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Abstract
Many biological systems are coated by thin films for protection, selective absorption, or
transmembrane transport. A typical example is the mucous membrane covering the airways, the
esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior
from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities,
and buckling of biological surfaces have been studied intensely by approximating the surface as a
layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we
establish a theory of continua with boundary energies and growing surfaces of zero thickness in
which the surface is equipped with its own potential energy and is allowed to grow independently
of the bulk. In complete analogy to the kinematic equations, the balance equations, and the
constitutive equations of a growing solid body, we derive the governing equations for a growing
surface. We illustrate their spatial discretization using the finite element method, and discuss their
consistent algorithmic linearization. To demonstrate the conceptual differences between volume
and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube.
Our novel approach towards continua with growing surfaces is capable of predicting extreme
growth of the inner cylindrical surface, which more than doubles its initial area. The underlying
algorithmic framework is robust and stable; it allows to predict morphological changes due to
surface growth during the onset of buckling and beyond. The modeling of surface growth has
immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive
sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of
growth-induced morphological instabilities and surface wrinkling has important implications in
material sciences, manufacturing, and microfabrication, with applications in soft lithography,
metrology, and flexible electronics.
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1. Introduction
Just like skin covers and protects the outer surface of our body, the mucous membrane
covers and protects our inner body surfaces. The mucous membrane is a thin, moist layers of
epithelial cells, which lines the air-organ interface of our respiratory, digestive, and
urogenital tracts, and of our mouth and nose. It is attached to a soft submucosal layer
supported by an outermost layer of smooth muscle cells. Surface wrinkling of the mucous
membrane is critical for healthy biological function, and abnormalities in wrinkling patterns
are a classical hallmark of disease [60]. A typical example is severe asthma, a chronic
disease of the respiratory system, for which there is currently no cure. As illustrated in
Figure 1, during chronic asthma, the airway wall undergoes an irreversible structural
remodeling, associated with an increased deposition of collagen, a permanent thickening of
the smooth muscle layer, growth of the mucous membrane, and mucosal folding [19].
Collectively, these changes induce an excessive airway wall narrowing, resulting in
progressively reduced lung function [8].

1.1. The mechanical origin of morphological instabilities
The mechanical origin of mucosal folding in healthy and asthmatic airways was first studied
more than a decade ago using an analytical linear elastic model [60]. Linear stability
analysis of bilayered tubes can explain to which extent the ratio between thicknesses and
elastic moduli of the mucosal and submucosal layers dictates the morphology of surface
buckling [37, 43]. A recent study confirmed the hypothesis that the wrinkling mode, the
number of folds, is highly sensitive to the thickness ratio of these two layers, with more
folds in the thin mucosal layer of the airway and fewer folds in the thick mucosal layer of
the esophagus [36]. Beyond mucosal folding during airway narrowing in asthma [60] and
surface wrinkling in the esophagus [36], morphological instabilities have been thoroughly
investigated in the context of buckling during crypt formation in the intestinal wall [45],
mucosal folding in the gastrointestinal tract [39], lumen narrowoing during chronic
obstructive pulmonary disease [19], rule formation in cyclically loaded arteries [33], and
buckling in the pharnyx during obstructive sleep apnoea [25]. In addition to these common
diseases, understanding the morphogenesis and origin of shape has been identified as one of
the key challenges in developmental biology [61, 62].

While the onset of mucosal buckling was initially attributed to an elevated external pressure,
current hypotheses suggest that physiological and pathological thickening of the individual
layers, as illustrated in Figure 1, might play a critical role in the generation of morphological
instabilities [46, 44]. A recent model experiment of a cultured growing epithelial monolayer
on a thin elastic substrate confirmed that growth of biological surfaces can, indeed, induce
significant substrate buckling [45]. Another model experiment of a swelling polyacrylamide
gel displayed similar buckling phenomena at the gel-water interface [10]. Only now, we are
beginning to recognize the striking similarities between growing biological tissues and
swelling gels, which display almost identical surface phenomena. These findings initiated a
thorough mathematical analyzis of crease formation in growing soft matter [24] and of
surface wrinkling in core-shell soft cylinders [4] using continuum models of isotropic
volumetric growth. An excellent recent overview article illustrates various phenomena of
morphological instabilities including applications beyond biological systems, such as soft
lithography, metrology, and flexible electronics [38].

1.2. Continuum modeling of mechanically-induced biological growth
Conceptually, volumetric growth models can be classified into two categories, models of
mechanically-induced biological growth and models of growth-induced mechanical
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instabilities. The first pioneering continuum model for mechancially-induced biological
growth was proposed almost two decades ago [49]. Since then, it has been widely adopted to
model muscle growth [56, 66], vascular growth [18, 57], skin growth [7, 53], and cardiac
growth [14, 26] in response to elevated stresses or strains. Initially, these models were
merely analytical [11, 12], for example focussing on volume growth of idealized rotationally
symmetric cylindrical tubes [57, 59]. Now, computational growth models allow us to
simulate growth in more realistic, fully three-dimensional, subject-specific geometries [29,
65]. While the first generation of growth models was rather phenomenological and isotropic
in nature [1, 26], the current trend goes towards incorporating the underlying
mechanobiology [64] and the microstructural origin of growth [13]. Depending on the
particular tissue architecture, microstructurally-motivated models are therefore unsually
transversely isotropic [47, 66], orthotropic [14], or generally anisotropic [41, 58]. Various
different biomedical applications of mechanically-induced growth are summarized
comprehensively in two recent overview articles [2, 42].

