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Abstract
In this Letter, we describe a short, 6-step enantioselective route to spiroaminal lactam model
systems reminiscent of marineosins A and B has been developed starting from either (R)- or (S)-
hydroxysuccinic acid, respectively, in ~9% overall yield. This route enables late stage
incorporation of the pyrrole ring at C5 via nucleophilic displacement of an iminium triflate salt.
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In 2008, Fenical and co-workers reported the discovery of two novel spiroaminals,
marineosins A (1) and B (2), from a marine-derived Streptomyces-related actinomycete
(Figure 1),1 and related to the prodigiosin family.2 Both 1 and 2 displayed inhibition of
human colon carcinoma cell growth (HCT-116 IC50s of 0.5 μM and 46 μM, respectively).1

Fenical also proposed a biosynthesis of 1 and 2 that proceeded through an inverse-electron
demand hetero Diels-Alder reaction with 3 to provide 4, which is then reduced to afford 1
and 2. We evaluated this biosynthetic proposal, and while 3 was accessible in high yield, we
were unable to affect the intramolecular inverse-electron demand hetero Diels-Alder
reaction under a variety of conditions. Attempts with multiple substrates for intermolecular
variants were equally unsuccessful.3

In 2010, Snider and co-workers proposed an alternative biosynthesis of 1 and 2 from
undecylprodigiosin that only requires a single two-electron oxidation.4 Based on this
proposal, Snider developed a seven step route to a model system 7 for the spiroiminal
moiety from methylvalerolactone 5 (Scheme 1). While an important advance towards the
synthesis of 1 and 2, we aimed to avoid long equilibration times, inseparable equilibrium
mixtures, and, importantly, early installation of the pyrrole.4
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After the unsuccessful biosynthetic approach,3 our lab has pursued multiple synthetic
strategies en route to a total synthesis of 1 and 2. Uniformly, routes with early incorporation
of the C1-C4 pyrrole moiety, led to reactivity/stability issues that forced abandonment of
advanced intermediates and strategies. Based on this outcome, we decided to re-design our
routes to install the pyrrole moiety as the final step of the synthesis (Scheme 2). To
determine the viability of this new approach, we developed a short, enantioselective
synthesis of two spiroiminal model systems of 1 and 2 (highlighted in red). This route
enables late stage incorporation of the pyrrole ring at C5 via a novel application of
nucleophilic displacement of an iminium triflate salt.

Our model system was inspired by the work of Huang for the construction of aza-spiropyran
derivatives by the addition of functionalized Grignard reagents into maleimides.5 The
synthesis of the proposed model system began with the requisite THP-protected
bromobutanol 12 (Scheme 3) following a Grieco procedure.6 Here, tetrahydrofuran is
opened with HBr to afford 10 in 75% yield. Protection as the THP ether afforded 12 in 90%
yield, which is then converted into Grignard reagent 13.6

With 13 in hand, we prepared the maleimide fragment relevant for a model system of 1.7,8

Starting from (R)-hydroxy succinic acid 14, refluxing in m-xylenes with p-methoxybenzyl
amine 15 affords the desired maleimide 16 in 78% yield (Scheme 4). Silver oxide mediated
alkylation with MeI in MeCN affords key coupling partner 17 in 78% yield. Addition of 13
into 17 provided hydroxy aminal 18 in 80% yield (Scheme 5).15

Treatment with p-TsOH cleaves the THP ether and generates iminium salt 19 which is
attacked by the free hydroxyl leading to formation of the spiroaminal 20 in 80% yield.16

Finally, ceric ammonium nitrate (CAN)-mediated removal of the p-methoxybenzyl (PMB)
group provides lactam 21 in 67% yield.17 Model system 21 possessed the correct
stereochemistry at C7 for 1, but the opposite absolute stereochemistry at C8. However, 21 is
a valuable model from which to develop chemistry for the late stage installation of the
pyrrole at C5, and not consume valuable late stage 8.

