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ABSTRACT

We present a continuous benchmarking approach for
the assessment of RNA secondary structure predic-
tion methods implemented in the CompaRNA web
server. As of 3 October 2012, the performance of 28
single-sequence and 13 comparative methods has
been evaluated on RNA sequences/structures
released weekly by the Protein Data Bank. We also
provide a static benchmark generated on RNA 2D
structures derived from the RNAstrand database.
Benchmarks on both data sets offer insight into the
relative performance of RNA secondary structure pre-
diction methods on RNAs of different size and with
respect to different types of structure. According to
our tests, on the average, the most accurate predic-
tions obtained by a comparative approach are
generated by CentroidAlifold, MXScarna, RNAalifold
and TurboFold. On the average, the most accurate
predictions obtained by single-sequence analyses
are generated by CentroidFold, ContextFold and
IPknot. The best comparative methods typically out-
perform the best single-sequence methods if an
alignment of homologous RNA sequences is avail-
able. This article presents the results of our bench-
marks as of 3 October 2012, whereas the rankings
presented online are continuously updated. We will
gladly include new prediction methods and new
measures of accuracy in the new editions of
CompaRNA benchmarks.

INTRODUCTION

Ribonucleic acid (RNA) molecules play crucial roles in
living organisms; among their many other functions,
they are carriers of genetic information, regulators of

gene expression and catalysts of metabolic reactions.
RNA molecules form complex structures (1); their linear
ribonucleotide sequences directly determine the pattern of
base pairs (secondary structure), which in turn determines
the global shape (tertiary structure). The spatial structure
of an RNA molecule is in turn an important determinant
of its interactions with other molecules in the cell and,
hence, its cellular function. The analysis of RNA second-
ary structure is an important step in its functional
characterization.

For most RNA sequences, no experimental data about
the structure are available. To overcome this problem, a
large number of computational tools for the prediction of
RNA secondary structure from sequence have been
developed (2). Two main families of programs can be
distinguished: single-sequence and comparative methods.
A popular computational approach for predicting RNA
structure from a single sequence relies on the assumption
that the native RNA structure is the one with the
minimum free energy (MFE). The prediction is often
attained by calculating the combination of all possible
base pairs, implemented in methods using dynamic
programming, which are deterministic by nature and guar-
antee finding the structure with the lowest free energy [e.g.
as in RNAfold (3)]. However, the MFE structure does not
necessarily have to be biologically functional, and the
‘true’ structure may correspond to a low, but not
the lowest, energy. This is also related to the fact that
the MFE can change in different environment (e.g. pH,
solvent conditions and so forth), and the MFE calculation
itself is simplified. Besides, the folding of RNA sequences
in the cellular environment may be dictated not only by
thermodynamics but also by the kinetics, and it may also
depend on which nucleotides are transcribed first. Thus,
methods have been developed to predict not just one MFE
structure, but a set of low-energy structures for a given
RNA sequence [e.g. as implemented in RNAsubopt (3)].
Also a challenge connected to exploring all possible
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conformations of a given RNA molecule is that any RNA
of length n can form 1.8" possible secondary structures.
For example, a 100 nt long RNA sequence can theoretic-
ally form 10> secondary structures. If the energy of 10 000
structures is calculated within 1 s on a regular processor,
the calculation of all structures would require ~10"* years
(2). Various attempts have been made to reduce the com-
plexity of the RNA folding problem—one of them is based
on shape abstraction, which maps RNA structures to tree-
like shapes. It has been demonstrated by the authors of the
RNAshapes program that this approach is feasible and
integrates well with dynamic programming (4). The com-
plexity of the RNA folding problem is also often reduced
by introducing heuristics to identify a structure that is
likely to be biologically relevant. A variation of the heur-
istic approach is to sample structures from the Boltzmann
ensemble (5,60) to identify large clusters of similar second-
ary structures with low (suboptimal) energies.

Another class of method infers the prediction based on
evolutionary considerations. They require a multiple
alignment of RNA sequences that are homologous to
the query (related by descent from a common ancestor).
There have been attempts to use other methods including
the combination of both approaches discussed earlier in
the text, e.g. RNAalifold combines the comparative pre-
diction with the minimum free energy structure calculation
for a set of aligned sequences (7).

A question remains, which of the available approaches
for secondary structure prediction is the most accurate
and which of the particular software implementations is
practically the most useful (i.e. generates reasonable pre-
dictions for any RNA query sequence). In this article, we
compare both single-sequence and comparative methods
for RNA secondary structure prediction. One of the first
attempts to compare the accuracy of methods predicting
RNA secondary structure was made by Gardner and
Giegerich (8), who focused on comparative methods.
The Matthews correlation coefficient (MCC) was used as
the major metric describing the methods’ performance.
Recently, Xu et al. (9) tested the performance of predictors
on two separate data sets: one consisting of tRNA se-
quences only and the other of 5S rRNA sequences. They
emphasized that the choice of sequences for the bench-
mark data set strongly influenced the scores of methods
because different programs may perform better on differ-
ent families of sequences; hence, the benchmark data sets
should be tuned for different types of tasks and scenarios
in which the particular programs could be applied. Also
recently, Hajiaghayi et al. (10) tested the performance of
energy-based algorithms for RNA secondary structure
prediction, including both MFE and MEA (maximum ex-
pected accuracy) methods. The main conclusion of their
study was that the accuracy of MFE and MEA algorithms
depends mostly on the underlying parameter set, and they
found that the best energy-based method was the pseudo-
MEA algorithm developed by Hamada er al. (11).
However, comprehensive benchmarks spanning most of
the currently available methods are not available. There
is no benchmarking system for assessing the accuracy of
RNA secondary structure prediction methods of different

type (i.e. independent of the underlying algorithm) over
many different data sets.

The aforementioned situation resembles the early days
of protein 3D modeling: before programs for the evalu-
ation of protein structure prediction methods were
introduced, it was difficult to evaluate the quality of 3D
models. The ability of human experts to predict 3D struc-
tures of proteins has been assessed in the course of the
Critical Assessment of protein Structure Prediction
(CASP) experiment (12), which now has a counterpart in
the RNA Puzzles experiment (13). On the other hand, the
performance of fully automated methods (without human
intervention) was evaluated and prompted important im-
provements in the context of continuous and automated
benchmarks Livebench (14) and EVA (15). These bench-
marking programs, implemented as web servers, provided
a fully automated assessment of the accuracy of methods
predicting protein folds and secondary structure.
Livebench and EVA have significantly contributed to the
development of standards in the field of protein structure
bioinformatics.