1.3. Continuum modeling of growth-induced mechanical instabilities
The first continuum model for growth-induced mechanical instabilities was proposed a
decade ago to study tumor growth in confined geometries [1]. In the context of surface layer
folding, the problem we are interested in here, recent studies have addressed circumferential
buckling instabilites inside a growing cylindrical tube [36, 43]. Again, anisotropic models
have been proposed to allow for a more sophisticated analysis using independent growth
multipliers in the circumferential and radial directions [40, 44]. These models attribute
buckling to the progression of growth, whereas other studies report buckling instabilities as
a result of cyclic pressure changes [33] and mechanical unloading [6]. While mechanical
instabilities have been investigated intensely in growing solids, the interplay between
growing surfaces and morphological instabilities remains severely understudied [15]. Since
growing surfaces may undergo finite deformations, analytical solutions are usually either
unavailable or incredibly complex, and only a handful of mathematical models exist to
model a growing surface by means of nonlinear plate [9] or shell [3] theories. Using shell
theories of surface growth, a recent study has found that growth of biological membranes
does not necessarily have to be detrimental: In some diseases such as mitral valve leakage,
an adaptive surface growth of more than 30% has been reported as a compensatory
mechanism to chronically reduce mitral valve insufficiency and deleterious backflow [48].
Here, we adopt the kinematical framework of growing biological surfaces; however, rather
than allowing the surface to move freely, we attach it kinematically to the underlying solid,
but equip it with its own potential energy.

1.4. Continuum modeling of material surfaces
The concept of surface energies is by no means new; in fact is has first been recognized
more than two centuries ago, formalized through the famous Young Laplace equation [31,
63]. Relating the pressure difference across a fluid surface to surface tension and mean
curvature, the Young Laplace equation is known to explain a variety of different phenomena
ranging from minimal surfaces, soap bubbles, and capillary pressure to cardiovascular and
respiratory physiology [55]. More than three decades ago, the familiar concept of scalar-
valued surface tension was generalized to the tensorial notion of surface stress in the first
continuum theory of elastic material surfaces [16]. Since then, the concept of material
surfaces has gained increasing popularity in crystallography [34], phase transformation [35,
51], mineralogy [30], micro- and nanofabrication, and soft lithography; broadly speaking,
whenever the surface displays distinct characteristic properties [17, 54]. Although
propagations of internal surfaces [52] and morphological surface instabilities [35] are widely
studied in metallurgy, material sciences, and mechanics today, the computational modeling
of surfaces equipped with their own energies is still in its infancy. For fluids, a few finite
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element approaches exist to simulate droplets and free surfaces with scalar-valued surface
tension [50]. For solids, however, a generic finite element approach towards elastic surfaces
with tensorial surface stresses has only been proposed very recently [20]. Conceptually
speaking, this approach treats the surface as a hyperelastic membrane of zero thickness
glued to the underlying bulk. This concept is mathematically elegant and easily
generalizable to anisotropic surfaces [21], thermomechanical surfaces [23] and surfaces with
diffusion [5]. Here, we adopt this framework and model the growing surface as a growing
shell, kinematically constrained to move with the solid body, but equipped with its own
potential energy.

1.5. Organization of this manuscript
The manuscript is organized as follows. In Sections 2, 3, and 4, we introduce the kinematic
equations, the balance equations, and the constitutive equations for finite growth. In all three
sections, we first illustrate growth of the solid body, and then adopt the underlying concept
to growth of the surface. In Section 5, we summarize the weak form of the governing
equations and discretize it in space using a combination of volume elements for the volume
terms and surface elements for the surface terms. In Section 6, we illustrate the features of
our algorithm using the model problem of constrained growth in a cylindrical tube. We
systematically compare a growing volume layer of finite thickness to a growing surface of
zero thickness. In Section 7, we discuss the differences between volume and surface growth,
before we close with a conclusion in Section 8.

Kinematics of growth
2.1. Kinematics of volume growth

Let ℬ0 ∈ ℝ3 denote the material placement of a continuum body with material particles X ⊂
ℬ0. We denote the time domain by = [0, T ] ⊂ ℝ+ and consider the quasi-static case, for
which time provides a history parameter to order the sequence of events. We introduce the
orientation preserving map φ : ℬ0 × T → ℝ3 as the smooth motion of the material placement
X onto its spatial placement x at any time t ∈ 

(1)

and label the current placement of the body at time t as ℬt = φ(ℬ0), see Figure 2. Here and in
the sequel, the subscripts 0 and t designate material and spatial quantities. We further
introduce the gradient, divergence, and material rate of any field {o} (X, t) as

(2)

where I is the material identity tensor, and {o}|t, and {o}|X indicate fixed temporal and
spatial positions. Using the above definitions, we introduce the deformation gradient F : Tℬ0
→ Tℬt, which maps material line elements dX ∈ Tℬ0 onto spatial line elements dx ∈ Tℬt as
dx = F · dX. To account for volumetric growth, we multiplicatively decompose the
deformation gradient into an elastic part Fe and a growth part Fg [49],

(3)

In contrast to the deformation gradient F, however, its individual contributions Fe and Fg

can, in general, be incompatible [32]. For notational convenience, we also introduce the
inverses of these second order tensors as f = [F]−1, fe = [F]e − 1, and fg = [F]g − 1.
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The Jacobian J of the deformation gradient F relates material volume elements dV0 ∈ ℬ0 and
spatial volume elements dVt ∈ ℬt as dVt = JdV0. Similar to the deformation gradient, we can
decompose it multiplicatively into an elastic part Je and a growth part Jg,

(4)

We can explicitly express the elastic Jacobian Je = det (Fe) and the growth Jacobian Jg = det
(Fg), where we introduce the following explicit representation in terms of the I = 1,2,3
covariant base vectors GI in Tℬ0,

(5)

Last, we introduce the right Cauchy Green tensor C in the material configuration and its
elastic counterpart Ce in the intermediate configuration as characteristic deformation
measures,

(6)

which are related through the identity Ce = [fg]t · C · fg. With the above considerations, the
pull back of the spatial velocity gradient l to the intermediate configuration

(7)

obeys an additive decomposition into the elastic velocity gradient Le = fe · DtFe and the
growth velocity gradient Lg = DtFg · fg.

