package in R used in our study controls the
complexity of the splines by imposing the penalty on the parameters, lowering the over-
fitting risk (Gill, 2001).
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6. CONCLUSION
We used a hierarchical spatiotemporal model to combine routine time series with episodic
measurements at a large number of locations to improve the estimation of spatiotemporal
variability of NO2 and NOx concentrations in a dense urban area of southern California. Our
model decomposed the spatiotemporal field of concentrations into the mean and residual.
The mean was further decomposed into independent constant and varying temporal basis
functions and local covariates were used to model spatially varying coefficients of the
temporal basis functions with GAM plus cokriging. We found traffic, land-use and wind
accounted for a large portion of the variance (beyond 35%) for the long-term average trend
of concentrations. Spatial residuals accounted for a large portion of the variance of the
temporal components (about 30% for NO2 and 20% for NOx). Leave-one-out cross
validation produced an R2 of 0.84 for NO2 and 0.81 for NOx when comparing the modeled
weekly concentration with the observed trends at all routine monitoring stations. The
approach has practical implication in studies of sub-chronic or short-term health effect that
require high spatial and temporal resolutions of exposure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Hierarchical spatiotemporal model predicted weekly NO2 and NOx
concentrations well

• Episodic measurements supplemented routine time-series measurements in
modeling

• Land-use, meteorology, and roadway were important in concentration prediction
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Figure 1.
Study domain with 31 SCAQMD sites (25 sites with ≤3% missing data used for generating
temporal basis functions of the domain and 6 sites with >3% missing data; all SCAQMD
sites used for spatial modeling with UCI and UCLA measurements)
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Figure 2.
Plots of the first and second independent temporal basis functions for NO2 and NOx
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Figure 3.
Influence of traffic, land-use and wind covariates for spatially varying coefficient, β 0 of the
NO2 and NOx constant temporal basis functions (the variance explained in the parenthesis)
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Figure 4.
Good match between observed values vs. simulated values for NO2 and NOx (r: correlation)
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