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Abstract
Portal hypertension is responsible for the bulk of the 
morbidity and mortality in patients with cirrhosis. Drug 
therapy to reduce portal pressure involves targeting 
two vascular beds. The first approach is to reduce intra 
hepatic vascular tone induced by the activity of power-
ful vasocontrictors such as angiotensin Ⅱ, endothelin-1 
and the sympathetic system and mediated via  contrac-
tion of perisinusoidal myofibroblasts and pervascular 
smooth muscle cells. The second approach is to re-
duce mesenteric and portal blood flow. Non-selective 
b-blockers are widely used and have been shown to 
prolong patient survival and reduce oesophageal vari-
ceal bleeding in advanced cirrhosis. However many pa-
tients are unable to tolerate these drugs and they are 
ineffective in a significant proportion of patients. Un-
fortunately there are no other drug therapies that have 
proven efficacy in the treatment of portal hyperten-
sion and prevention of variceal bleeding. This review 
briefly outlines current therapeutic approaches to the 

management of portal hypertension, and the evidence 
supporting the role of the renin angiotensin system 
(RAS) and the use of RAS blockers in this condition. It 
will also outline recent advances in RAS research that 
could lead to the development of new treatments fo-
cusing in particular on the recently discovered “alternate 
axis” of the RAS.
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INTRODUCTION
Hepatic fibrosis and its end-stage sequelae of  cirrho-
sis and liver cancer are major causes of  morbidity and 
mortality throughout the world and their prevalence is 
rising, largely due to the increasing impact of  chronic 
viral hepatitis and non alcoholic steatohepatitis. Much 
of  the morbidity and mortality that occurs in cirrhosis 
is due to the development of  portal hypertension. How-
ever, despite major advances in our understanding of  the 
pathogenesis of  portal hypertension, current treatment 
options are limited. 

It is clear that the renin angiotensin system (RAS) 
contributes to organ dysfunction and chronic tissue in-
jury in a range of  conditions including diabetes, cardio-
vascular and renal disease, primarily through the vasoac-
tive and profibrotic effects of  its key effector peptide, 
angiotensin Ⅱ[1]. More recently, the RAS has also been 
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implicated in the pathogenesis of  both hepatic fibrosis 
and portal hypertension[2,3]. This is supported by studies 
which have shown that RAS blockers are able to reduce 
fibrosis in experimental models of  chronic liver injury 
and that they can lower portal pressure in both animal 
models and in man, primarily by inhibiting angiotensin 
Ⅱ mediated intrahepatic vasoconstriction[4-6]. This re-
view will briefly outline current therapeutic approaches 
to the management of  portal hypertension, and focus on 
the evidence supporting the role of  the RAS and the use 
of  RAS blockers in this condition, and recent advances 
in RAS research that could lead to the development of  
new treatments.

CURRENT TREATMENT OF PORTAL HY-
PERTENSION
The initiating mechanism for the development of  por-
tal hypertension is thought to be the development of  
increased intrahepatic resistance to portal inflow. This is 
mostly caused by increased deposition of  extracellular 
matrix and disruption of  the normal hepatic vascular ar-
chitecture[2]. However, a significant proportion of  portal 
resistance is attributable to intrahepatic vasoconstriction 
which is caused by the contraction of  activated perisi-
nusoidal hepatic stellate cells and of  vascular smooth 
muscle cells in portal venules[7]. It is this variable com-
ponent of  intrahepatic resistance, mediated by powerful 
intrahepatic vasoconstrictors such as angiotensin Ⅱ and 
endothelin[8-11], which is potentially amenable to pharma-
cological therapies. 

The second and equally important contributor in 
the development of  portal hypertension is splanchnic 
vasodilatation which increases portal blood flow[12]. The 
mechanisms responsible for splanchnic vasodilatation in 
portal hypertension are incompletely understood, how-
ever, there is considerable evidence from both animal 
and human studies to suggest that nitric oxide (NO) 
generated by endothelial NO synthase (NOS) plays a 
central role[13-16]. One of  the key consequences of  por-
tal hypertension is the development of  portosystemic 
collaterals, of  which the most important clinically are 
oesophageal varices. These vessels divert much of  the 
increased mesenteric inflow away from the liver. How-
ever, even when portal blood flow is entirely diverted 
through collaterals, portal hypertension persists because 
of  concomitant increases in portal venous inflow caused 
by increasing splanchnic vasodilatation. It should be 
noted that although the formation of  these collaterals 
has been assumed to be the result of  dilatation of  pre-
existing vascular channels, recent studies have implicated 
a process of  neoangiogenesis which has been shown to 
contribute to both the formation of  portosystemic col-
laterals and increased splanchnic blood flow[17].