2.2. Kinematics of surface growth
Let 0 = ∂ℬ0 denote the surface of ℬ0, assumed smooth, such that ℬ̅0 = ℬ0 ∪ 0 is the
closure of ℬ0 and 0. We label points on the surface of the reference configuration 0 as X̂
= X| 0, and the unit outward normal to 0 as N, see Figure 2. We can then introduce the
surface deformation map φ̂ : 0 × T → ℝ3 as the smooth motion of points on the surface of
the material configuration X ̂ onto points on the surface of the spatial configuration x̂ = x| t at
any time t ∈ [54],

(8)

The above considerations implicitly assume kinematic slavery, i.e., points on the surface of
the body remain on the surface at all times. In analogy to the volume, we formally introduce
the surface gradient and surface divergence of any field {o} (X̂, t) defined on the surface,

(9)

where Î = I − N ⊗ N is the second order surface unit tensor, which serves as surface
projection operator. With the above definitions, we introduce the surface deformation
gradient F̂ : 0 → t, which maps tangential line elements to the material surface dX̂ ∈ 0
onto tangential line elements to the spatial surface dx̂ ∈ t. Similar to the volume
deformation gradient F, the surface deformation gradient F̂ obeys a multiplicative
decomposition into an elastic part F̂e and a growth part F̂g,
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(10)

In contrast to the surface deformation gradient F̂, however, neither F̂e nor F̂g are necessarily
restricted to result from the projection of the corresponding volume quantities Fe and Fg.
Although the surface deformation gradient and its elastic and growth part are non-invertible,
they possess inverses in the generalized sense, f ̂ · F̂ = Î, f̂e · F̂e = Î, and f̂g · F̂g = Î in terms of
the surface unit tensor Î. In analogy to the volume Jacobian J, we can introduce the Jacobian
Ĵ of the surface deformation gradient F̂, which relates material surface area elements dA0 ∈

0 and spatial surface area elements dAt ∈ t as dAt = ĴdA0. Similarly, we decompose the
surface Jacobian multiplicatively into an elastic part  and a growth part ,

(11)

Here cof (o) = det(o) (o)−t denotes the cofactor of the second order tensor (o). We can then

express the elastic surface Jacobian as  and the growth surface Jacobian as

 in terms of the covariant base vectors Aα in T 0 [17],

(12)

Finally, we introduce the right Cauchy Green surface tensor Ĉ in the material configuration
and its elastic counterpart Ĉe in the intermediate configuration as characteristic surface
deformation measures,

(13)

which are related through the identity, Ĉe = f̂gt · Ĉ · f̂g. In analogy to the volume
considerations, we introduce the pull back of the spatial surface velocity gradient l̂ to the
intermediate configuration,

(14)

which obeys an additive decomposition into the elastic surface velocity gradient L̂e = f̂e ·
DtF̂e and the growth surface velocity gradient L ̂g = DtF̂g · f ̂g.

Remark 1. The material and spatial second order surface unit tensors Î = I − N ⊗ N and î =
I − n ⊗ n serve as projection tensors to map the volume deformation gradient and its inverse
onto their surface counterparts,

(15)

where N and n = N · f/|N · f|are the unit outward normals to the material and spatial surfaces.
Since the surface unit tensors Î and î are rank deficient, the surface deformation gradient is
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non-invertible. However, it possesses a generalized inverse according to the following
singular value decomposition,

(16)

where the diagonal entries of Σ and σ correspond to the singular values of F̂ and F̂t, the
columns of U and V are the left- and right-singular vectors associated with these singular
values, and Σ+ and σ+ are the pseudoinverses of Σ and σ, which are formed by replacing
every non-zero diagonal entry by its reciprocal value.

3. Balance equations of growth
3.1. Balance equations of volume growth

The balance of mass for growing continua balances the rate of change of the material
volume density ρ0 with the volume mass source ℛ0 and the volume mass flux R [27, 28].
For simplicity, we assume the mass flux to be negligibly small, R = 0, such that

(17)

By using the volume Jacobians introduced in equation (4), we immediately obtain the
following relations between the volume densities in the material, spatial, and intermediate
configurations ρ0, ρt, and ρg,

(18)

In the transformation above, we have utilized the time derivative of Jg as DtJg = ∂F
gJg : DtFg

= Jg[fg]t : DtFg = Jg tr Lg. The combination of equations (17.1) and (18.2) renders the
following explicit representation of the mass source ℛ0

(19)

The balance of linear momentum balances the rate of change of the linear momentum, which
we assume to vanish here for the quasi-static case, with the divergence of the volume Piola
stresses P and the volume forces b,

(20)

The Piola stresses P and volume forces b have the dimensions force per unit area and force
per unit volume. We obtain the weak form of the balance of linear momentum (20) through
the standard multiplication with the test function δφ, integration over the volume ℬ0, and
integration by parts,

(21)
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Here, the lefthand side characterizes the internal forces, and the righthand side terms
represent the external volume forces and the external surface forces. Alternatively, we could
rephrase the weak form in terms of the Piola Kirchhoff stress S or the Cauchy stress σ,

(22)

such that the internal force term of the weak form (21) takes the following alternative
representations,

(23)

3.2. Balance equations of surface growth
The balance of mass for growing surfaces balances the rate of change of the material area
density ρ̂0 with the area mass source ℛ̂0 and the area mass flux R̂, which we again assume
to vanish in the sequel, R̂ = 0, such that

(24)

We can then relate the surface densities in the material, spatial, and intermediate
configurations ρ̂0, ρ̂t, and ρ̂g with the help of the surface Jacobians (11)

(25)

where . The mass source then follows directly
from the combination of equations (24.1) and (25.2) as

(26)

