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ABSTRACT

With the advent of high-throughput sequencing
technologies, the rapid generation and accumulation
of large amounts of sequencing data pose an insur-
mountable demand for efficient algorithms for con-
structing whole-genome phylogenies. The existing
phylogenomic methods all use assembled se-
quences, which are often not available owing to the
difficulty of assembling short-reads; this obstructs
phylogenetic investigations on species without a ref-
erence genome. In this report, we present co-phylog,
an assembly-free phylogenomic approach that
creates a ‘micro-alignment’ at each ‘object’ in the
sequence using the ‘context’ of the object and cal-
culates pairwise distances before reconstructing the
phylogenetic tree based on those distances. We
explored the parameters’ usages and the optimal
working range of co-phylog, assessed co-phylog
using the simulated next-generation sequencing
(NGS) data and the real NGS raw data. We also
compared co-phylog method with traditional align-
ment and alignment-free methods and illustrated
the advantages and limitations of co-phylog
method. In conclusion, we demonstrated that co-
phylog is efficient algorithm and that it delivers high
resolution and accurate phylogenies using whole-
genome unassembled sequencing data, especially
in the case of closely related organisms, thereby sig-
nificantly alleviating the computational burden in the
genomic era.

INTRODUCTION

Recent advent of high-throughput sequencing tech-
nologies enabled the completion of sequencing effort in
>1000 species, most of which are prokaryotes. This
achievement has brought new opportunities to many

research areas in biological sciences, especially in recon-
structing the phylogeny of those species. Traditional
methods in phylogenetic analysis are based on alignment
of genes or segments. For prokaryotes, the 16S ribosomal
RNA gene (or 16S rDNA) is the sequence of choice for
phylogenetic analysis given that it exists in almost all pro-
karyotic organisms, and it rarely undergoes horizontal
gene transfer. However, 16S rDNA is highly conserved,
so that it provides a limited resolution for closely related
species. This problem could be possibly circumvented by
selecting less conserved genes, but individual genes may
reveal inconsistent and sometimes biased phylogenies.
Given the genomic data that are now available for many

organisms, several studies have turned to whole-genome
data to construct phylogenies, and these phylogenomic
trees typically have much higher resolution than those
based on a single gene. The methods developed for
phylogenomic analysis thus far can be classified into
alignment-based methods (1–3) and alignment-free
methods (4,5). Alignment-based methods are two-phase
procedures that first create multiple sequence alignment
(MSA) among the input sequences and then reconstruct
the phylogenetic tree based on these MSA. In evolutionary
biology, MSA has long believed to be a necessary pre-
requisite for making accurate inferences regarding phyl-
ogeny, but this viewpoint has recently been increasingly
questioned (6–8). MSA is a combinatorial optimization
problem that is known to be NP-hard (9,10). If these
methods were applied to genomic data from high-
throughput sequencing, the analysis would be unafford-
able computationally.
Alignment-free methods are proposed to bypass the

computational difficulties arising from MSA. They calcu-
late the distances between pairwise organisms using
oligopeptide word usage frequencies (5,11) or information
measurements, such as Kolmogorov complexity (12,13)
and Lempel–Ziv complexity (14). The recently proposed
average common substring approach is based on Kullback–
Leibler relative entropy (4), and the distance in this
approach reflects the average length of the maximum
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common substring of the paired sequences. Composition
vector tree (CVtree) (5), singular value decomposition (11)
and recent feature frequency profiles (FFPs) methods (15)
are similar approaches, and all of the approaches are
based on ‘word frequencies’. However, these alignment-
free phylogenomic methods have their own problems.
For example, distances measured using information
theory or word usage frequencies do not typically have a
clear biological definition and they are rarely linear with
evolutionary time.
Next-generation sequencing (NGS) technologies

provide unprecedented throughput and have resulted in
the efficient and inexpensive generation of many
genomes. However, the reads that NGS technologies
generate are far shorter than those generated by trad-
itional Sanger sequencing. The assembly of complete
genomes using NGS is very time-consuming and may be
impossible when the genome contains a large proportion
of repetitive segments. To bypass the computational
difficulties arising from assembly, several assembly-free
methods have been proposed for comparative genomics
(16), or identifying single-nucleotide polymorphism
(SNP) (17,18). However, there is still no method could
conduct phylogenomic analysis without genome assembly.
Here, we propose a new phylogenomic approach,

co-phylog, which is not only as efficient as the existing
alignment-free approaches but also as accurate as the
alignment-based methods. Moreover the co-phylog
method can take advantage of unassembled NGS data
from complete genomes. In the several genera that we
have analyzed to date, co-phylog yielded high-resolution
trees using both complete genome data and NGS data,
and the trees constructed were highly similar with the
benchmark trees constructed using traditional alignment-
based methods.
This article is organized as follows. The ‘Materials and

Methods’ section introduces the ‘context–object’ model
and the co-phylog algorithm and describes the methods,
datasets and benchmarks used for the experiments used to
assess the algorithm. The ‘Results’ section reports and
analyzes the results of the assessment experiments indi-
vidually and reports the space and time consumption of
the co-phylog algorithm. The ‘Discussion’ section elabor-
ates on the similarities and differences between the
co-phylog method and the alignment and alignment-free
methods while emphasizing the advantages and limita-
tions of the co-phylog method. The ‘co-phylog’ package
is available at http://humpopgenfudan.cn/resources/
softwares/CO-phylog.tar.gz.