Inspired by the impact of Livebench and EVA on the pro-
tein structure prediction community, we have developed
CompaRNA, an automated system for the continuous
evaluation of RNA structure prediction methods. The
goal of CompaRNA is to provide a ‘blind” benchmark
using experimental data before it becomes incorporated
in the training data set of the assessed prediction
methods. In analogy to protein structure prediction bench-
marks Livebench and EVA, CompaRNA uses as a refer-
ence experimentally solved RNA structures deposited in
the Protein Data Bank [PDB (16)]. It also provides the
community with a ‘static’ benchmark, generated on a
data set extracted from the RNAstrand database (17),
which contains experimentally verified RNA secondary
structures of any type and organism. RNAstrand includes
a larger number of molecules than those with solved 3D
structures, and it covers sequences that are on the average
longer than those with known 3D structures. These bench-
marks offer insight into the relative performance of differ-
ent RNA secondary structure prediction methods on
different types of RNA sequences and structures.

MATERIALS AND METHODS

RNA secondary structure prediction methods used
for benchmarking

Most RNA secondary structure prediction methods can
be divided into two general categories: those making pre-
dictions for single sequences, using various techniques
ranging from free-energy minimization to machine
learning (Table 1), and those making predictions for
sequence families, which often infer base pairs from
co-variation of bases at different positions of multiple
sequence alignments (Table 2). A detailed description of
all approaches and methods is out of the scope of this
work, and the reader is referred to the original publica-
tions cited in Tables 1 and 2.

In the period from 18th February 2009 to 3rd October
2012, 41 methods predicting RNA secondary structure
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Table 1. List of 28 single-sequence methods analyzed in the CompaRNA benchmarks

Name

Description

Availability

Predicts pseudoknots

Reference

Afold
Alterna

CentroidFold

CentroidHomfold-LAST

ContextFold

Contrafold

CRWrnafold

Cylofold

Fold

HotKnots

IPknot
MaxExpect

MC-Fold

McQFold
NanoFolder
Pknots

PknotsRG

ProbKnot

RDfolder
RNAfold

RNASLOpt

RNAshapes

RNAsubopt

Evaluates internal loops of RNA secondary structure with
optimized nearest-neighbor model energy functions.

Dynamic programming algorithm that minimizes the energy
density sum and free energy of an RNA structure.

Uses generalized centroid estimators that maximize the
expected weighted true predictions of base pairs in the
predicted structure.

An upgraded version of CentroidHomfold that uses add-
itional homologous sequences collected automatically by
the LAST program (21).

Uses rich parameterized machine-learning models (>70 000
free parameters).

Uses conditional log-linear models (CLLMs), a flexible class
of probabilistic models that generalize on stochastic
context-free grammars (SCFGs) by using discriminative
training and feature-rich scoring.

A new version of RNAfold that uses statistical potentials
derived from comparative data.

Simulates the folding process in a coarse-grained manner by
choosing helices based on established energy rules. The
steric feasibility of the chosen set of helices is checked
during the folding process using a coarse-grained 3D
model of the RNA structures.

A program from the RNAstructure package for single
sequence secondary structure prediction by free-energy
minimization.

A heuristic algorithm that iteratively forms stable stems
using a free-energy minimization criterion to identify
promising candidate stems.

Predicts the maximum expected accuracy (MEA) structure
using integer programming with a threshold cut.

A program from the RNAstructure package for secondary
structure prediction by maximizing expected accuracy.

Uses a nucleotide cyclic motif (NCM) fusion process to
generate a pool of secondary structures, from which the
final prediction is selected.

Markov Chain Monte Carlo (MCMC) sampling of second-
ary structures with pseudoknots.

Predicts the base pairing of potentially pseudoknotted
multistrand RNA nanostructures.

A dynamic programming algorithm for ‘optimal” RNA
pseudoknot prediction.

Uses the same model as Pknots, but additionally uses the
Turner energy rules for finding the minimum free-energy
structure. Dedicated to pseudoknot prediction.

A program from the RNAstructure package for fast predic-
tion of RNA secondary structure including pseudoknots.
Assembles maximum expected accuracy structures from
computed base pairing probabilities.

RNA folding by energy-weighted Monte Carlo simulations.

RNA structure prediction program that comes with the
Vienna package. Predicts MFE structures and base pair
probabilities based on the dynamic programming algo-
rithm originally developed by Zuker and Stiegler (38). The
partition function algorithm is based on work by
McCaskill (5).

Predicts stable locally optimal secondary structures repre-
sented by stack configurations.

Unique suboptimal structures (shapes) are selected based on
an abstract representation of RNA secondary structure,
which is inspired by the dot bracket representation known
from the Vienna RNA package. The user can choose
from five different types of shape resolution corresponding
to different abstraction levels.

Calculates all suboptimal secondary structures within a
user-defined energy range above the MFE.

Local installation
Web server

Local installation

Web server

Local installation

Local installation

Web server

Web server

Local installation

Local installation

Local installation
Local installation

Local installation

Local installation
Local installation
Local installation

Local installation

Local installation

Web server
Local installation

Local installation

Local installation

Local installation

No

No

Yes

No

Yes

Yes

Yes*

Yes
Yes
Yes

Yes

Yes

No
No

No

No

(18)
(19)
(20)

(22)

(23)

24

(25)

(26)

27

(28)

9)
(30)
&)

(32)
(33)
(34)

(35)

(36)

(37
3)

(39)
4

3)

(continued)
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Table 1. Continued