The balance of linear momentum balances the rate of change of the linear surface
momentum, which we assume to be negligible in the quasi-static case, with the divergence
of the surface stresses P̂ and the surface tractions b̂ − P · N,

(27)

Here, the surface stresses P̂ and the surface tractions b̂ − P · N have the dimensions force per
unit length and force per unit area. The surface tractions consist of two contributions, the
prescribed surface tractions b̂ and the surface tractions imposed by the underlying volume
through the projected volume Piola stress P · N [54]. To transform the balance of linear
surface momentum into its weak form, we multiply it with the test function δφ, integrate it
over the surface 0, and apply the integration by parts,

(28)
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The lefthand side characterizes the internal surface forces, and the righthand side terms
represent the prescribed external surface forces, the projected external surface forces
imposed by the underlying volume, and the external line forces along the boundary curve to
the surface 0. Again, we can introduce the surface Piola Kirchhoff stress Ŝ and the surface
Cauchy stress σ̂ using the surface Piola transforms,

(29)

to rephrase the internal forces of the weak form (28) through the following expressions,

(30)

4. Constitutive equations
4.1. Constitutive equations of volume growth

To characterize volume growth in a hyperelastic medium, we introduce a Helmholtz free
volume energy ψ, parameterized in terms of the elastic contribution to the volume
deformation gradient Fe, or, alternatively, in terms of the volume deformation gradient F
and the volume growth tensor Fg,

(31)

The corresponding volume Piola stress P follows from thermodynamic considerations as
stress measure conjugate to the deformation gradient F,

(32)

where Pe denotes the classic elastic volume Piola stress. The total derivative of the Piola
stress P with respect to the deformation gradient F introduces the fourth order tensor of
tangent volume moduli 

(33)

where e denotes the classic elastic volume tangent moduli. To characterize the growth
process, we need to specify a functional form for the volume growth tensor Fg and its
evolution in time. For the simplest case of isotropic volume growth, the volume growth
tensor Fg takes the following functional form, parameterized in terms of a single scalar-
valued growth multiplier ϑ,

(34)

such that ϑ = 1 in the initial ungrown state, ϑ > 1 characterizes volume growth, and ϑ < 1
characterizes volume shrinkage. We propose the following simple exponential evolution
equation for the growth multiplier, which we can integrate explicitly in time,

(35)
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Here, τ characterizes the velocity of volume growth, ϑ0 = 1.0 is the initial growth value, and
ϑmax limits the maximum amount of growth towards which the growth multiplier ϑ
converges with progressing time t → ∞. Figure 3 illustrates the temporal evolution of the
growth multiplier ϑ, with an initial value ϑ0 = 1.0, for varying growth velocities τ at fixed
ϑmax = 4.0, left, and varying maximum growth ϑmax at fixed τ = 10, right.

Remark 2 (Isotropic volume growth). The special case of isotropic volume growth, Fg =
ϑI, has three immediate consequences. First, the volume growth tensor Fg can be inverted
explicitly, and the volume deformation gradient F, the volume Piola stress P, and the
volume tangent moduli become equal to their growth-weighted elastic counterparts,

(36)

Second, the growth tensor Fg always remains isotropic, and so does the volume growth
velocity gradient Lg,

(37)

Third, volume changes upon growth Jg are simply equivalent to the third power of the
growth multiplier ϑ,

(38)

Overall, the assumption of isotropic growth significantly simplifies the general equations of
volumetric growth.

Remark 3 (Growth at constant volume density). A common additional assumption is that
the newly grown material has the same volume density as the original substrate [42], Dtρg =
0. This implies that the volume density source ℛ0 required to maintain a constant volume
density in the intermediate configuration takes the following form,

(39)

For this special case, we do not need to discretize the balance of mass (17) explicitly, but
can simply evaluate overall mass changes in a straightforward post-processing step.

4.2. Constitutive equations of surface growth
To characterize surface growth, we equip the surface with its own Helmholtz free surface
energy ψ̂, which we parameterize in terms of the elastic contribution to the surface
deformation gradient F ̂e, or, alternatively, in terms of the surface deformation gradient F̂
and the surface growth tensor F̂g,

(40)

For simplicity, we assume the surface to behave isotropically [54], and do not account for an
explicit dependence on the deformed surface plane normal n. Similar to the volume, we
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introduce the surface Piola stress P̂ as thermodynamically conjugate to the surface
deformation gradient F ̂,

(41)

where P ̂e denotes the elastic surface Piola stress. Additionally, we introduce the fourth order
tensor of tangent surface moduli 𝔸 ̂ as the total derivative of the Piola stress P̂ with respect to
the deformation gradient F ̂,

(42)

such that 𝔸 ̂e denotes the elastic surface tangent moduli. Again, we consider the simplest
possible case of growth, isotropic surface growth, for which the surface growth tensor F̂g
can be parameterized in terms of a single scalar-valued growth multiplier ϑ̂,

(43)

Similar to the case of volume growth, ϑ̂ = 1 characterizes the initial ungrown state, ϑ̂ > 1
corresponds to surface growth, and ϑ̂ < 1 to surface shrinkage. Again, we suggest a simple
exponential evolution equation for the growth multiplier, and integrate it explicitly in time,

(44)

Here, τ̂ characterizes the velocity of surface growth, ϑ̂0 = 1.0 is the initial growth value, and
ϑ̂max limits the maximum amount of surface growth towards which the growth multiplier ϑ̂
converges with progressing time t. Figure 3 illustrates the temporal evolution of the growth
multiplier ϑ̂, with an initial value ϑ̂0 = 1.0, for varying growth velocities τ̂ at fixed ϑ̂max =
4.0, left, and varying maximum growth ϑ̂max at fixed τ̂ = 10, right.