Bleeding from oesophageal varices is responsible 
for much of  the mortality and morbidity that occurs in 
patients with portal hypertension. Varices are present in 
about 50% of  patients at diagnosis, and this increases to 

about 90% on long-term follow up. The risk of  variceal 
rupture is 10%-30% per year depending on their size 
and appearance and the severity of  liver disease, and 
the risk of  mortality from a single episode is around 
15%-20%[18]. Thus prevention or control of  variceal 
bleeding has been the primary aim of  the drug treat-
ments that have been used in an attempt to lower portal 
pressure.

In theory portal pressure should fall in response to 
drugs that reduce portal inflow or those that lower in-
tra hepatic resistance to portal inflow. The drugs most 
widely used in the prevention of  variceal bleeding are 
non-selective b-blockers (NSBB). They reduce portal 
pressure by reducing cardiac output via b-1 receptors 
and causing splanchnic vasoconstriction by blocking b-2 
receptors, resulting in unopposed a-1 activity. Random-
ized clinical trials showed NSBB reduce portal pressure 
and the risk of  bleeding from oesophageal varices[18-26]. 
However around 15% of  cirrhotic patients are intolerant 
of  NSBB treatment, and up to 60% fail to achieve the 
treatment response required to prevent variceal bleed-
ing defined as a fall in hepatic venous pressure gradient 
(HVPG) to less than 12 mmHg or a decrease of  greater 
than 20% from baseline[27]. Although portal pressure is 
directly correlated with the presence of  varices, lowering 
pressure with NSBB does not prevent the development 
of  varices in patients with cirrhosis[28]. 

Another approach is to reduce intrahepatic resistance 
with drugs that increase the delivery of  NO to the in-
trahepatic circulation (e.g., nitrates), or drugs that block 
a-adrenergic activity (e.g., prazosin, clonidine). Although 
modest reduction in HVPG can be achieved with these 
drugs, their use as monotherapy is not recommended 
as they not only act on the intrahepatic circulation but 
also exert a vasodilatory effect on the systemic circula-
tion, leading to arterial hypotension[29]. A recent small 
placebo-controlled randomized study showed that simv-
astatin, a drug that originally developed for hypercholes-
terolemia and shown to act through the posttranslational 
modification of  endothelial NOS (eNOS), significantly 
reduced HVPG in cirrhotic patients without altering the 
blood flow. This suggested that simvastatin improved 
HVPG by reducing intrahepatic vascular resistance[30]. 

A number of  vasoconstrictor drugs which increase 
splanchnic vascular tone have been shown to be effec-
tive in controlling acute variceal bleeding. The vasopres-
sin analogue, terlipressin, acts on vascular V1 receptors 
in both the mesenteric and systemic arterial beds to me-
diate vasoconstriction, and as a result, the drug lowers 
mesenteric inflow and portal pressure. Terlipressin is 
generally well-tolerated, but there remains a small inci-
dence of  ischaemic events which respond to cessation 
of  the drug[31]. This drug reduces the relative risk of  
mortality from acute variceal bleeding by approximately 
one third[32]. Moreover, terlipressin (plus albumin) is the 
only treatment shown to prolong short-term survival in 
type 1 hepatorenal syndrome (HRS)[33]. Somatostatin and 
its analogues octreotide and vapreotide are splanchnic 
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vasoconstrictors which act by inhibiting glucagon secre-
tion and by a local mesenteric vasoconstrictive effect[34]. 
Although these drugs have a role in the treatment of  
acute variceal bleeding in combination with endoscopic 
therapy[35], they do not reduce mortality in this setting 
compared to endoscopic therapy alone[35,36] and are inef-
fective in HRS[37].

In summary, NSBBs are widely accepted as the main 
pharmacotherapy currently available for prevention of  
variceal bleeding. However, a significant proportion of  
patient fail to achieve an optimal response or do not tol-
erate treatment[27] and no other drugs have an established 
role in the long-term treatment of  portal hypertension. 
Thus there remains a major need to develop more safe 
and effective treatment options for the treatment of  
portal hypertension. 