MATERIALS AND METHODS

Key concepts in the proposed model

Let us first briefly review the process of the sequences
alignment. At the beginning of sequences alignment
process, all seed matches between the whole query and
subject sequences are found and then extended into
longer alignments using dynamic programming. The
seed match could be an exact match (consecutive seed)
or an approximate match (spaced seed). Ma, Tromp and

Li proposed using a 0–1 string to describe a seed model
where a 1-site represents required match, and 0-site is
‘don’t care’. For example, if a seed 1110111 is used, then
‘actgact’ versus ‘acttact’ and ‘actgact’ versus ‘actgact’ are
seed matches (19). We can now introduce several new
concepts used in our context–object model.

Structure
A structure S of the seed (or just structure) is the formula
Ca1,a2,..anOb1,b2,..bn-1, where ai (i from 1 to n) and bi (i from
1 to n� 1) are the lengths of the ith consecutive 1s segment
and the ith consecutive 0s segment, respectively. For
example, the seed 1110111 has a structure S=C3,3O1. It
is clear that the C part of the structure S has a length
L(CS)=

Pn
i¼1 ai and that the O part has a length

L(OS)=00A0
Pn�1

i¼1 bi. The length of the structure (or

the seed) is L(S)=L(CS)+L(OS)=
Pn

i¼1 ai+
Pn�1

i¼1 bi
(Figure 1a).

C-gram and O-gram
Suppose a structure S=Ca1,a2,..anOb1,b2,..bn-1. Let
w= s1s2 . . . sk be a k-tuple of length k=L(S), and divide
w into 2n�1 parts from left to right with lengths of a1, b1,
a2, b2,., an-1, bn-1 and an, respectively. Then the C-gram of
w, denoted by CS(w), is the concatenation of the first,
third,., (2n�1)th parts of w, and the O-gram of w,
denoted by OS(w), is the concatenation of the second,
fourth,., (2n�2)th parts of w (Figure 1c). For example,
given S=C3,3O1 and w= actgact, then CS(w)= actact
and OS(w)= g.

The k-tuples set
Given a genome (either assembled or not, denoted by G or
G0, respectively), the k-tuples set, denoted by Hk,G or
Hk,G0, consists of all the overlapped k-tuples from both
the genome and its reverse-complement counterparts
(Figure 1b, see Supplementary Data for the formal
definition).

Context and object
Given a structure S and a genome G, we have a k-tuple
(k=L(S) set HL(S),G. For an arbitrary C-gram c in the
genome G, its objects, denoted by objectG,S(c), are the set
{OS(w): w2HL(S),G and CS(w)= c}, which, namely,
consists of all the O-grams of the L(S)-tuples from G
whose C-grams are c. The C-gram c is a context if and
only if the set objectG,S(c) has only one element (Figure
1d). For example, given S=C3,3O1, suppose genome
G=‘. . .AGGTCCCTGGA . . .AGGGCCCTGGA . . .’,
then the C-gram ‘AGGCCC’ is not a context because it
has two objects ‘T’ and ‘G’, whereas the C-gram ‘CCCGG
A’ is a potential context because it has an unique object
‘T’. For convenience, we use the notation CS(G) to denote
the set of all of the contexts in G, and S(G) to denote the
set of all of the context–object pairs in G.

Context–object distance
Suppose G1 and G2 are two genomes to be compared;
given a structure S, we have their context sets CS(G1)
and CS(G2), respectively. The intersection of the two
context sets (denoted by R, use jRj to denote the
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number of members in R) contains all of the common
contexts (Figure 1e). For i from 1 to jRj, let Ii=0 if
objectG1,S(ci)= objectG2,S(ci), otherwise let Ii=1, where
ci is the ith member of R. The context–object distance
(or co-distance) between G1 and G2 is given by

dco G1,G2

� �
¼

PjRj
i¼1 Ii
jRj

: ð1Þ

In other words, co-distance is the proportion of shared
contexts, the two objects of each of which are different in
their respective genomes (Figure 1f).

The algorithm co-phylog and its complexity

The algorithm co-phylog takes as input N genomes G1,
G2,., GN, which can be either assembled or not, and the

outputs are
N
2

� �
pairwise co-distances (Figure 1b–f). The

algorithm is composed of the following two phases:

(1) Convert the input genomes to their respective sets of
context–object pairs (Figure 1b–d): given a structure
S, for each input genome G in fasta format
(assembled genome), we index each O-gram in G
by its respective C-gram. If different O-grams with
the same C-gram occur while indexing the genome,

this C-gram is flagged. After all of the O-grams are
indexed, the unmarked C-grams and their respective
O-grams, i.e. the context–object pairs, are output.
This process is formally expressed by the sub-
algorithm fasta2co (see Supplementary Data). For
each genome G0 in fastq format (unassembled raw
data), we need to first filter low-quality L(S)-tuples.
Let W be an L(S)-tuple on a read of G0. If the lowest
value of all of the L(S) base qualities of W, denoted
by min(W), is smaller than a specific threshold, F,
then the W is discarded. For the L(S)-tuples that
pass through filtering, the indexing is performed as
in fasta2co. This process is formally expressed by the
sub-algorithm fastq2co (see Supplementary Data).