Name Description Availability Predicts pseudoknots  Reference
RNAwolf Predicts an extended structure (including non-canonical base Local installation No (40)
pairs and structures composed of two-diagrams). The
allowed base pairs can contain all 4 x 4nt, and the nu-
cleotide bonds are explicitly annotated with the paired
edges and isostericity information.
Sfold Statistical sampling of all possible structures. The sampling Local installation No (6)
is weighted by partition function probabilities.
UNAFold An integrated collection of programs that simulate folding, Local installation No 41)
hybridization and melting pathways for one or two
single-stranded nucleic acid sequences. Folding (secondary
structure) prediction for single-stranded RNA or
deoxyribonucleic acid (DNA) combines free-energy mini-
mization, partition function calculations and stochastic
sampling.
Vsfold4 Uses dinucleotide pairing energies for short-range interactions Web server No (42)
and for long-range entropy interactions, an entropy-loss
model based on the accumulated sum of the entropy of
bonding between each base pair weighted inversed by the
correlation of the RNA sequence (the Kuhn length).
Vsfold5 An upgraded version of Vsfold4 capable of predicting Web server Yes (43)
pseudoknots.
“This feature has been deliberately disabled in our evaluation of MCFold because of its long runtime in the ‘pseudoknotted mode’.
Table 2. A list of 13 comparative methods used in the CompaRNA benchmarks
Name Description Requires alignment Reference
as input
Carnac Combines three features: energy minimization, phylogenetic comparison and sequence No (44)
conservation to predict an RNA secondary structure.
CentroidAlifold An extension of the CentroidFold program that takes as an input multiple sequences. Yes (45)
CMfinder An RNA motif prediction tool. It is reported to perform well on unaligned sequences No (406)
with long flanking regions, and in cases when the motif is only present in a subset of
sequences. It is an expectation maximization algorithm that uses covariance models
for motif description, heuristics for effective motif search and a Bayesian method for
structure prediction combining folding energy and sequence covariation.
Mastr Uses an MCMC sampling approach in a simulated annealing framework, where both No 47)
structure and alignment are optimized by making small local changes. The score
combines the log-likelihood of the alignment, a covariation term and the base pair
probabilities.
Multilign Finds the lowest free-energy secondary structure common to more than two homolo- No (49)
gous sequences. Uses multiple iterations of Dynalign (48) to predict the conserved
structure.
Murlet A variant of the Sankoff algorithm (50), which uses an efficient scoring system that No (5D
reduces the time and space requirements.
MXScarna Performs fast structural multiple alignment of RNA sequences using a progressive No (52)
alignment based on the pairwise structural alignment algorithm of SCARNA.
PETFold Predicts the consensus RNA secondary structure from an RNA alignment. No (53)
PPfold A new version of Pfold (54) that can predict the consensus secondary structure of Yes (55)
RNA alignments through a stochastic context-free grammar coupled to an evolution-
ary model.
RNAalifold Computes the minimum free-energy structure that is simultaneously formed by a set of Yes (7)
aligned sequences.
RNASampler A sampling-based program that predicts common RNA secondary structure motifs in a No (56)
group of related sequences.
RSpredict Takes into account sequence covariation and uses effective heuristics for improving Yes (57)
accuracy.
TurboFold The base pairing probabilities for a sequence are estimated by combining intrinsic infor- No (58)

mation, derived from the sequence itself via the nearest neighbor thermodynamic
model, with extrinsic information, derived from the other sequences in the input set.
For a given sequence, the extrinsic information is computed by using pairwise-se-
quence-alignment-based probabilities for co-incidence with each of the other se-
quences, along with estimated base pairing probabilities, from the previous iteration,
for the other sequences.

Except for CMfinder, all these methods were run locally on CompaRNA server. If run with default options, none of them predicts pseudoknots.



have been tested by CompaRNA. These methods include
28 methods that take a single sequence as an input, among
which 21 programs are used locally and 7 are queried as
remote servers (Table 1), and 13 comparative methods,
among which 9 require a sequence collection as an input
and 4 use pre-calculated multiple sequence alignments
(Table 2). Except for CMfinder, all comparative
methods are run locally. For comparative methods,
CompaRNA tries to automatically find homologous se-
quences for the query RNA and creates an input
sequence collection or an alignment. To do this,
CompaRNA queries the Rfam (59) online search engine
(http://rfam.sanger.ac.uk/search/) with a target RNA
sequence. If one or more tentatively homologous
families that span at least 80% of the query sequence
are found, CompaRNA sclects the family with the
lowest E-value. The 80% overlap threshold allows for
exclusion of Rfam families corresponding to RNA frag-
ments—e.g. the family PK-G12rRNA, which corresponds
to a pseudoknot of domain G(G12) of 23S rRNA, cannot
represent the entire structure of a 23S rRNA query. If a
family that fulfills these criteria is found, CompaRNA
extracts the corresponding covariance model and the
seed alignment from the Rfam database. Then, a com-
parative method is queried with two different inputs.
One includes all RNA sequences from the Rfam seed
alignment and the query RNA sequence (if it was not
already present in the alignment). The second type of
input consists of 20 sequences—the query sequence and
19 sequences randomly selected from the seed alignment,
which have an identity between 65 and 95% in compari-
son with the query. If a comparative method requires an
alignment as an input, CompaRNA re-aligns the se-
quences in both sets by running Infernal (60) on a
sequence collection and by using the covariance model
for a given family.

All secondary structure prediction methods tested in
CompaRNA are run with default options. As comparative
methods are benchmarked with two different types of
input (all sequences from the Rfam seed or 20 representa-
tives), the maximum number of tests performed for each
RNA sequence equals 54: 28 predictions are performed by
single-sequence methods, and 26 predictions are per-
formed by comparative methods (each of the 13 compara-
tive methods is tested on two variants of the input
alignment or sequence collection).

Data sets for benchmarking

CompaRNA benchmarks methods for predicting RNA
secondary structure on two separate data sets. One data
set is continuously updated by incorporating new RNAs
released from the PDB database (16). The second data set
was compiled from the RNAstrand database (17); it does
not change over time and may serve as a constant refer-
ence benchmarking data set. The two data sets are avail-
able for download in the data sets section on the
CompaRNA website. In the following sections of the
manuscript, ‘PDB data set’ refers to the weekly updated
data set with new RNA structures released from the PDB
database, and ‘RNAstrand data set’ refers to the static
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data set created from the structural data extracted from
the RNAstrand database. A ‘reference data set’ refers only
to the PDB database—it is a data set created first in
February 2009, which contains RNAs already released
from the PDB database. It is continuously updated with
new RNA structures released weekly.

The PDB data set

The CompaRNA server started monitoring the Protein
Data Bank (16) for the release of new RNAs on 18
February 2009. To check which RNAs should be con-
sidered ‘new’ (i.e. significantly different from those that
could have been used to train existing predictors), a data
set of RNA structures already deposited in the PDB was
generated. All RNA molecules longer than 20 nt and con-
taining only ribonucleotides were used, regardless of
whether the crystal structure contained other molecules
(e.g. proteins). We ignored whether the RNA molecule
under consideration was a synthetic construct. As a
result of this procedure, a data set consisting of 1176
RNA sequences was created. To remove redundant
RNAs, CD-HIT-EST (61) was used. The filtering was per-
formed by comparing all aligned sequence pairs using a
90% sequence identity cut-off and assuming that a
minimal alignment coverage for the longer sequence
cannot exceed 70%. As a result, a reference data set con-
sisting of 404 RNA sequences, whose structure was known
before 18 February 2009, was created.