NEW CONCEPTS IN RAS PHYSIOLOGY
In recent years it has been shown that the RAS is a much 
more complex enzymatic pathway than previously 
thought. It has been long recognized that the RAS plays 
a central role in cardiovascular and fluid homeostasis via 
the formation of  the potent vasoconstrictor angiotensin 
Ⅱ[38]. However it is now clear that in addition to its vaso-
active roles the “classical” axis of  the RAS, comprising 
angiotensin Ⅱ, angiotensin converting enzyme (ACE) 
and the angiotensin Ⅱ type 1 receptor (AT1R), plays 
a role in the wound healing response to chronic tissue 
injury and contributes to inflammation, cell prolifera-
tion and fibrogenesis[39-42]. In addition an “alternate” axis 
of  the RAS has been characterized comprising ACE2, a 
structural homologue of  ACE, its peptide product an-
giotensin-(1-7) and the Mas receptor, which has effects 
that counterbalance those mediated by the classical axis 
(Figure 1). 

Early studies showed that angiotensin-(1-7) can be 
generated from angiotensin Ⅰ by the actions of  endo-
peptidases such as prolyl oligopeptidase[43] and thimet 
oligopeptidase[44] in tissue, and in the circulation by neu-
tral endopeptidase[45]. Whilst the various endopeptidases 
have been shown to produce angiotensin-(1-7) depend-
ing upon their tissue localization and access to sub-
strates, emerging evidence suggests that ACE2 which has 
a distinct enzyme activity[46], plays a key role in angioten-
sin-(1-7) production in several tissues. ACE2 is able to 
generate angiotensin-(1-7) from angiotensin Ⅰ indirectly 
through an intermediary peptide angiotensin-(1-9); 
however, in comparison, ACE2 has an approximately 
400-fold higher substrate preference for angiotensin Ⅱ[47] 
which suggests that ACE2 is important not only for pro-
duction of  angiotensin-(1-7) but also in degrading angio-
tensin Ⅱ. Recently, Westwood and Chappell described 
another pathway in which angiotensin-(1-7) is generated 
directly from angiotensin-(1-12) or via angiotensin Ⅰ gen
eration[48]. 

Angiotensin-(1-7), an effector peptide of  the alter-
nate axis of  the RAS, is a vasodilator in several vascular 

beds and has been shown to act mainly via its receptor 
Mas[49-54]. However, the existence of  a receptor popula-
tion that is insensitive to blockade with Mas receptor 
blocker A779 has also been reported[54,55]. It appears that 
angiotensin-(1-7), upon binding to its receptor, activates 
diverse pathways of  intracellular signalling, leading to 
vasodilatation. For example, vasodilatory prostacyclin 
and/or NO appear to be involved in the response to an-
giotensin-(1-7) in the regional vascular beds[50,53,54,56-58]. It 
therefore appears that angiotensin-(1-7)-stimulated intra-
cellular signaling leading to vasodilatation is depending 
upon the vascular bed under study and under differing 
pathophysiological condition.

Most components of  the RAS are expressed in the 
liver, which is the primary source of  angiotensinogen 
synthesis. Recent findings from our laboratory and oth-
ers suggest that this intrahepatic RAS plays an important 
role in liver fibrosis since it is markedly upregulated in 
liver injury[11,59-61], and blockade of  the RAS improves 
experimental hepatic fibrosis[5,62-64]. The alternative axis 
of  the RAS is also expressed in the liver and upregulated 
in liver disease leading to the generation of  angioten-
sin-(1-7)[11,61,65]. The major pathway responsible for the 
generation of  angiotensin-(1-7) in the cirrhotic liver is 
degradation of  angiotensin Ⅱ by ACE2 (Figure 2)[66] 
confirming previous in vitro findings that ACE2 has the 
highest substrate preference towards angiotensin Ⅱ[47]. 
However there is limited data regarding the possible role 
of  the alternate RAS in liver fibrosis and in modulating 
intrahepatic blood flow.

RAS AND INTRAHEPATIC RESISTANCE
As outlined above, in patients with cirrhosis, the devel-
opment of  portal hypertension results from both an 
increase in the intrahepatic resistance to portal flow and 
an associated vasodilatation of  the mesenteric vascular 
bed which leads to an increase in mesenteric blood flow. 
Splanchnic and systemic vasodilatation leads to second-
ary activation of  vasoconstrictor pathways such as the 
sympathetic nervous system and the RAS in an attempt 
to maintain systemic vascular filling and blood pres-
sure[67]. However these changes fail to correct the under-
lying circulatory hemodynamics[68]. There is now increas-
ing evidence that in addition to its well recognized role 
in the homeostatic response to vasodilatation in cirrhosis 
the RAS may also play a primary role in the pathogenesis 
and maintenance of  portal hypertension.