(2) Compute pairwise co-distances on the sets of context–
object pairs using Equation (1) (Figure 1e–f). This
process is formally expressed by the sub-algorithm
co2distance (see Supplementary Data).

(3) Suppose the mean genome size for the N organisms
is Mmean and that the mean sequencing depth is dmean

(the depth of the assembled genome is 1), then, at
most, phase 1 requires O(Mmean� dmean�N) time,

and phase 2 requires O(Mmean�
N
2

� �
) time (see

Doc. S1 for the detailed analyses).

Figure 1. The algorithm overview. (a) Some examples of structure S. (b) The k-tuple sets Hk,G1 and Hk,G2 that generated from genome G1 and
genome G2, respectively, given a structure S=C2,2O1. (c) C-gram–O-gram pairs generated from the corresponding k-tuple sets. (d) Context–object
pairs generated from the corresponding C-gram–O-gram pairs. (e) Shared Context and their corresponding objects in G1 and G2. (f) The computing
of context–object distance between G1 and G2.
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(4) Once all pairwise co-distances are computed, we use
the neighbor-joining (NJ) method (20) to construct
phylogenetic trees.

The assessment methods, datasets and benchmarks

The proposed co-phylog algorithm was first assessed using
only assembled genomes to explore the proper parameters
and the acceptable working range of the algorithm. The
algorithm was then assessed on the unassembled whole-
genome sequencing data, using the phylogenies based on
the corresponding assembled genomes as benchmarks.
The full assessment experiments, the corresponding
datasets (all of the accession numbers for the datasets
used are provided in Supplementary Table S1) and the
benchmarks used are introduced below.

Robustness testing by varying context/object lengths on
Brucella 13 genomes
We first assessed if the co-phylog method is robust to dif-
ferent context and object lengths. For convenience, we
used the simple structures Ca,aOn with context and
object lengths that could be adjusted by choosing different
values for a and n, and we only choose a � 8 for test,
which allowed the majority [>99%, according to
Supplementary Equation (S2) in Supplementary Data] of
the C-grams to be the contexts. The co-phylog trees were
constructed using seven different structures, S=C8,8O1,
C9,9O1, C10,10O1, C12,12O1, C15,15O1, C15,15O2 and
C15,15O4, and took as input the Brucella 13 genomes
dataset (including 12 complete genomes from the genus
Brucella and an out-group genome from Ochrobactrum
anthropi). The resulting trees were then compared with
the benchmark tree constructed using the same dataset.
The benchmark tree comes from the work of Foster

et al., in which they first created all pairwise whole-
genome alignments using MUMmer and then grouped
the SNPs by shared locations to compare across all taxa.
Foster et al. (21) next analyzed the SNPs multiple align-
ment using the best substitution model as selected by
ModelTest, and finally constructed a phylogenetic tree
using the NJ method and verified the tree using different
methods.

Tests on the Escherichia/Shigella 26 genomes
We next assessed the algorithm using 26 completed
genomes from the genus Escherichia/Shigella. The
accuracy of co-phylog was evaluated based on the symmet-
ric differences between the co-phylog (where S=C9,9O1)
tree and the benchmark tree. Two other phylogenomic
tools, CVtree (http://tlife.fudan.edu.cn/cvtree/) and Kr
(22) (http://guanine.evolbio.mpg.de/kr2/) were also used
to build trees, and the trees’ accuracies were evaluated in
the same way. We then made comparisons of the trees’
accuracies among the different phylogenomic methods.
The symmetric differences were evaluated using the

‘treedist’ program that is contained in the PHYLIP
package (http://evolution.gs.washington.edu/phylip.html).
The benchmark tree that was constructed using the same
dataset from the work of Zhou et al. (23), in which they
concatenated the alignments of the 2034 core genes of the

Escherichia/Shigella 26 genomes and used the maximum
likelihood method to infer the phylogenetic relationships.

The accuracy of the co-phylog method was also
evaluated via a correlation analysis between the
co-distance and the standard p-distance from whole-
genomes alignment of the Escherichia/Shigella 26
genomes. Parallel correlation analysis tasks are also im-
plemented using the CVtree-distance and the Kr-distance
(as generated by the corresponding tools).

The benchmark p-distances were generated by an
in-house Perl script, using the web file 40 way
Escherichia/Shigella genomes alignment (http://www
.biotorrents.net/details.php?id=87), which includes all
the Escherichia/Shigella 26 genomes. This alignment was
previously produced by the MSA tool progressiveMauve
(24) (http://gel.ahabs.wisc.edu/mauve/).