Remark 4 (Isotropic surface growth). The special case of isotropic surface growth, F̂g =
ϑ̂Î, has three immediate consequences. First, we can explicitly invert the surface growth
tensor F̂g using the surface unit tensor Î. This allows us to express the surface deformation
gradient F, the surface Piola stress P, and the surface tangent moduli through to their
growth-weighted elastic counterparts,

(45)

Second, the surface growth tensor Fg and the surface growth velocity gradient Lg always
remain isotropic,

(46)

Third, surface area changes upon growth  are simply equivalent to the growth multiplier ϑ
squared,
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(47)

As the above considerations indicate, the assumption of isotropic growth simplifies the
governing equations of surface growth.

Remark 5 (Growth at constant surface density). If we additionally assume that the newly
grown surface has the same surface density as the original surface, Dtρ̂g = 0, we can express
the surface density source ℛ̂0 in the following form,

(48)

Similar to the case of constant volume density, we do not need to discretize the balance of
mass (24) explicitly, but can simply evaluate overall mass changes in a straightforward post-
processing step.

5. Discretization
The governing equations for finite volume and surface growth are complex and highly
nonlinear. In this section, we illustrate their computational solution within an incremental
iterative nonlinear finite element framework. To characterize the state of the growth process
at each instant in time, we introduce the volume and surface growth multipliers ϑg and ϑ̂g as
internal variables, and solve their evolution equations (35) and (44) locally at the integration
point level. We begin by summarizing the residual of the weak forms of the balance of linear
momentum in the volume (21) and on the surface (28),

(49)

To discretize the weak form (49) in space, we partition the domain of interest 

into nbe finite volume elements , and the surface of interest  into nse finite

surface elements . Although it is in principle possible to select arbitrary surface elements
with independent nodes, it proofs efficient to discretize the surface in consistency with the
bulk. This implies that each surface element shares its nodes with its corresponding volume
elements as illustrated in Figure 4. The surface element itself than acts like a shell element,
which moves in consistency with the bulk; however, it is equipped with its own independent
free energy function. In the following subsections, we demonstrate the finite element
discretizations of the volume and surface terms of equation (49), to obtain the discrete
residual

(50)

Herein, the operator A symbolizes the assembly of all element residuals at the i = 1, ‥, nvn
volume element nodes to the global residual at the global node points I = 1, ‥, ngn. To solve
the above equation, we suggest an incremental iterative Newton algorithm based on the
consistent linearization of the residual RI with respect to the nodal vector of unknowns φJ.
This linearization introduces the global stiffness matrix at all global nodes I, J = 1, ‥, nng,
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(51)

For each global Newton iteration step, we iteratively update the current deformation state

 until we achieve algorithmic convergence. Upon convergence, we store
the volume and surface growth multipliers ϑg and ϑ̂g at the integration points of the
corresponding volume and surface elements.

5.1. Discretization of volume terms
To approximate the test functions δφ, trial functions φ, and nodal coordinates X in the
volume, we apply an isoparametric Bubnov-Galerkin type finite element interpolation,

(52)

where Ni and Nj are the element shape functions in the volume and i, j = 1, ‥, nvn are nodes
of the volume element. The gradients of the test and trial functions δF = ∇δφ and F = ∇φ
then follow naturally in terms of the gradients of the shape functions ∇Ni and ∇Nj,

(53)

To determine the gradients of the shape functions ∇Ni, we use the isoparameteric concept
for the approximation of the nodal coordinates X from (52.3) to calculate the Jacobi matrix J
and its transposed inverse J−t,

(54)

5.2. Discretization of surface terms
To approximate the test functions δφ, trial functions φ, and nodal coordinates X on the
surface, we apply a Bubnov-Galerkin type finite element interpolation,

(55)

where N̂i and N̂j are the element shape functions on the surface and i, j = 1, ‥, nsn are nodes
of the surface element. The gradients of the test and trial functions δF = ∇̂δφ and F = ∇̂φ on
the surface follow in terms of the covariant spatial base vectors δaα and aα multiplied with
the contravariant material base vectors Aα, for α = 1,2, such that

(56)

Accordingly, we first calculate the covariant spatial and material base vectors δaα, aα, and
Aα, see Figure 4, with

(57)
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Then, we determine the contravariant material base vectors Aα using the contravariant and
covariant material metric coefficients Aαβ such that Aαβ for α,β = 1, 2, such that

(58)

The gradients of the shape functions ∇̂Ni follow in analogy to the volume, however, here,
they are explicit functions of the contravariant base vectors Aα,

(59)

6. Results
To systematically compare the features of volume and surface growth, we simulate
constrained growth of the inner lining of a cylindrical hyperelastic tube. The tube is 5 cm
long, and has an initial inner and outer radius of 1 cm and 2 cm, see Figure 5. Throughout
the simulation, we apply homogeneous Dirichlet boundary conditions to the entire outer
surface and to the axial deformation at the longitudinal boundaries. To initiate an
inhomogeneous growth pattern, we perturb the inner surface with slight sinus-type
perturbations of an amplitude of ± 0.005 cm.

6.1. Volume growth inside a cylindrical tube
To illustrate the features of volume growth, we allow a thin inner layer of a cylindrical tube
to grow, while the thick outer layer remains entirely hyperelastic. We characterize the
hyperelastic response of both layers through an isotropic Helmholtz volume energy ψ0 of
Neo-Hookean type,

where λ and μ are the standard volume Lamé constants. To evaluate the discrete residual
(50) and its consistent linearization (51), we calculate the volume Piola stress P using the
general definition (32),

and the volume tangent using the general definition (33),

along with the assumption of isotropic volume growth, Fg = ϑI, according to equation (34).
Typically, the inner layer is considered significantly thinner and stiffer than the outer layer
[60]. For the thin growing inner layer, we choose a thickness of 0.1 cm, Lamé constants of λ
= 577 N/mm2 and μ = 385 N/mm2, a maximum growth of ϑmax = 4.0, and a time constant
of τ = 10.0, see Figure 3. For the thick elastic outer layer, the thickness is 0.9 cm, and we
choose Lamé constants of λ = 0.577 N/mm2 and μ = 0.385 N/mm2. We initiate an
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inhomogeneous growth pattern through a pentagonal perturbation of five sinus waves
applied to the inner surface. We discretize the tube with ten elements in the radial, 125
elements in the circumferential, and one element in the longitudinal direction, resulting in a
total of 1,250 volume elements and 8,250 degrees of freedom. Figure 5, left, shows the finite
element discretization for volume growth, with the growing inner layer displayed in gray
and the elastic outer layer displayed in white.