Every time a new RNA sequence is released by the PDB
database, the reference data set is checked for the presence
of sequence(s) highly similar to the query. If one or more
such sequences are detected, then the newly released RNA
is ignored and is not used for benchmarking. On the other
hand, if the RNA molecule is not found to be highly
similar to the previously known RNA sequences, it is
added to the reference data set and further checked for
its validity for benchmarking. There are two criteria for
considering a given RNA as valid for benchmarking: first,
it must contain secondary structure in the sense of trad-
itional Watson—Crick cis base pairs (see later in the text);
second, it must be continuous (no backbone breaks are
allowed). Because many RNAs contain post-transcrip-
tional modifications (e.g. pseudouridines, inosines,
methylated nucleosides and so forth), such nucleotides
are replaced by their unmodified counterparts, according
to the RNA modification table from the MODOMICS
database (62). The removal of modifications from 3D
structures is done by the ModeRNA program (63). This
step is critical because many bioinformatics methods used
for RNA secondary structure prediction can usually
handle only input RNA sequences containing the classical
four unmodified ribonucleotide abbreviations (i.e. A, U, C
and G). Finally, the residues in the PDB file are renum-
bered starting from 1, facilitating the subsequent annota-
tion of base pairs. As of 3 October 2012, the reference data
set of known RNAs extracted from the PDB database
consisted of 590 sequences.

For every RNA added to the PDB data set, the
RNAView program (64) is used to extract information
about the secondary structure. If there is more than one
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model in the PDB file, secondary structure present in all
models (100% consensus) is used as a reference.
Secondary structures are extracted from the PDB files ac-
cording to two definitions—‘standard’ and ‘extended’. The
standard RNA base pair definition follows the Leontis
and Westhof (65) classification, i.e. the canonical A-U,
G-C and wobble G-U pairs that belong to the cis
Watson—Crick/Watson—Crick geometry are considered as
the secondary structure. The ‘extended’ secondary struc-
ture definition includes base pairs interacting using the
Watson—Crick, Hoogsteen or sugar edges, in both cis
and trans orientations. It also includes base pairs conform-
ing to the ‘standard’ definition (65). Table 3 lists the
number of observed base pairs for the PDB data set as
of 3 October 2012. As of 3 October 2012, the filtered
non-redundant PDB data set used for testing secondary
structure prediction methods consisted of 121 RNAs.

From the PDB data set generated by the aforemen-
tioned procedure, a smaller subset containing only
pseudoknotted RNAs was created. These two data sets
were further subdivided into subsets containing base
pairs according to standard and extended definitions.
Thus, four data sets from the PDB data set were created
(Table 4).

RNAstrand data set

An independent data set for benchmarking RNA second-
ary structure prediction methods was created from the
RNAstrand database (17). RNAstrand stores secondary
structures determined experimentally, and includes many
RNAs, for which the secondary structure is known in the
absence of the tertiary structure. The entire RNAstrand
data set containing 4666 RNA sequences and secondary
structures was downloaded. The procedure for filtering
this data set was essentially the same as in the case of
the PDB data set. The only difference in subclassification
was that no reference 3D structures could be used for all
RNAstrand sequences, while some of these sequences con-
tained annotations of non-standard base pairs; therefore,
only the extended base pair definition was used for the
entire data set. The RNAstrand data set used in
CompaRNA consists of 1987 RNAs, and its base pair
composition is shown in Table 3. This set was also split
into two categories depending on the presence of
pseudoknots in the reference structures. As the
RNAstrand data set covers a great range of RNA
sequence lengths, it has also been split into three
non-overlapping groups based on sequence length: first,
sequences 20-200 nt long (‘short RNAs’), second RNAs
201-800 nt long (‘medium-sized RNAs’) and third RNAs
longer than 800 nt (‘long RNAs’) (Table 4). RNAstrand
provides a large collection of secondary structures, much
larger than the PDB data set. However, it must be
emphasized that benchmarks based on this data set are
not blind. The performance of knowledge-based
methods assessed on this data set may be artificially
inflated, as their training sets might have included se-
quences identical or similar to sequences in RNAstrand.

Metrics

To rank methods for RNA secondary structure pre-
diction, CompaRNA  uses three  parameters:
sensitivity [Equation (1)], positive predictive value [PPV;
Equation (2)] and the MCC [Equation (3)]. These metrics
are defined exactly as in the earlier evaluation by Gardner
and Giegerich (8), with the only exception that the PPV
was called ‘specificity’ in the earlier article. Calculation of
all three metrics requires classification of base pairs into
the following categories: TP (true positives), correctly pre-
dicted base pairs; FP (false positives), base pairs that do
not exist in the reference structure; TN (true negatives),
correctly predicted unpaired bases; and FN (false nega-
tives), base pairs in the reference secondary structure,
but not in the predicted one. To calculate the number of
true negatives, we assumed that the minimum allowed
distance between paired bases is 1 (as observed in the ref-
erence secondary structures). The TN was calculated as
the number of all possible pairs left by the existing pairs.
Moreover, as proposed by Gardner and Giegerich (8), the
FP set was split into three subcategories: compatible false
positives (neutral with respect to the predictor’s accuracy),
inconsistent (conflicting with base pairs in the reference
structure) and contradicting (non-nested with respect to
the reference structure).

The sensitivity is calculated as the ratio of the number
of TP to the sum of TP and FN, whereas the PPV is
calculated by dividing the number of TP by the sum of
TP and FP reduced by the number of compatible false
positives (denoted as ), which are neutral with respect
to the method’s accuracy. It has been shown that the
MCC can be approximated by the geometric mean of sen-
sitivity and PPV (66). In cases when the denominator in
the MCC equation equals 0, the MCC is arbitrarily set to
0, which reflects the method’s inability to generate a pre-
diction (i.e. MCC = 0 means that the prediction is no
better than random).