Tests on Enterobacteriaceae 63 genomes and
Gammaproteobacteria 70 genomes
We next examined if the co-phylog method was feasible
when applied to high-level taxonomies. In the first stage
of the experiment, we tested co-phylog (S=C9,9O1) at the
family level using 63 genomes randomly picked from
Enterobacteriaceae. The reconstructed phylogenetic rela-
tionship based on 16S rDNA sequences alignment is
used as the benchmark. We then tested co-phylog
(S=C9,9O1) on the class level using 70 genomes
randomly picked from Gammaproteobacteria (we skipped
the order level because Enterobacteriaceae is the only
family under the order it belongs to). This co-phylog tree
was compared with the known taxonomy.

The 16S rDNA tree was generated as follows. For each
organism, we first retrieved its 16S rDNA sequence using the
‘Browsers’ on the Ribosomal Database Project (http://rdp
.cme.msu.edu/index.jsp) website, and then created MSA of
these 16S rDNAs and built a tree using the ‘Tree Builder’
tools (http://rdp.cme.msu.edu/treebuilderpub/index.jsp) (25).

Explore the acceptable working range of co-phylog using
in silico evolution
As a complementary experiment to the performance
testing on high-level taxonomies, this experiment was
designed to provide insights into that how far distant the
two compared genomes are would significantly affect the
accuracy of the computed co-distance. The artificial life
framework, ALF (26), which can simulate the entire
range of evolutionary forces (e.g. substitution, indels,
gene loss/duplication, GC-content amelioration and
lateral gene transfer), was adopted to evolve an ancestor
genome into two descendant genomes with a specified evo-
lutionary divergence. The co-distances and the common
context counts between the two evolved genomes were
then computed. The in silico evolution was repetitively
implemented with a gradually increased evolutionary di-
vergence. After the in silico evolution experiments were
completed, the relationships between the specified evolu-
tionary divergences and the corresponding co-distances
and common context counts were analyzed.

The parameters for ALF simulation were as follows. The
ancestor genome, Escherichia coli 536 (NC_008253.ffn),
was evolved into two genomes over 150 runs with an
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initial substitution rate of 0.01 substitutions per site, and
each run increased the number of substitutions per site by
0.01 (the rates of other evolutionary events was increased
proportionally with the default coefficient defined in the
ALF parameters file). The substitution models used were
‘CPAM’ and ‘TN93’ indels: Zipfian; the variation among
sites model: rates; the gene number in group later gene
transfer (gLGT): 10; and the other parameters follow the
default setting.

We were then ready to test co-phylog on NGS data.

Tests on simulated NGS datasets
We first evaluated that how large of a proportion of the
genome had to be sequenced to create a faithful tree using
co-phylog by in silico sequencing on the ‘sequencing
sample genomes’. Supplementary Equation (S1) (see
Supplementary Data) suggests that the proportion of the
genome sequenced by perfect in silico sequencing could be
adjusted through specifying either the mean reads length
or the number of reads (or sequencing depth). For con-
venience, we generated five perfect NGS datasets that only
varied in sequencing depth (depth=2�, 6�, 16�, 30�
and 50�) using an in-house Perl script and the Brucella
13 genomes as the ‘sequencing sample genomes’. This
means that each of the five test NGS datasets consists of
13 unassembled counterparts (G01, G

0
2,., G

0
13) at the same

depth for the Brucella 13 genomes (G1, G2,., G13). All of
the reads simulated in the perfect NGS datasets were
75 bp, error-free and uniformly distributed, which
allowed us exclude any variation introduced by the
sequencing experiment itself. The corresponding
co-phylog (with S=C15,15O1) tree was constructed using
each of the five perfect NGS datasets as input, and the
benchmark tree was constructed using the ‘sequencing
sample genomes’ as input. The minimal proportion P of
the genome that was required by co-phylog was estimated
by finding the depth at which the tree generated begins to
be identical to the benchmark tree.

When the co-phylog method was applied to a real NGS
dataset, L(S)-tuple with a minimum base quality under the
threshold F were filtered (see the algorithm section).
A dilemma in choosing the F value was that too small
of an F might allow too many L(S)-tuple with ‘wrong’
objects past the filtering and therefore enlarge the devi-
ation of the co-distance computed, while too large of an
F might filter too much genomic information. We there-
fore explored the proper value range of F using simulated
NGS data with sequencing qualities, which were generated
using the tool ‘Maq simulation’ in the MAQ package
(http://maq.sourceforge.net/). MAQ NGS data (distin-
guished from the perfect NGS data, using genome B.
abortus 2308) of different depths were generated and dif-
ferent F values were tested on these MAQ NGS data; the
proper range of F values were determined according to
the co-distance dco(G

0, G) between the MAQ NGS data
G0 and the complete genome G and the proportion q of
genomic information taken by co-phylog.

Tests on real NGS datasets
Next, we applied co-phylog to the real NGS datasets. By
retrieving the NCBI Short Reads Archive database, we

collected 29 Escherichia coli organisms for which the
NGS raw data and assembled genomes were both avail-
able (see Supplementary Table S1). A co-phylog tree con-
structed using the real NGS dataset for the 29 E. coli
organisms was compared with the tree constructed using
the respective assembled genomes. We also attempted the
co-phylog tool on large diploid genomes to see if co-phylog
is computationally affordable to the large size analyses
and the additional complication of diploidy. Five mam-
malian organisms (including four primates, Otolemur
garnetii, Saimiri boliviensis, Gorilla gorllia and Homo
sapiens, and a out-group Bos grunniens mutus), all of
which have abandon NGS data (average sequencing
depth � 80�), were used for phylogenomic analysis by
co-phylog. Then the space and time consumption were
analyzed.