Hepatic structural changes such as tissue remodel-
ing and scarring play a central role in increasing hepatic 
resistance to portal flow in the cirrhotic liver. However, 
when activated, hepatic stellate cells adopt a contractile 
myofibroblast phenotype, express the AT1R and have 
been shown in vitro to contract in response to angio-
tensin Ⅱ and other vasoconstrictors such as endothe-
lin-1[10,69]. The vasoconstriction response to angiotensin 
Ⅱ is markedly increased in the perfused cirrhotic liver 
compared to normal livers, presumably mediated via 
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upregulated AT1R and AT1R expressing perivascular myo-
fibroblasts[66]. Furthermore intrahepatic angiotensin Ⅱ 
generation is increased in the cirrhotic liver[66]. These 
findings provide a rationale for the use of  RAS blockers 
in the management of  portal hypertension.

There is considerable evidence that another important 
contributor to elevated vascular tone in the cirrhotic liver 
is endothelial dysfunction of  the hepatic microcirculation 
which diminishes the response to vasodilators[70]. It has 
been proposed that the reduced activity of  hepatic vas-
cular eNOS with concomitant reduction in NO synthesis 
impairs intrahepatic vasodilatation and thus, shifts the bal-
ance towards vasoconstriction[71]. This reduction in eNOS 
activity is linked to an increase in the expression of  caveo-
lin, a protein which is highly expressed in endothelial cells 
of  the hepatic vasculature with predominant expression 
found in venous and sinusoidal endothelial cells in cir-
rhotic livers[72,73]. Interestingly, the calcium binding protein 
calmodulin competitively binds eNOS and reduces caveo-
lin binding, thus increasing eNOS activity[72]. 

Recent findings from our laboratory demonstrated 
that in in-situ perfused cirrhotic rat liver elicited a marked 
endothelium-dependent vasodilatory effect of  exog-
enous angiotensin-(1-7) on the vasoconstrictive response 
evoked by angiotensin Ⅱ (Figure 3)[55]. This finding 
suggests that as in other vascular beds[50,51,53,54], in the cir-
rhotic liver angiotensin-(1-7) may cause a vasodilatory 
response that antagonizes the increase in portal pressure 
mediated by angiotensin Ⅱ and other local vasoconstric-
tors. Although eNOS activity was not measured in this 
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Figure 1  Overview of the renin angiotensin system. The effects of the renin angiotensin system (RAS) are determined by the balance between the angiotensin 
Ⅱ (Ang Ⅱ)-mediated “classical” axis, depicted in blue, which is vasoconstrictive and the angiotensin-(1-7) [Ang-(1-7)]-mediated “alternate” axis, depicted in orange, 
which is vasodilatory. Both Ang Ⅱ and Ang-(1-7) can stimulate the Ang Ⅱ type 2 (AT2) receptor, depicted in green; the effects of which are often analogous to those 
mediated by the Ang-(1-7) receptor Mas. Recent evidence indicates that a new member, Ang-(1-12), which is cleaved from angiotensinogen, also contributes either 
indirectly via Ang Ⅰ or directly to the pool of Ang-(1-7). NEP: Neural endopeptidase; ACE: Angiotensin converting enzyme; ACE2: Angiotensin converting enzyme 2; 
AT1 receptor: Angiotensin Ⅱ type 1 receptor.
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study, the eNOS inhibitor nitro-L-arginine methyl ester, 
L-NAME, completely abolished eNOS phosphoryla-
tion at Ser1177 and the response to angiotensin-(1-7)[55]. 
Whilst bradykinin via its B2 receptor mediates vasodi-
latation in response to angiotensin-(1-7) in porcine and 
canine coronary arteries[56,58,74], it increases intrahepatic 
resistance and portal pressure[75], possibly through acting 
on B2 receptors on stellate cells. However, angiotensin-
(1-7)-induced vasodilatation in the cirrhotic liver was not 
affected by bradykinin B2 receptor blockade[55]. Possible 
mechanisms for these effects of  angiotensin-(1-7) in 
the cirrhotic rat liver include increased phosphorylation 
of  eNOS Ser1177[55] with simultaneous dephosphoryla-
tion at Thr495 and/or effects on calmodulin binding[76]. 
These findings suggest that it may be possible to reduce 
intrahepatic resistance and portal pressure by targeting 
the alternate axis of  the RAS in the liver.