Rankings

To benchmark methods predicting RNA secondary
structure, CompaRNA evaluates their performance
using pairwise rankings. As noted in the description of
methods, every comparative method is tested on two dif-
ferent input alignments or sequence collections—one con-
taining all sequences from the seed alignment, indicated by
a suffix ‘(seed)’ added to the method name, and another
one containing only 20 sequences, including 19 represen-
tatives of the seed and the query sequence, indicated by a
suffix ‘(20)’ added to the method name. By taking into ac-
count two variants of comparative methods, 54 methods
have been compared with each other, which required 1431
pairwise comparisons. Rankings are created separately for
the PDB and the RNAstrand data sets. For each pair of
methods, the CompaRNA server first finds the available
shared predictions of RNA secondary structure (i.e. a set
of RNA sequences, for which predictions were generated
by a given pair of methods). In other words, each pair of
methods in a given ranking is characterized by a unique
data set of reference and predicted secondary structures,
henceforth referred to as a pairwise data set. For each
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Table 3. Summary of the number of different base pair types in the PDB and RNAstrand data sets used for benchmarking RNA 2D prediction

methods
Base pair PDB data set RNAstrand data set
‘Standard’ base pair counts ‘Extended’ base pair counts ‘Extended’ base pair counts

CG 2716 3023 119 146

AU 957 1291 69220

GU 418 541 26525

AG 0 637 4606

AA 0 192 1502

AC 0 150 2352

GG 0 113 733

uu 0 85 1975

CuU 0 73 1225

CcC 0 41 553

Table 4. Data sets used for benchmarking methods predicting RNA secondary structure

Source Data set name Type of RNAs Sequence length Number of sequences

PDB All RNAs, standard base pair definition All >20 121
All RNAs, extended base pair definition All >20 121
Only pseudoknotted RNAs, standard base pair definition Pseudoknotted >20 33
Only pseudoknotted RNAs, extended base pair definition Pseudoknotted >20 62

RNAstrand All RNAs All >20 1987
All short RNAs All 21-200 869
All medium-sized RNAs All 201-800 818
All long RNAs All >800 287
Pseudoknotted RNAs Pseudoknotted >20 919
Pseudoknotted-short RNAs Pseudoknotted 21-200 53
Pseudoknotted medium-sized RNAs Pseudoknotted 201-800 610
Pseudoknotted long RNAs Pseudoknotted >800 256

TP
TP+FN

Equation 1. Formula for calculating sensitivity. TP = number of
true-positive base pairs; FN = number of false-negative base pairs.

SENSITIVITY =

V= P
TP+(FP—¢)
Equation 2. Formula for calculating PPV. TP = number of

true-positive base pairs; FP = number of false-positive base pairs,
¢ = number of compatible false-positive base pairs.

TPXTN —(FP—¢)X FN
\V(TP+FP—¢)(TP+FN)(TN +FP—¢)(IN +FN)

Equation 3. Formula for calculating the MCC. TP = number of
true-positive base pairs; FP = number of false-positive base pairs,
¢ = number of compatible false positives, TN = true negatives;
FN = false negatives.

pairwise data set, CompaRNA calculates the total number
of base pair counts required to calculate PPV, sensitivity
and the MCC, i.e. TP, TN, FN and FP (including four FP
subcategories).

Additionally, we performed a robustness test that
ignored the intricacies of the algorithms used and
instead was focused on the practical use of methods

tested to generate useful predictions for any type of
RNA sequences. Thus, we were looking for methods
that can provide as good predictions as possible for all
query sequences, and we penalized methods that were
slow or fussy. If a given method did not return any
prediction in 24 h or was incapable of generating any pre-
diction at all for a specific RNA (e.g. because the query
sequence was too long), we treated the missing prediction
as if the given RNA was predicted to have no base pairs at
all. We tested all methods on all 1987 RNAs from the
RNAstrand data set, as well as on a subset of this data
set, for which CompaRNA managed to assign an Rfam
family (1242 sequences).

To check whether the difference between the perform-
ances of the two methods is significant, the Wilcoxon
signed-rank test is executed for both types of rankings.
It is conducted by sampling with replacement—for
random 90% of RNAs from a pairwise data set, the
total number of base pair counts is calculated and the
MCC is obtained for each method. This procedure is
repeated 40 times; thus, 40 pairs of MCC values are col-
lected. These two sets of MCCs are used as an input for
the Wilcoxon signed-rank test. CompaRNA subsequently
checks whether the obtained P-value is below the cut-off
of 0.001. If it is, then the difference in performance of two
methods is assumed to be statistically significant.
Otherwise, the performance of two methods is regarded
as statistically undistinguishable. In such a case,
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CompaRNA labels a pairwise comparison as a draw (‘="
in the rankings presented on the website). If the number of
common RNA sequences in the pairwise data set is <10,
CompaRNA applies the ‘no winner’ verdict (‘7 in the
rankings presented on the website). After analyzing 1431
pairwise comparisons, CompaRNA sums up the number
of times a given method scored higher, scored lower and
the number of comparisons resulting in a ‘no winner’ or
‘draw’ verdict for each method. The first rank is assigned
to the method with the highest number of wins in pairwise
comparisons; the second rank is assigned to the method
with second highest number of wins; and so forth. The
MCCs are not used to assign ranks to methods because
each pair of methods is characterized by a different subset
of RNAs, for which they returned a prediction. However,
in the robustness tests, all methods were benchmarked on
exactly the same data set consisting of either 1242 or 1987
sequences. In this case, the assignment of ranks based on
the MCC criterion matches the assignment of ranks by the
number of wins in pairwise comparisons, and the MCCs
for all methods are shown in the ranking summary.

RESULTS

CompaRNA benchmarks RNA secondary structure pre-
diction methods based on two different data sets:
RNAstrand that contains primarily secondary structure
information, and PDB that contains tertiary structure in-
formation, from which the secondary structure can be un-
ambiguously derived. Fourteen rankings have been
calculated: four for the PDB data set and ten for the
RNAstrand data set, and all of them are available on
the CompaRNA website.

Assignment of RNA sequences to Rfam families for
testing comparative methods

As of 3 October 2012, CompaRNA assigned an Rfam
family to 39.7% (48/121) of the RNA sequences from
the PDB data set. In case of the RNAstrand data set,
this rate was much higher—62.5% (1242/1987). The full
list of Rfam families assigned to specific RNAs is provided
as Supplementary File comparna_sup_data.pdf. Figure 1
shows Rfam families that are most frequently represented
in the PDB and RNAstrand data sets. Comparative
methods were benchmarked only on those RNAs, for
which CompaRNA managed to identify an Rfam family
(with the sole exception of a brutal robustness test on the
full RNAstrand data set).