Table 1 demonstrates the algorithmic performance of the volume growth model. The five
individual columns correspond to the snapshots displayed in Figure 6. The algorithm
converges quadratically in five to six iteration steps for a convergence criterion of 10E−10.
To accurately capture the growth process, we apply an ad hoc time adaptive scheme, which
automatically decreases the time step size by 50% once the number of Newton iterations
exceeds seven, and increases the time step size by 10% otherwise. As the growth process
progresses, the time step size decreases initially and then increases. The minimum time step
size of Δtmin = 0.003 at a volume growth multiplier of ϑ = 1.38 corresponds exactly to the
onset of buckling, when the five perturbations transition from an initially convex to an
inward folded concave state.

Figure 6 illustrates volume growth of the inner tubular layer at the discrete time points
summarized in Table 1. The upper and lower rows display the spatio-temporal evolution of
the radial and deviatoric stresses. As time progresses, the growing inner layer successively
increases in volume, pulling the hyperelastic outer layer inward. During this growth process,
the pentagonal perturbation grows into five distinct inner folds. Both radial and deviatoric
stresses are concentrated in the growing inner layer, while the hyperelastic outer layer
remains virtually stress free.

Figure 7 provides a fully three-dimensional view of the volume growth process. To explore
the impact of the degree of perturbation, we systematically vary the number of perturbations
applied to the inner surface. Square, pentagonal, hexagonal, heptagonal, and octagonal
perturbations, displayed from left to right, gradually transition into four, five, six, seven, and
eight distinct inner folds. The upper and lower rows display the spatial distribution of the
radial and deviatoric stresses. Both stress patterns are conceptually similar for different
degrees of perturbation, displaying maximum stresses in the growing inner, while the
hyperelastic outer layer remains virtually stress free. The illustrated snapshots correspond to
the time point of first self contact, which occurs at ϑ = 1.87 for square, at ϑ = 2.00 for
pentagonal, at ϑ = 2.19 for hexagonal, at ϑ = 2.28 for heptagonal, and at ϑ = 2.36 for
octagonal perturbations.

6.2. Surface growth inside a cylindrical tube
To illustrate the features of surface growth, we allow the inner surface of a cylindrical tube
to grow, while the entire bulk remains hyperelastic. We characterize the hyperelastic
response of the inner surface through an isotropic Helmholtz surface energy ψ̂0 of Neo
Hookean type in analogy to its volumetric counterpart [22],

where λ̂ and μ̂ are the surface Lamé constants. To evaluate the discrete residual (50) and its
consistent linearization (51), we calculate the surface Piola stress P̂ using the general
definition (41),
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and the surface tangent 𝔸 ̂ using the definition (42),

along with the assumption of isotropic surface growth, F̂g =ϑ̂Î, according to equation (43).
In the above equation, we have used the abbreviation i⊥ for the second order normal
projection tensor i⊥ = i − î = n ⊗ n. For the growing surface, we choose surface Lamé
constants of λ̂ = 0.577 N/mm2 and μ̂ = 0.385 N/mm2, a maximum growth of ϑ̂max = 4.0,
and a time constant of τ̂ = 10.0, see Figure 3. For the elastic bulk, we choose volume Lamé
constants of λ = 0.577 N/mm2 and μ = 0.385 N/mm2. We initiate an inhomogeneous growth
pattern through a pentagonal perturbation of five sinus waves applied to the inner growing
surface. We discretize the tube with ten elements in the radial, 125 elements in the
circumferential, and one element in the longitudinal direction, resulting in a total of 1,250
volume elements and 8,250 degrees of freedom. In addition, we discretize the inner surface
with 125 surface elements. Since these surface elements share their nodes with the
corresponding volume elements, see Figure 4, the addition of surface elements does not
change the overall number of degrees of freedom. Figure 5, right, shows the finite element
discretization for surface growth, with the growing inner surface displayed in gray and the
elastic bulk displayed in white.

Table 2 documents the algorithmic performance of the surface growth model. The five
individual columns correspond to the snapshots displayed in Figure 8. The algorithm
converges quadratically in five iteration steps for a convergence criterion of 10E−10. To
accurately capture the growth process, we apply an ad hoc time adaptive scheme, which
automatically decreases the time step size by 50% once the number of Newton iterations
exceeds seven, and increases the time step size by 10% otherwise. As the growth process
progresses, the time step size decreases initially and then increases. The minimum time step
size of Δtmin = 0.020 at a surface growth multiplier of ϑ̂ = 1.13 corresponds exactly to the
onset of buckling, when the five perturbations transition from an initially convex to an
inward folded concave state.

Figure 8 illustrates surface growth of inner tubular surface at the discrete time points
summerized in Table 2. The upper and lower rows display the spatio-temporal evolution of
the radial and deviatoric stresses. As time progresses, the growing inner surface successively
increases in area, pulling the elastic bulk inward. During this growth process, the pentagonal
perturbation grows into five distinct inner folds. Both radial and deviatoric stresses display
significant regional variations. While radial stresses are primarily concentrated in convex
regions where the volume is stretched most, deviatoric stresses are concentrated mainly in
concave regions where the volume is compressed most.