RESULTS

Performance of co-phylog with varied
context/object lengths

The comparison shows that the co-phylog tree and the
benchmark tree are nearly identical (Figure 2), illustrating
the accuracy of co-phylog method on closely related or-
ganisms. It also shows, using S=Ca,aOn with varied a and
n, the co-phylog trees constructed have nearly identical
shape, suggesting that co-phylog is robust at different
context/object lengths when applied on closely related or-
ganisms. However, larger n produces trees with longer
branch lengths, and this is because co-phylog method
creates a ‘micro-alignment’ between two genomes
compared (see ‘Discussion’ section) and estimates the
average nucleotide substitution rate that measured by sub-
stitutions per n sites, therefore larger n would result in
higher substitution rate calculated.

Performance on Escherichia/Shigella 26 genomes

Co-phylog tree based on the Escherichia /Shigella 26
genomes shows highly similar topology relative to the
benchmark tree (symmetry difference=4). The branch
lengths are proportional to the benchmark tree but
shorter (Figure 3a and b). This result occurs because the
branch lengths in the co-phylog tree represent the average
substitution rates of those sites with unchanged flanking
sequences (namely, ‘context’) between two compared
genomes, these sites are generally more conserved than
the whole-genome average. The most significant difference
between CVtree and the other methods is that the genus
Shigella violates the monophyleticity of the genus
Escherichia but not the monophyleticity of the E. coli
strains (symmetry difference=20). Similar results were
also achieved with the FFPs method (15). Note that the
CVtree and FFPs distances represent the extent of the
difference in the ‘word frequencies’ features of two
compared genomes, while co-distance and the
alignment-based distance estimate average nucleotide (or
amino acid) substitution rate, which is more constant
across evolutionary history (see ‘Discussion’ section).
One possible explanation is that the CVtree and FFPs
trees represent the taxonomy based on genomic features,
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whereas the co-phylog and alignment-based trees represent
the phylogenetic relationship. Another alignment-free
method, Kr, was developed to efficiently estimate the
pairwise distances between genomes and is ‘more
accurate than model-free approaches including the
average common substring’ (22). However, according to
this test, the Kr tree was still much less accurate than the
co-phylog tree as measured by both topology and branch
length (Figure 3a), demonstrating the accuracy of
co-phylog in establishing the phylogeny of closely related
organisms. The only inconsistencies between the
co-phylog tree and the benchmark tree were observed
on the E. coli CFT073/E. coli 536/E. coli ED1a branch.

We found that the difference could be avoided by deleting
just E. coli CFT073 (data not shown). It appears that
the accuracy of co-phylog methods might be slightly
affected if genomes undergo extensive reorganization
(such as duplication or recombination) as in the case of
E. coli CFT073 (27).

The correlation analysis indicated that the co-distance
fit well with the p-distance (Figure 3c) and had a
correlation coefficient of 0.9919. As a comparison, the cor-
relation coefficients versus the p-distance for the other two
distances, the CVtree-distance and the Kr-distance are
0.3464 and 0.7796, respectively. The significant linear
relationship between the co-distance and the p-distance

Figure 2. Comparisons of the alignment-based tree and the co-phylog trees constructed with different structures, on the Brucella 13 genomes. All the
trees share the same organisms list. The Ochrobactrum anthropi genome is adopted as the out-group taxon.
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are also seen in other closely related organisms based
on our test data using primate mitochondria DNA
alignments (data not shown). This linear relation-
ship explains why the co-phylog tree agrees so well
with the alignment-based tree and illustrates that the
co-phylog delivers accurate phylogenies of closely related
organisms.

Performance on Enterobacteriaceae and
Gammaproteobacteria

The comparisons on the phylogenies of the Enter-
obacteriaceae 63 genomes show that the 16S rDNA tree
and the co-phylog tree agreed well in general. However, the
genera Enterobacter and Citrobacter are polyphyletic
groups, and the genus Yersinia is a paraphyletic group

Figure 3. (a) The benchmark tree constructed based on multiple genomes alignment and the trees constructed by the three methods, co-phylog
(S=C9,9O1), CVtree and Kr, on the Escherichia/Shigella 26 genomes. The number near the node represents the bootstrap value (see Doc. S1 for
details). And (b) the symmetric differences of the benchmark tree against the trees constructed by the three methods, co-phylog, CVtree and Kr.
(c) Correlation analyses between the p-distance and each of the three distances, co-distance, CVtree-distance and Kr-distance. These four types of
distances are generated from the pairwise comparisons of the Escherichia coli/Shigella 26 genomes, using multiple genomes alignment, co-phylog,
CVtree and Kr, respectively.
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in the 16S rDNA tree, while all these genera formed a
single clade in the co-phylog tree, illustrating that
co-phylog has a much higher resolution than the 16S
rDNA tree at the family level (Figure 4). However,
when co-phylog is applied to Gammaproteobacteria 70
genomes, the accuracy of the constructed tree significantly
diminishes. Co-phylog tree showed that Enterobacteriales,
Xanthomonadales, Pasteurellales and Thiotrichales still
formed a clade, whereas the other orders formed paraphy-
letic or polyphyletic groups (Supplementary Figure S1).
The performance on taxonomy levels higher than class
were also tested but were found to be even worse than
at the class level (data not show). This exercise demon-
strates the limits of co-phylog in phylogeny construction.