Stereochemical assignments of 20, with anti O-1,O-7 geometry, was made based on
literature precedent and from extensive nOe studies (Figure 2).9

With 21 in hand, we were poised to evaluate conditions to install the pyrrole moiety at C5 to
validate our retrosynthetic approach aimed at accessing 8. Our initial thought was to install
the pyrrole through classical Vilsmeier-type chemistry (POCl3/pyrrole);9 however, this
failed to provide the desired 22. We surveyed a number of known strategies to convert the
lactam carbonyl into a suitable electrophile, followed by treatment with pyrrole under a
variety of reaction conditions, but none proved successful. The lactam was converted into
the corresponding triflate 23 through treatment with Tf2O or PhNTf2, followed by a Suzuki
coupling with various forms of N-protected, 2-pyrrole boronic acid. Unfortunately, all
attempts with multiple Pd(0) and Ni(0) sources, bases, and solvents afforded either no
product or only trace amounts of 22 (Scheme 6).

A deeper perusal of the literature led us to consider the chemistry of triflic anhydride/amide
adducts, and the opportunity to potentially intercept the in situ generated triflate with the
pyrrole nucleophile in a single pot reaction.10,11 It has been demonstrated that treatment of
an indolin-2-one with Tf2O, to generate the iminium triflate salt, followed immediately by
the additon of a functionalized indole affords the bis-indole product.11 With this lone
precedent, we treated 21 with 2.0 equivalents of Tf2O, to generate the iminium triflate salt,
followed by the addition of 5.0 equivalents of pyrrole in CH2Cl2 at 0 °C. Unfortunately,
these conditions afforded only a trace (<5%) of the desired 22. Evaluation and refinement of
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the reaction conditions identified that employing 1.0 equivalent of Tf2O, to generate the
iminium triflate salt, followed by the addition of 5.0 equivalents of pyrrole in CH2Cl2 at 0
°C did provide the desired model system 22 of marineosin A, 1, in 36% yield (Scheme 7).19

The stereochemistry was further confirmed at this stage by nOe studies on 22. Irradiation of
H-7 supported the 6R,7S stereochemical assignment of 22; no equilibration to the syn
O-1,O-7 isomer had occurred after installation of the pyrrole, even after a period of two
weeks in CDCl3.4,9 Identical nOe data was seen in model system 22. Although the
configuration of the spirocenter in model 22 is opposite to marineosins A, we envision that a
syn O-1,O-7 isomer can be obtained by increasing the steric demands of the pyran ring
through stereoselective functionalization of a carbon fragment similar to Grignard 13.
Repetition of this sequence, starting from the (S)-hydroxy succinic acid, afforded the model
system 24 reminiscent of marineosin B in ~9% overall yield. Once again, literature preceent
and extensive nOe data confimred the sterochemcial assignment.

As both 1 and 2 displayed inhibition of human colon carcinoma (HCT-116 IC50s of 0.5 μM
and 46 μM, resectively), and due to the fact that many related, bi- and tricyclic prodigiosin
natural products have potent cytotoxicity,13,14 we evaluated 22 and 24 in our HCT-116
cytotoxicity assay in order to ascertain if the model systems represented a minimum
pharmacophore for 1 and 2, respectively. Interestingly, both model systems were inactive in
this assay, suggesting the larger construct, and/or stereochemical conformation, of 1 and 2
are important for the observed biological activity, thus warranting completion of the total
synthesis of 1 and 2.

In summary, we have developed chemistry to enable late stage introduction of the pyrrole
moiety at C5 in marineosin A (1) and B (2) via a novel application of the nucleophilic
displacement of an iminium triflate salt by pyrrole. Moreover, we have performed an
enantioselective synthesis of two spiroaminal model systems reminiscent of 1 and 2 starting
from chiral pool molecules. Overall yields for both 22 and 24 averaged ~9% from
commercial tetrahydrofuran. This synthetic approach is currently being applied to the total
synthesis of 1, and results will be presented in due course.
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Figure 1.
Structures and proposed biosynthesis of marineosins A (1) and B (2).
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Figure 2.
Diagnostic nOe correlations in the (6S,7R)-spiroaminal 20 model system reminiscent of 1.
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Scheme 1.
Snider’s Spiroiminal Model System.
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Scheme 2.
Envisioned Disconnection for the Synthesis of 1.

Panarese et al. Page 8

Tetrahedron Lett. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 3.
Synthesis of the Key Gringard Reagent 13.
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Scheme 4.
Synthesis of the Key Malimide 17.
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Scheme 5.
Synthesis of the Spiroaminal Moiety of 1.
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Scheme 6.
Attempts to Install the Pyrrole Moiety at C5.
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Scheme 7.
Late Stage Installation of the Pyrrole and Completion of the Model Systems of 1.
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