Rankings on RNAs extracted from the PDB database

Each of the four PDB-based data sets shown in Table 4
was used to create a ranking (Table 5). Figure 2 shows the
pairwise comparison of best methods on all RNAs from
the PDB data set. MXScarna(seed) (MXScarna run on the
entire ‘seed’ alignment from Rfam) took the first place in
rankings generated on all RNAs from the PDB data
set, regardless of whether standard or extended base pair
definition was used. When the standard base pairs defin-
ition was used, CentroidAlifold(20) (CentroidAlifold
run on the query sequence and 19 members of the ‘seed’

alignment from Rfam) was second and CentroidFold
was third. When all base pairs from the reference second-
ary structure were taken into account, CentroidFold took
the second place and CentroidAlifold(20) was third.
In case of the ranking generated on pseudoknotted
RNAs from the PDB using standard base pairing
information, CentroidAlifold(20) was first, RNA
alifold(20) was second and CentroidAlifold(seed) and
MXScarna(seed) shared the third place. When the
extended base pairs definition was used, the ranking was
topped by MXScarna(seed), CentroidAlifold(20) and
RNAalifold(20). Single-sequence methods that scored
relatively high in rankings generated on the PDB data
set are CentroidFold, Sfold, Fold and ContraFold.

Interestingly, comparative methods run on all sequences
from the seed alignment on the average generate a worse
RNA secondary structure prediction compared with the
input composed of 20 representative sequences. In case of
tests on the PDB data set, the only exception is
MXScarna, which performs better when run on all se-
quences from the seed compared to 20 representatives,
regardless of whether the standard or extended base pair
definition is used.

It was not possible to test all of the comparative
methods in this ranking, as the number of predictions col-
lected for some of them (e.g. for Multilign and TurboFold
in the case of a benchmark on all sequences using seed
alignments) was insufficient for a statistically meaningful
evaluation at the time of writing of this manuscript.
Rankings generated on the PDB data sets will be auto-
matically updated and presented on the CompaRNA
website, while new RNA structures appear in the PDB
database, hopefully allowing for a statistically significant
evaluation of more methods in the future.

Rankings on RNAs extracted from the RNAstrand
database

Because the entire RNAstrand data set is much bigger than
the PDB data set (1987 versus 121 sequences), it allowed us
to create subsets of sequences with different length ranges
to evaluate the performance of individual methods depend-
ing on the query length. Here, we used only one definition
of base pairs, i.e. extended, because RNAstrand data
include non-canonical base pairs, and these cannot be
disambiguated from the standard pairs for this data set.

Similarly to the benchmarks on the PDB data, each of
the eight RNAstrand-based data sets showed in Table 4
was used to create a ranking. Additionally, there were two
robustness tests performed—first by running secondary
structure prediction methods on all 1987 RNAs from the
RNAstrand data set, and second by running the test on
only the subset of RNAstrand data set, for which
CompaRNA managed to assign an Rfam family (1242
sequences). In total, 10 rankings on the RNAstrand data
have been developed (Table 6).

On the contrary to rankings based on sequences from
the PDB data set, which were dominated by comparative
methods, rankings based on the RNAstrand data set were
dominated by single-sequence methods: in 7 of 10
rankings, ContextFold was the best performing method,
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Figure 1. Assignment of RNAs from the PDB (A) and RNAstrand (B) data sets to specific Rfam families. Both charts show the numbers of RNAs
from different Rfam families for which CompaRNA assigned an Rfam family—in case of the PDB data set, these were 48 sequences, and in case of
RNAstrand, these were 1242 sequences. The names on the charts correspond to Rfam identifiers of the following families: tRNA = transfer RNA;
tmRNA = transfer-messenger RNA; RNaseP_bact_a = bacterial RNase P class A; Bacteria_small_SRP = bacterial small signal recognition particle
RNA; 5S_rRNA = 58 ribosomal RNA; SSU_rRNA_bacteria = bacterial small subunit ribosomal RNA; Metazoa_SRP = metazoan signal recogni-
tion particle RNA; SSU_rRNA_eukarya = eukaryotic small subunit ribosomal RNA; Hammerhead_| = hammerhead ribozyme (type I);

K10_TLS = K10 transport/localization element (TLS); Purine = purine riboswitch; SAM = SAM riboswitch (S box leader); 5_8S_rRNA = 5.8S
ribosomal RNA; crcB —crcB RNA and Gammaretro_CES = gammaretrovirus core encapsidation signal.

Table 5. Best methods according to rankings on the PDB data set

Ranking type First rank Second rank Third rank

All RNAs

Std MXScarna(seed) (W: 38, L: 3, CentroidAlifold(20) (W: 36, L: CentroidFold (W: 36, L: 8,
NW: 12) 0, NW: 17) NW: 9)

Ext MXScarna(seed) (W: 38, L: 2, CentroidFold (W: 37, L: 7, CentroidAlifold(20) (W: 36, L:
NW: 13) NW: 9) 0, NW: 17)

Pseudoknotted RNAs

Std CentroidAlifold(20) (W: 33, L: 0, RNAalifold(20) (W: 32, L: 1, CentroidAlifold(seed) and
NW: 20) NW: 20) MXScarna(seed) (W: 31, L:

2, NW: 20)

Ext MXScarna(seed) (W: 39, L: 1, CentroidAlifold(20) (W: 35, L: RNAalifold(20) (W: 33, L: 2,

NW: 13) 0, NW: 18) NW: 18)

Std = standard base pair definition; Ext = extended base pair definition (see ‘Materials and Methods’ section); W = number of wins; L = number of
defeats; NW = number of cases in which it was impossible to select winner; (20) = refers to the test of a comparative method in which 20 repre-
sentatives of an Rfam seed alignment were used; (seed) = refers to the test in which all sequences from a given seed alignment were used.

and in one case (ranking on short-pseudoknotted RNAs),
the winner was Cylofold. Only two RNAstrand-based
rankings were topped by comparative methods: Turbo
Fold(seed) topped the ranking on all RNAstrand RNAs
and CentroidAlifold(seed) topped the ranking on all
pseudoknotted RNAstrand RNAs.