RAS AND SPLANCHNIC VASODILATA-
TION
In contrast to intrahepatic hypervascular tone, the system-
ic and splanchnic circulation in cirrhosis is characterized 
by vasodilatation and hyporesponsiveness to vasoconstric-
tors including angiotensin Ⅱ[8,67,77]. Interestingly, recent 
studies have shown that systemic levels of  the vasodila-
tory peptide angiotensin-(1-7) increase as liver fibrosis 
progresses, whereas angiotensin Ⅱ levels do not gener-
ally rise until cirrhosis is established with concurrent 
portal hypertension[65,78]. Furthermore, regional levels of  
the hormone are different from systemic levels such that 
in cirrhotic patients at transplant, the angiotensin-(1-7)/
angiotensin Ⅱ ratio is elevated in the splanchnic com-
pared to the peripheral circulation, and negatively cor-

relates with systemic vascular resistance[78]. The recent 
findings suggest that angiotensin-(1-7) might contribute 
to vasodilatation in cirrhosis. Recent work from our lab-
oratory provides support for this hypothesis[79]. We have 
shown that ACE2 is upregulated in cirrhotic mesenteric 
vessels and although angiotensin-(1-7) has no effect in 
the normal mesenteric circulation, it significantly reduces 
mesenteric vascular contractility in cirrhotic mesenteric 
beds via activation of  the Mas receptor and the release 
of  NO[79]. 

Studies using isolated vessel preparations from cir-
rhotic animal models or portal hypertensive rats have 
led to the concept that vasodilatation is also linked to 
an intrinsic vascular hyporesponsiveness to endogenous 
vasoconstrictors such angiotensin Ⅱ, a-adrenergic ago-
nists and endothelin-1[80-82]. This concept is supported by 
the findings that peripheral vessels are hyporeactive to 
angiotensin Ⅱ, a-adrenergic agonists and endothelin-1 
from cirrhotic animals and cirrhotic patients[77,83-90], de-
spite the fact that expression of  AT1R and a-adrenergic 
receptor subtypes 1a and 1b in the peripheral vessels is 
either normal or upregulated in both cirrhotic animals 
and patients[79,87,91]. However, previous studies in pa-
tients with cirrhosis or in peripheral resistance vessels 
obtained from such patients reported variable results in 
this regard[84,90,92], probably attributable to the differences 
between conditions in different studies. Indeed, small 
resistance omental vessels from cirrhotic patients had a 
larger vasoconstriction response to a-adrenergic agonists 
norepinephrine and methoxamine than similar vessels 
from healthy controls[92]. The same vessels vasodilated in 
response to substance P but this was inhibited by block-
ing NO or prostacyclin synthesis, suggesting that intrin-
sic hyporeactivity that is present in the peripheral circu-
lation in cirrhosis is related to increased levels of  NO 
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and prostanoids[93-95]. Hyporeactivity to angiotensin Ⅱ 
infusion is also improved after inhibiting systemic NO 
production using an NO-clamp in cirrhotic patients[85]. 
This is in keeping with a wealth of  literature suggesting 
that vasodilatory molecules including angiotensin-(1-7) 
are produced in excess in cirrhosis and that the final in 
vivo pressor effect is governed by a balance between the 
pressor and depressor arms of  the circulation[96].

There are also data, from both in vitro and in vivo 
studies, suggesting that vascular hyporeactivity to a 
range of  endogenous pressors is attributed to changes 
that are downstream of  the G-protein coupled recep-
tors[86-88]. Evidence supporting the existence of  vascular 
endothelium/NO independent pathways comes from 
studies in which endothelium denudation and pharma-
cological blockade of  NOS in isolated vessels from cir-
rhotic animals and patients failed to improve vascular 
hyporeactivity to a range of  vasoconstrictors[83,84,86,87,97-99]. 
One of  the important NO-independent pathways is an 
impaired signaling by RhoA and Rho kinase, leading to a 
decreased phosphorylation of  Ca2+-sensitizing proteins 
and increased myosin light chain phosphatase activity[87]. 
Moreover, increased expression of  receptor desensitiz-
ing proteins, G protein-coupled receptor kinase 2 and 
b-arrestin-2, have also been implicated in this hyporeac-
tivity to angiotensin Ⅱ in vessels isolated from cirrhotic 
patients and rats[87]. It was also shown that mesenteric 
arteries from portal hypertensive rats had a reduced level 
of  membrane associated RhoA, probably reflecting a 
diminished activity of  RhoA/Rho kinase pathway which 
in turn results in increased activity of  myosin light chain 
phosphatase and vasodilatation[68,100].