The optimal working range of co-phylog as determined
by in silico evolution

The in silico evolution experiment showed that the
co-distance varied significantly starting at the 90th run,
which corresponds to a divergence of 0.90 substitutions
per site between the two evolved genomes (Figure 5).
The major genomic variation introduced in the 90th evo-
lution was a gLGT event that copied 10 genes from one

genome to another; the same gLGT event also occurred at
the 80th, 74th, 65th and several other previous runs.
However, those occurrences did not significantly affect
the computed co-distance. The reason is obvious; the se-
quences ‘copied’ to the genome by the recent gLGT are
nearly identical with the original ones on another genome,
which causes the co-distance between the two genomes to
be underestimated. When two genomes are closely related,
there are many common contexts between them; the new
common contexts that occurred due to the 10 genes gLGT
only affected the co-distance weakly, but two distant
genomes have few common contexts (e.g. <5000), and
the new common contexts that occurred owing to a 10
genes gLGT (�10 000 common contexts) would make up
the majority of the common contexts, thus significantly
biasing the computed co-distance. This experiment indi-
cates that when the common context count >150 000 (cor-
responding to a co-distance <0.12 or a real divergence of
<0.8 substitution per site if S=C9,9O1), the two genomes
being compared are close enough to guarantee the stability
of the computed co-distance. If using S=C12,12O1, then
‘close enough’ genomes should satisfy the criteria of the
divergence being <0.58 substitution per site and have a

Figure 4. Comparison between the 16S rDNA tree and the co-phylog tree, constructed on the Enterobacteriaceae 63 genomes. The number near the
node represents the bootstrap value (see Supplementary Data for details).
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co-distance <0.09, indicating that using long contexts
loses more distant homologies. Therefore, when the
criteria given in Supplementary Equation (S2) (see
Supplementary Data) are satisfied, it is better to choose
shorter contexts when applying co-phylog to more distant
genomes. This estimation may be different when taking
into account more frequent, recent gLGTs. Fortunately,
relevant research has suggested that recent gLGTs in two
distant genomes are rare (about 7 genes) (28), making the
conclusions from our 10-gene gLGT simulation more
reliable.

Performance on simulated NGS datasets

Through comparing the co-phylog trees constructed using
the perfect NGS datasets with the benchmark tree
(Supplementary Figure S2a). We found that when the
perfect NGS datasets are ‘deeper’ than 6�, the co-phylog
tree generated is identical to the benchmark tree. Using
B.abortus 2308 (one of the Brucella 13 genomes; the other
12 genomes are of similar lengths) as a representation, the
L(S)-tuples count of the complete B.abortus 2308 genome
G is jHk,Gj=6485 644, and the 6� perfect NGS data G0 of
the B.abortus 2308 genome generated jHk,G0j=6366 349;
therefore, the proportion q of L(S)-tuples in jHk,Gj that

were included in jHk,G0j is 0.98 (see the ‘The k-tuples set’
section for the definitions of jHk,Gj and jHk,G0j), which
indicates that the minimal proportion, P, of the genome
required by co-phylog is �0.98. This value is close to a
proportion of 0.97 estimated by Supplementary
Equation (S1), illustrating the accuracy of Supplementary
Equation (S1) (see Supplementary Data).
The experiment on the MAQ NGS data G0 of the

B. abortus 2308 genome G shows that the smaller the
qualities filter threshold F is or the ‘deeper’ the MAQ
NGS data are, the larger the computed co-distance
dco(G

0, G) is (Table 1), as anticipated. Suppose that G01
and G02 are the NGS data generated from the ‘sequencing
sample genomes’ G1 and G2, respectively. According to the
triangle inequality, we have dco(G

0
1, G

0
2) < dco(G

0
1, G2)+

dco(G2, G
0
2) < dco(G1, G2) + dco(G1, G

0
1) + dco(G2, G

0
2);

therefore,

dcoðG01,G02Þdco G1,G2ð Þ
�� ��dcoðG1,G01ÞdcoðG2,G02Þ ð2Þ

Equation (2) illustrates that the co-distance, dco(G
0, G),

determines the extent to which the co-distance computed
using NGS data deviates from the real co-distance of the
two compared genomes and therefore determines the limit
of the resolution of the constructed co-phylog tree. For the

Figure 5. The changing of the co-distances and the log number of the common context counts computed between two genome evolved in silico, with
gradually increased evolutionary divergence (substitutions per codon), using two structures S=C9,9O1 and C12,12O1.
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phylogenetic analysis at the genus or species level, dco(G
0,