One of the most important results of the benchmark on
the RNAstrand data set is that Cylofold and other
methods devoted to predicting pseudoknots perform best
on sequences of short RNAs (up to 200 nt long) contain-
ing pseudoknots. In this ranking, the other best perform-
ing methods were McQFold, Pknots and PknotsRG,
which are all capable of predicting pseudoknots. As it
turned out in our benchmarks, the longest RNA, for

which Cylofold managed to return a prediction in our
test, had 255 nt residues (ASE_00408 record from the
RNAstrand data set). Because of this limit, Cylofold
had only been able to generate a prediction for two
RNAs from the data set containing medium-sized
RNAs, which is insufficient for a statistical evaluation.
In the benchmarks on pseudoknotted medium-sized and
long RNAs, ContextFold performed best.

The second best performing method in benchmarks on
RNAstrand data was CentroidAlifold(seed) (second place
in four rankings—medium-sized and long RNA:s,
pseudoknotted long RNAs and in the robustness test on
1242 RNA sequences). TurboFold(20) has taken the
second position in three rankings—on all RNAs, short
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Figure 2. Comparison of top performing methods predicting RNA secondary structure in a ranking generated on all RNAs extracted from the PDB
data set. Plus means that a method in the left column scored higher in the pairwise comparison. Minus means that a method on the left scored lower
in the pairwise comparison. Equal to denotes a draw, i.e. both methods have generated at least 10 predictions for common targets, but the accuracies
of their results are statistically undistinguishable (P > 0.001). Question mark means that two methods could not have been compared (<10 predic-
tions for common targets). The numbers in the lower left part of the figure correspond to the number of common targets on which both methods

were evaluated.

RNAs and pseudoknotted medium-sized RNAs.
CentroidAlifold(20) has been second in two rankings—
long and pseudoknotted long RNAs. ContextFold
has been second in the ranking on all pseudoknotted
RNAs; McQFold has been second in the ranking on
short-pseudoknotted RNAs; and IPknot has been second
in the robustness test on all 1987 sequences from the
RNAstrand data set. The best-performing methods on
RNAs from the RNAstrand data set are shown in Table 6.

Robustness test

Figure 3 shows the results of the robustness test on the
RNAstrand data set. If a given method was unable to
generate a secondary structure prediction, it was treated as
if the prediction was ‘no secondary structure’, which has
contributed negatively to the overall ranking of that
method in this particular test. The most robust methods
are ContextFold and UNAFold, which managed to return
predictions for all RNAs from the RNAstrand data set.
There were also methods, which returned all predictions

for those sequences in the RNAstrand data set, for which
CompaRNA managed to assign an Rfam family—apart
from ContextFold and UNAFold, these were IPknot,
Contrafold, Sfold, MaxExpect, ProbKnot, Fold and
RNAfold. The most robust comparative method turned
out to be MXScarna—when run with a query comprising
all sequences from the Rfam seed alignment, it generated
predictions for 36.6% of all RNAs and for 58.6% of
RNAs assigned to an Rfam family. According to the
MCC value calculated in this test, MXScarna is the 15th
best method on all RNAs and 8th best method on the
RNAs, for which CompaRNA managed to assign an
Rfam family.

Performance of comparative methods in relation to the
number of input RNA sequences

In general, comparative methods perform better when
queried with an alignment comprising 20 input RNA se-
quences between 65 and 95% sequence identity to the
query, instead of all sequences from a seed corresponding
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Ranking type First rank

Second rank Third rank

All RNAs ext TurboFold(seed) (W: 52, L: 1,
NW: 0)
Short RNAs (20-200 nt) ext ContextFold (W: 53, L: 0,
NW: 0)
Medium-sized RNAs ext ContextFold (W: 43, L: 3,
(201-800 nt) NW: 7)
Long RNAs ext ContextFold (W: 24, L: 0,
(801-30 000 nt) NW: 29)

All pseudoknotted RNAs ext

L: 4, NW: 3)
Pseudoknotted-short ext Cylofold (W: 35, L: 0, NW:
RNAs (20-200 nt) 18)
Pseudoknotted ext ContextFold (W: 42, L: 0,

medium-sized RNAs
(201-800 nt)

Pseudoknotted long RNAs ext
(801-30 000 nt)

NW: 11)

ContextFold (W: 24, L: 0,
NW: 29)

Robustness test—1987 ext ContextFold (W: 53, L: 0,
sequences NW: 0)

Robustness test—1242 se- ext ContextFold (W: 53, L: 0,
quences with Rfam NW: 0)

family assigned

CentroidAlifold(seed) (W: 46,

TurboFold(20) (W: 51, L: 1, ContextFold (W: 51, L: 2,

NW: 1) NW: 0)
TurboFold(20) (W: 51, L: 1, CentroidHomfold-LAST and
NW: 1) CentroidAlifold(seed) (W:

50, L: 3, NW: 0)

CentroidAlifold(seed) (W: 42, TurboFold(20) (W: 40, L: 1,

L: 4, NW: 7) NW: 12)

CentroidAlifold(seed) and RNAalifold(seed)* (W: 21, L:
CentroidAlifold(20) (W: 22, 3, NW: 29)
L: 1, NW: 30)

ContextFold (W: 45, L: 5, CentroidHomfold-LAST (W:
NW: 3) 43, L: 8, NW: 2)

McQFold (W: 35, L: 1, NW: Pknots (W: 33, L: 2, NW: 18)
17)

TurboFold(20) (W: 39, L: 1, PPfold(20) (W: 38, L: 2, NW:
NW: 13) 13)

CentroidAlifold(seed) and
CentroidAlifold(20) (W: 22,
L: 1, NW: 30)

IPknot (W: 52, L: 1, NW: 0)

RNAalifold(seed)® (W: 21, L:
3, NW: 29)

Contrafold (W: 51, L: 2, NW:
0)
CentroidAlifold(seed) (W: 52, IPknot (W: 51, L: 2, NW: 0)

L: 1, NW: 0)

“Fourth place.

W = number of wins; L = number of defeats; NW = number of cases in which it was impossible to select winner; (20) = refers to the test of a
comparative method in which 20 representatives of an Rfam seed alignment were used; (seed) = refers to the test in which all sequences from a given

seed alignment were used.

to a given Rfam family. There are exceptions to this rule—
in case of the RNAstrand data set, CentroidAlifold and
MXScarna exhibited better performance on queries
comprising all sequences from the seed compared with
just 20 representatives. As noted earlier, in case of
rankings on the PDB data set, only MXScarna performed
better when run on all sequences from the seed. Figure 4
shows the difference between the performances of
MXScarna and CentroidAlifold run on all RNAs from
RNAstrand data set (all sequences from the seeds versus
20 representatives). Figure 5 highlights the difference
between the performance of MXScarna(seed) and
CentroidAlifold(seed) on RNAs from different Rfam
families for the RNAstrand data set—in this comparison,
CentroidAlifold outperformed MXScarna on RNA se-
quences of the following families (n>10, P <0.01):
ciliate telomerase RNA, bacterial small signal recogni-
tion particle, archacal RNase P and bacterial RNase P
(class A).