Figure 9 provides a fully three-dimensional view of the surface growth process. To explore
the impact of the degree of perturbation, we systematically vary the number of perturbations
applied to the inner surface. Square, pentagonal, hexagonal, heptagonal, and octagonal
perturbations, displayed from left to right, gradually transition into four, five, six, seven, and
eight distinct inner folds. The upper and lower rows display the spatial distribution of the
radial and deviatoric stresses. Both stress patterns are conceptually similar for different
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degrees of perturbation, displaying maximum radial stresses in convex regions where the
volume is stretched most, and maximum deviatoric stresses in concave regions where the
volume is compressed most. The illustrated snapshots correspond to the time point of first
self contact, which occurs consistent at ϑ̂ = 2.75 for all five perturbations.

7. Discussion
Growth in constrained geometries is an important phenomenon of equal relevance to
material sciences, biology, and medicine. Here, we have compared two conceptually
different types of growth: classical volume growth, which has been explored intensely
within the past decade; and surface growth, which has been realized using the concept of
continua with boundary energies. While volume growth can reasonably well model
biological systems of finite thickness, surface growth is appropriate to characterize
phenomena at the zero thickness limit. Our new continuum framework for growing surfaces
is therefore particularly appealing for growing thin films and growing biological linings of
several cell layers.

In this manuscript, we have established the kinematic equations, the balance equations, and
the constitutive equations for continua with boundary energies and growing surfaces. To
motivate this novel concept, we have derived all sets of equations in complete analogy to
continua with growing volumes. We have discretized the underlying weak forms and
illustrated their consistent algorithmic linearization. To systematically compare growing
volumes and growing surfaces, we have simulated constrained growth of finite-thickness
and zero-thickness linings of a hyperelastic cylindrical tube.

Figures 6 through 9 have shown that both volume and surface growth are capable of
predicting extreme growth of the inner cylindrical lining, which more then doubled its initial
area throughout the growth process. Both algorithms are robust and stable to simulate
growth during the onset of buckling and beyond. Simulating the initiation of buckling
instabilities is numerically highly challenging. To address this issue, we have adopted an ad
hoc time adaptive scheme, which automatically reduces the time step size during phases
when the Newton Raphson iteration does not converge within a limited number of iteration
steps. This time adaptation has proven crucial to accurately track the initial stage of the
instability and efficiently simulate growth beyond this critical point. However, this ad hoc
adaptation scheme critically relies on a correct algorithmic linearization of the underlying
highly nonlinear system of equations, which we have demonstrated through the
characteristic quadratic convergence of the algorithmic residual in Table 1 and Table 2.

To quantitatively compare volume and surface growth, Figure 10 demonstrates the
algorithmic performance of both formulations in terms of the adaptive time step size Δt. The
blue, turquoise, green, orange, and red curves correspond to the square, pentagonal,
hexagonal, heptagonal, and octagonal perturbations displayed in Figures 7 and 9. With our
particular time adaptive scheme, the required time step sizes for volume growth, left, were
0.002, 0.003, 0.004, 0.006, and 0.009 for the five simulations. The required time step sizes
for surface growth, right, were 0.022, 0.020, 0.030, 0.030, and 0.025, i.e., they were in
average an order of magnitude larger. Figure 11 compares both formulations in terms of the
growth multiplier ϑ. The algorithm for volume growth, left, required 187, 154, 131, 114,
and 98 simulation steps towards the point of first self contact, shown in Figure 7, while the
algorithm for surface growth, right, required only 47, 47, 40, 41, and 42 steps towards this
point, shown in Figure 9. Although these numbers strongly depend on the particular choice
and parameterization of the time adaptation scheme, these studies indicates that surface
growth is computationally more robust and more efficient than volume growth.
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The present formulation for continua with boundary energies and growing surfaces is
particularly suited to model phenomena, in which the thickness of the growing membrane is
significantly smaller than the overall dimensions of the system [16]. The thickness of the
mucous membrane is typically less than a millimeter [44], the thickness of the cerebral
cortex of the brain is of the order of millimeters [61], the thickness of the epidermis of skin
is of the order of several cell layers [6]. During growth, neither the cortical [62] nor the
epidermal [65] thicknesses undergo relevant changes, while their surfaces may grow
significantly. While the proposed theory is well suited for thin biological membranes close
to the zero thickness limit, which do not grow considerably in the thickness direction,
volume growth with different growth multipliers in plane and out of plane [15, 43] might be
more appropriate for thickening membranes. The role of thickness changes has been studied
intensely in the context of mucosal folding [60]. Parametric studies focus on identifying
critical thickness ratios [24], stiffness ratios [37], and growth multipliers [36] at the onset of
wrinkling. Another group of studies attributes the onset of buckling to an increased muscular
pressure at the outer surface and focuses on identifying critical pressure-to-luminal-areal
[60] or critical pressure-to-growth [43] curves. While we have limited the current examples
to growth-induced instabilities, we plan to investigate the impact of pressure-induced
instabilities in the near future. Another limitation of the proposed approach is that the
evolution of growth is prescribed constitutively through equations (35) and (44) as
illustrated in Figure 3. Replacing the morphogenetically driven growth law by a
mechanically driven growth law is conceptually possible. However, the corresponding
linearization will become slightly more cumbersome, as we have recently shown in the
context of volume growth [13, 64].