G) � 1e-5 ensure sufficiently high resolution and is there-
fore adopted as a criterion for choosing F. Combining this
dco(G

0, G) criterion and the minimal required genome pro-
portion previously inferred and considering that the NGS
data generated from most bacterial sequencing projects
would be higher than 16�, an F from 10 to 15 should
be sufficient for practical usage.
Once the proper F value range was determined, we then

tested the performance of co-phylog with arbitrarily
selected parameters within the allowed value range
(S=C15,15O1, F=10) using the MAQ NGS data that
are ‘deeper’ than 16� as input. We considered that, in
practice, co-phylog will likely deal with NGS data from
various independent sequencing projects; we therefore
generated a ‘mixed depth’ testing dataset in which the
NGS data of the Brucella 13 genomes were of different
depths for the different organisms (the depth were
specified arbitrarily provided that they were all ‘deeper’
than 16�). As we anticipated, the co-phylog tree based
on this ‘mixed depth’ testing dataset was identical with
the benchmark tree (Supplementary Figure S2b).
Unassembled reads generally contain a significant

number of sequencing errors, polymerase chain reaction
(PCR) amplification redundancies and even contamin-
ations. These effects were also evaluated: the extent of
their impact was measured by the deviations between the
benchmark co-distance (computed using assembled
genomes, S=C9,9O1) and the corresponding co-distance
(with parameters S=C9,9O1, F=10) computed using
NGS data simulated with different coverages and effects
(Table 2). This analysis showed that the impacts of
sequencing errors and PCR amplification redundancies
on the proposed algorithm are negligible, but the impact
of contaminations cannot be neglected.

Performance on real NGS datasets

The co-phylog (S=C9,9O1, qualities control threshold
F=10) tree constructed using the NGS raw dataset of
the 29 E. coli organisms is almost identical to the tree
built using the corresponding assembled genomes
(Figure 6). Given the accuracy of the co-phylog method
based on assembled genomes has been proved previously,
this test illustrates that co-phylog could be used in the

phylogenetic analysis of unassembled NGS data. And as
these NGS raw data came from all three popular
sequencing platforms (454, Illumina and SOLID)
(Supplementary Table S1), co-phylog is robust to the
choice of sequencing platforms. The co-phylog tree (using
S=C12,12O1, according to Supplementary Equation (S2)
and F=10) constructed on the NGS dataset from the five
large diploid organisms matched well with the known
taxonomy (Supplementary Figure S3), illustrating that
the tool co-phylog can handle large size analyses and the
complication of diploidy.

The time and memory consumption of co-phylog
program (coded in C) were tested on a platform equipped
with Intel Xeon X5650 2.67GHz cpu (only one cpu was
used for this test) and SUSE Linux Enterprise Server 10
SP2 (�86_64). For real NGS dataset from the E. coli 29,
which have an average sequencing depth of 95�, co-phylog
took 160M memory and 19 min completing the whole
computing, including 14 min converting all NGS data
into corresponding context–object sets and 5 min
computing all pairwise co-distances. For the five mamma-
lian organisms, co-phylog took 60G memory and 20 h
completing the whole computing, including 17 h converting
all NGS data into corresponding context–object sets and
3 h computing all pairwise co-distances.

DISCUSSION

The context–object model is a ‘micro-alignment’ process

As we have previously introduced, the traditional se-
quences alignment method is a ‘seed match then extend’
process. Recall that for computing the co-distance
between two genomes G1 and G2, each member ci in the
intersection R of the two context sets, CS(G1) and CS(G2),
is a context match that corresponds to the seed match in a
spaced seed alignment. Unlike traditional alignment, the
context–object model does not extend inter-seeds but
instead extends intra-seeds (namely, the O-parts of the
structure). Because the O-parts are short (typically 1 or
a few base pairs), it is reasonable to ignore indels during
extension. Extension is therefore directly comparing
O-grams, and the context–object model is an alignment
process with a span of only �20�30 bp, a so-called
‘micro-alignment’.

Table 1. The co-distances dco(G
0, G) and the proportion q% (the bracketed value) of L(S)-tuples taken by co-phylog computed for each depth-F

combination

F The depths of the MAQ NGS data

2� 6� 16� 30� 50�

0 6.5e-05 (70.0) 1.1e-04 (97.1) 2.8 e-04 (100) 5.1 e-04 (100) 8.7 e-04 (100)
5 5.3e-06 (57.8) 1.1e-05 (92.4) 1.6 e-05 (99.9) 3.0 e-05 (100) 5.0 e-05 (100)
10 3.3e-06 (46.2) 5.5e-06 (84.2) 8.4 e-06 (99.3) 1.4e-05 (100) 1.8 e-05 (100)
15 3.9e-06 (31.4) 3.2e-06 (67.5) 3.9 e-06 (95.0) 4.3 e-06 (99.6) 9.2 e-06 (100)
20 2.6e-06 (11.2) 2.0e-06 (31.2) 2.0 e-06 (63.4) 2.5 e-06 (84.7) 1.3 e-06 (95.5)
25 0 (2.3) 4.6e-06 (6.7) 1.8 e-06 (17.3) 0 (29.6) 7.0 e-07 (44.3)
30 0 (0.02) 0 (0.04) 0 (0.11) 0 (0.21) 0 (0.33)
35 NA (0) NA (0) NA (0) NA (0) NA (0)