THERAPIES TARGETING THE RAS IN 
PORTAL HYPERTENSION 
Therapeutic potential of the classical RAS
The evidence from studies in experimental cirrhosis 
showing the angiotensin Ⅱ contributes to the variable 
component of  intrahepatic resistance in portal hyper-
tension have provided a rationale for a number of  trials 
examining the effects of  ACE inhibitors and angiotensin 
receptors blockers (ARBs)[3,23,87] on portal pressure. Un-
fortunately many of  these studies are small or non-ran-
domized and there is very little long-term data. However 
Tandon et al[23] in a recent meta-analysis of  individual 
patient data from three and nine studies that used ACE 
inhibitors and ARBs, respectively, showed that patients 
with Child Pugh A cirrhosis receiving ARBs/ACE inhib-
itors had a similar reduction in HVPG (17%) compared 
to patients with Pugh A cirrhosis that received NSBB 
(21%). There was no improvement of  HVPG in patients 
with Child Pugh B/C cirrhosis receiving ARBs. Further-
more, several studies reported that RAS blockade can 
result in significant hypotension and renal impairment in 
patients with decompensated (Child Pugh B/C) cirrho-
sis[23] in whom there is activation of  the systemic RAS.

Thus, although ARBs/ACE inhibitors do lower por-

tal pressure in early cirrhotic patients where the activa-
tion of  RAS may be a predominant pathway responsible 
for increased intrahepatic tone, they have less effect in 
late stages of  cirrhosis. This probably reflects the fact 
that the hypotension induced by RAS blockers increases 
activation of  other vasoconstrictive pathways such as the 
sympathetic nervous system that in turn increase intra-
hepatic vascular tone[2,8,101-103]. Further studies are needed 
to clarify whether this class of  drugs could be useful in 
the prevention of  variceal bleeding in patients with com-
pensated cirrhosis as an alternative to or possibly even in 
combination with b-blockers. 

Alternate RAS-a novel potential target for the treatment 
of portal hypertension
Recent animal studies focusing on the alternate RAS 
have led to the suggestion that new generation antihy-
pertensives developed to target this axis could serve as 
effective therapeutic agents to treat arterial, pulmonary 
and portal hypertension[1,65,104,105]. Recent work outlined 
in this review demonstrates the presence of  all of  the 
key components of  the alternate RAS in the liver and 
mesenteric vasculature of  both healthy and cirrhotic 
animals as well as in the liver of  healthy and cirrhotic pa-
tients[11,61,66,79]. Furthermore circulating angiotensin-(1-7) 
levels are increased[11,65,78] and the system is upregulated 
in the liver and mesenteric circulation in cirrhosis sug-
gesting that it plays an important role in the pathophysi-
ology of  hepatic fibrosis and portal hypertension (Figure 
4). This evidence linking elevated angiotensin-(1-7) levels 
to mesenteric and systemic vasodilatation in cirrhosis 
suggests that blocking the alternate axis could reduce 
mesenteric flow and thus lower portal pressure. In line 
with this, Mas receptor blockade would provide an inter-
vention option in portal hypertension[79] as this treatment 
regime does not appear to compromise the vasodilatory 
response of  angiotensin-(1-7) within the hepatic vascu-
lature in experimental cirrhosis[55]. Further studies are 
clearly needed examining the effects of  Mas blockade 
and angiotensin-(1-7) on hepatic and mesenteric haemo-
dynamics in experimental cirrhosis in vivo.

CONCLUSION
Recent developments in our understanding of  the com-
plexities of  the RAS and its role in the pathogenesis 
of  chronic liver disease and portal hypertension have 
opened up new therapeutic possibilities. It is clear that 
the classical axis of  the RAS and its key effector peptide 
angiotensin Ⅱ play a central role in hepatic fibrogenesis 
and in regulating intrahepatic vascular tone in cirrhosis 
and that despite the mixed results achieved in previous 
trials, consideration should be given to further prospec-
tive studies examining the effects of  RAS blockers in 
patients with compensated cirrhosis. There is also fas-
cinating new evidence showing that there is increased 
regional production of  angiotensin-(1-7) in the mesen-
teric vascular bed in cirrhosis, and that this vasodilatory 
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peptide of  the alternate axis of  the RAS, contributes to 
mesenteric vasodilatation and the hyperdynamic circula-
tion in cirrhosis. These novel data suggest that ACE2-
angiotensin-(1-7)-Mas receptor axis is a potential target 
for the management of  portal hypertension.
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