8. Conclusion
Many biological systems are coated by thin films, which display a fundamentally different
behavior than the bulk. Here we have explored the physics and the numerics for growing
thin biological surfaces. To model surface growth and the associated kinematic instabilities,
we have compared two alternative concepts, classical volume growth for systems with a
finite thickness and surface growth for systems with a zero thickness. Although the growing
surfaces of both formations may look kinematically similar, aside from the underlying
physics, there are three essential differences between the two schemes: First, and most
obvious, surface growth is kinematically more localized than volume growth. It affects only
the area of the inner lining, whereas volume growth also affects the thickness of the growing
layer. Second, surface growth induces smoother stress profiles than volume growth. Its
stresses are not just concentrated in the growing layer, but are distributed smoothly
throughout the entire hyperelastic bulk. This implies that the peak stresses during surface
growth are significantly smaller. This difference might become relevant in surface
debonding, since elevated peak stresses are a hallmark for interface failure and an important
indicator for layer separation. Third, surface growth is algorithmically more robust than
volume growth. Surface growth accurately captures the onset of instabilities and traces the
equilibrium path efficiently. Under the same conditions, the simulation of growing surfaces
is about an order of magnitude faster than the simulation of growing volumes.

We believe that the concept of continua with boundary energies and growing surfaces will
be widely applicable to predict growth-induced morphological instabilities in thin biological
membranes, and, ultimately, support the design of new diagnostic tools and therapies for
various types of respiratory, digestive, and urogenital disorders such as asthma, bronchitis,
gastritis, obstructive sleep apnoea, and tumor invasion. In addition, the fundamental
scientific understanding of growth-induced morphological instabilities has important
implications in material sciences, manufacturing, and microfabrication, and may support the
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rational design of smart materials with tunable patterns and functional surfaces in soft
lithography, metrology, and flexible electronics.
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Figure 1.
Chronic airway wall remodeling and characteristic structural changes. Normal small airway
(left). Acutely inflamed airway with thickened airway wall, in which the lumen is partly
filled with an inflammatory exudate of mucus and cells (middle). Chronically obstructed
airway with increased deposition of collagen and thickened smooth muscle layer, which
restricts normal enlargement of the lumen and unfolding of the epithelial lining during
inflation (right). Reprinted with permission from [19].
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Figure 2.
Kinematics of material and spatial configurations ℬ0 and ℬt of material body with material
and spatial surfaces 0 and t and multiplicative decomposition of the volume and surface
deformation gradients F = Fe · Fg and F̂ = F̂e · F̂g into elastic parts Fe and F̂e and growth
parts Fg and F̂g.
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Figure 3.
Temporal evolution of growth multiplier ϑ for varying growth velocities τ at fixed ϑmax,
left, and varying maximum growth ϑmax at fixed τ, right.
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Figure 4.

Discretization of material body with finite volume elements  and  and of its surface

with finite surface elements  and . Surface elements share their nodes with the
corresponding volume elements, however, they are equipped with their own energies ψ̂,
stresses P̂ = ∂ψ̂/∂F̂, and tangent operators 𝔸 ̂ = dP̂/dF̂.
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Figure 5.
Finite element discretization of cylindrical tube discretized with ten elements in the radial,
125 elements in the circumferential, and one element in the longitudinal direction, resulting
in a total of 1,250 volume elements and 8,250 degrees of freedom. To simulate volume
growth, left, we allow the inner layer to grow, shown in gray, while the outer layer remains
hyperelastic, shown in white. To simulate surface growth, right, we allow the inner surface
to grow, shown in gray, while the entire bulk remains hyperelastic, shown in white.
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Figure 6.
Volume growth of inner layer of a cylindrical tube with pentagonally perturbed inner
surface. Spatio-temporal evolution of radial stresses, top, and deviatoric stresses, bottom.
The growing inner layer successively increases in volume, pulling the hyperelastic outer
layer inward. As growth progresses, the pentagonal perturbation grows into five distinct
inner folds. Snapshots correspond to ϑ = 1.00, ϑ = 1.50, ϑ = 1.625, ϑ = 1.75, and ϑ = 2.00.
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Figure 7.
Volume growth of inner layer of a cylindrical tube with perturbed inner surface. Spatial
distribution of radial stresses, top, and deviatoric stresses, bottom. Square, pentagonal,
hexagonal, heptagonal, and octagonal perturbations transition into four, five, six, seven, and
eight distinct inner folds. Snapshots correspond to the time point of first self contact, which
occurs at ϑ = 1.87 for square, at ϑ = 2.00 for pentagonal, at ϑ = 2.19 for hexagonal, at ϑ =
2.28 for heptagonal, and at ϑ = 2.36 for octagonal perturbations.
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Figure 8.
Surface growth of inner surface of a cylindrical tube with pentagonally perturbed inner
surface. Spatio-temporal evolution of radial stresses, top, and deviatoric stresses, bottom.
The growing inner surface successively increases in area, pulling the elastic volume inward.
As growth progresses, the pentagonal perturbation grows into five distinct inner folds.
Snapshots correspond to ϑ̂ = 1.00, ϑ̂ = 1.25, ϑ̂ = 1.50, ϑ̂ = 2.00, and ϑ̂ = 2.70.
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Figure 9.
Surface growth of inner surface of a cylindrical tube with perturbed inner surface. Spatial
distribution of radial stresses, top, and deviatoric stresses, bottom. Square, pentagonal,
hexagonal, heptagonal, and octagonal perturbations transition into four, five, six, seven, and
eight distinct inner folds. Snapshots correspond to the time point of first self contact, which
occurs consistent at ϑ̂ = 2.70 for all perturbations.
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Figure 10.
Algorithmic performance. Evolution of adaptive time step size Δt for volume growth, left,
and surface growth, right. The blue, turquoise, green, orange, and red curves correspond to
the square, pentagonal, hexagonal, heptagonal, and octagonal perturbations displayed in
Figures 7 and 9. The algorithm for volume growth requires significantly smaller time step
sizes than the algorithm for surface growth.
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Figure 11.
Algorithmic performance. Evolution of growth multiplier ϑ for volume growth, left, and
surface growth, right. The blue, turquoise, green, orange, and red curves correspond to the
square, pentagonal, hexagonal, heptagonal, and octagonal perturbations displayed in Figures
7 and 9. The algorithm for volume growth requires significantly more simulation steps
towards the point of first self contact than the algorithm for surface growth.
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