NA represents that the dco(G
0, G) cannot be computed because there is no L(S)-tuples taken.
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There are two main features that make micro-alignment
much more efficient than traditional alignment. First, a
context match is created only once between the two
compared genomes, while a normal ‘seed match’, which
is shorter, is created many times in different regions, which
slows down the calculation (19). Second, once a context
match is created, as we have elaborated, extensions can be
implemented by comparing two O-grams directly. As an
O-gram can be stored in a ‘word’, an extension requires
only one operation. In traditional alignment method, the
seed match is extended through a dynamic programming
process that requires polynomial operations.

Micro-alignments do share a problem with the trad-
itional alignment, namely that the homologies searching
by using longer seed (or structure S) would lose distant

homologies (19). This problem is more severe in
micro-alignments because the C part of structure S must
be long enough to ensure most C-grams from a genome
can be mapped back to a unique region of the genome
(therefore, to be the contexts), with increased genetic dif-
ferences of the involved genomes, the counts of common
context and phylogenetic information decreased more dra-
matically, which hindered the application of the proposed
approach to far distant organisms.

Comparison against alignment-free methods

Intuitively, the co-phylog method is somewhat similar to
several alignment-free methods, especially those word
frequencies methods. For example: Edgar et al. first

Figure 6. Comparison between the co-phylog tree constructed using assembled genomes of the E. coli 29 organisms and the co-phylog tree con-
structed using their corresponding NGS raw data. The Escherichia fergusonii genome is adopted as the out-group taxon.

Table 2. The extents of co-distance biases due to sequencing error, PCR and contamination

Coverage Error ratea (%) PCRb Contamination levelsc (%)

0.01 0.05 0.1 1 1 2 3

20 0 0 0 2.6e-05 1.2e-05
50 0 4e-06 8e-06 0.000159 0
100 0 0 2e-05 0.000671 0 0.0015 0.0036 0.0053

aThe benchmark co-distance (0.018) was computed between genomes E. coli 536 and E. coli K12, and their NGS data were simulated with different
coverages and error rates by the tool ‘Art’ (29). The error rates of popular NGS platforms ranged from 0.01 to 1%, according to (30).
bNGS data simulated with biased PCR amplification were generated using the tool ‘pirs’, which incorporated the coverage GC-content profile trained
based on real NGS data (31).
cThe simulated scenario was that both NGS data sets (generated from genomes Shigella boydii and Shigella flexneri, with benchmark co-distance
0.009) were contaminated by the sequences from E. coli K12. Then the co-distance was computed between the two contaminated NGS samples
(add up to 100� coverage for each sample). The contamination levels represent the proportions of the E. coli K12 sequences.
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compute the normalized common k-tuples count F(X,Y),
from the common k-tuples Ci

XY between two sequences
X and Y, using the following equation:

F X,Yð Þ ¼

Pw
i¼1 CiXY

minðn,mÞ � k+1
, ð3Þ

where w= j{A, C, G, T}jk, for DNA sequences compari-
sons, and n and m are the lengths of X and Y, respectively.
This was then transformed into a distance, dF(X, Y)=
�log(0.1+F) (32). The similar calculation formulas of
co-distance (Equation (1)) and the dF(X, Y) implies they
have similar computing efficiency. However, their biolo-
gical meanings are essentially different. As we have previ-
ously elaborated, the context–object model is a
micro-alignment process, which allows co-phylog to only
call the nucleotide substitution events out of the entire
range of genome variation. Therefore the co-distance
computed, according to Equation (1), estimated the
whole-genome average nucleotide (or amino acid) substi-
tution rate of those sites with unchanged flanking se-
quences (namely, ‘context’) between the two genomes
compared. The calling of substitution events is critical
for accurately constructing phylogenetic trees because
the nucleotide (or amino acid) substitution rate is rela-
tively constant across evolutionary history according to
the molecular clock hypothesis. In contrast, the
normalized common k-tuples F(X,Y) could be affected
by a wide range of genome variation events to different
extents. For example, a gene lost event could decrement
thousands of common k-tuples, Ci

XY, while a nucleotide
substitution event could decrement only a few common
k-tuples, the changes in minðn,mÞ � k+1 are obviously
not proportional with that of Ci

XY, thereby the F(X,Y)
or dF(X, Y) computed do not represent the rate of any
evolutionary event. There is no unified evolution model
for all of the types of genomic variations; therefore, the
alignment-free distance metric, which do not distinguish
between different types of genome variations cannot be
accurate.
In conclusion, the advantages and limitations of

co-phylog method are obvious. co-phylog has similar
computing efficiency with ‘word frequencies’ based on
alignment-free methods, and in the mean time, it shares
the accuracy with other alignment-based methods.
However, co-phylog method does not perform well on
far distant organisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods, Supplementary Table 1 and
Supplementary Figures 1–3.
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