DISCUSSION

RNA secondary structure prediction methods used for
benchmarking

In our benchmarks, we attempted to include all methods
for RNA secondary structure prediction that we were
aware of and were freely available in any form that
allows for reliable automated processing of a large
number of predictions and for automated parsing of the

output. In general, methods that could be easily installed
were tested locally, and other methods were tested as web
servers. Some of the available methods were deliberately
not included in the tests, for example Mfold (68), which
has been substituted by UNAFold, Pfold (54), which has
been substituted by PPfold, RNAG (69), which requires a
commercial package MATLAB and its ‘free’ availability is
thus limited, and Lara (70), a program designed for
aligning RNA sequences based on structural data, which
generates RINA secondary structure prediction for the
input sequence collection. Moreover, web server imple-
mentations of methods predicting RNA secondary struc-
ture were chosen if the local installation required setting
up a non-standard pipeline for secondary structure predic-
tion [e.g. as in the case of CentroidHomfold, which makes
use of the LAST program (21) to pre-compute RNA
sequence alignments]. CRWrnafold was only available as
a binary file for MS Windows; therefore, only the web
server implementation was tested. Generally, if stand
alone implementations were available, they were preferred
over the web server ones, to limit the influence of technical
problems related to accidental server downtime. Another
bottleneck was that some of the methods available for
local installation required large amounts of disk space,
e.g. calculating all possible RNA secondary structures—
for that reason, we have set the length limit of 500 nt for
the RNAsubopt method. Moreover, some methods
required non-standard amounts of memory for predicting
structures for long sequences, which forced us to set the
input RNA sequence length limit to 500 nt (e.g. for
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ContextFold 100.0% 100.0%

IPknot 99.2% 100.0% 1
Contrafold 99.3% 100.0% 1
CentroidFold 96.4% 99.9% 1

Sfold 99.3% 100.0% 1

MaxExpect 99.3% 100.0% 1
ProbKnot 99.3% 100.0% 1

UNAFold 100.0% 100.0% 1
CentroidAlifold(seed) 35.5% 56.8% 1
Fold 99.3% 100.0% 1

RNAfold 99.3% 100.0% 1

CentroidHomfold-LAST 82.6% 92.3% 1

CentroidAlifold(20) 323% 51.7% 1
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Vsfold4 81.1% 91.1% 1
Vsfold5 80.6% 90.5% 7
CMfinder(20) 28.2% 45.2% 1
HotKnots 44.1% 40.1% 7
RNASampler(20) 19.8% 31.6% 1
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Mastr(20) 29.8% 47.7% ]
Alterna 34.9% 29.0% 1

MCFold
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RDfolder 34.9% 29.0% 1
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Murlet(seed) 6.2% 9.9% 1
TurboFold(seed) 2.6% 4.1% 1
PPfold(seed) 3.2% 5.1% 1
Carnac(seed) 13.5% 21.7% 1
RNASampler(seed) 4.9% 7.9% 1
NanoFolder 12.6% 15.5% 1
Mastr(seed) 32.4% 51.9% 1
PETfold(20) 21.1% 33.8% 7]
Multilign(seed) 1.2% 1.8% 1
RSpredict(20) 32.3% 51.7% 1
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Figure 3. The results of a robustness test on the RNAstrand data set. The numbers on the right to each bar corresponds to the percent of RNAs for
which a given method returned predictions (dark = 1987 RNAs from the RNAstrand data set; light = 1242 RNAs for which CompaRNA assigned
an Rfam family). (20) = refers to the test of a comparative method in which 20 representatives of an Rfam seed alignment were used; (seed) = refers
to the test in which all sequences from a given seed alignment were used.
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Figure 5. Difference in performance of MXScarna and CentroidAlifold
on a data set consisting of 706 sequences from the RNAstrand data set,
for which CompaRNA identified an Rfam family. Both methods were
run on all sequences from seed alignments corresponding to the
identified families. Average MCCs with 95% confidence intervals (CI)
were plotted (for each Rfam family n denotes the number of sequences
used to calculate average MCC and CI). Using the CI errors bars
overlap rule, one can easily estimate the significance of difference in
performance of two methods. If the number of MCCs used to calculate
the averages is >10 and if the error bars do not overlap, then it can be
assumed that P-value is <0.01 (67). CentroidAlifold outperformed
MXScarna in tests on the following Rfam families (P <0.01, n>10):
ciliate telomerase RNA (telomerase_CIL, n = 12), bacterial small signal
recognition particle RNA (Bacteria_small SRP, n = 84), archaeal
RNase P (RNaseP_arch, n =24) and bacterial RNase P class
A (RNaseP_bact_a, n = 197).
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HotKnots). On the other hand, web server methods often
have an intrinsic limit on the length of input RNA se-
quences, e.g. Vsfold4 and Vsfold5 have the limit set to
449 nt; Cylofold has a limit of ~250nt (the longest
RNA, for which it returned a prediction, was 255nt);
and RDfolder has a limit of 100nt. These factors
influenced the subset of sequences used in the pairwise
comparison of methods. Moreover, because of the fully
automated nature of the benchmark, CompaRNA
ignores suboptimal secondary structures predicted by
some of the methods (e.g. HotKnots and RNAsubopt).
In our opinion, the decision of which suboptimal structure
to choose differs from case to case and should be left to
the user; hence, we have not attempted to implement any
ad hoc automatic procedure. Moreover, we decided not to
generate a consensus from a set of predicted suboptimal
structures, because our policy was to use default param-
eters for all programs and in the case of methods
generating suboptimal predictions, it was not clear
which cut-off should be used for all the cases tested. A
special case in our benchmark is CMfinder, a method
devoted to predicting motifs (46). Despite the fact that it
does not return a single secondary structure, but a series of
motifs instead, we attempted to test it by automatically
assembling a single secondary structure prediction from
the best scored non-conflicting motifs. Considering the
number of different methods evaluated, CompaRNA is
currently the biggest RNA secondary structure prediction
benchmark we are aware of.

Benchmarking methodology

The metrics taken from the study by Gardner and
Giegerich (8) were used to measure the performance of
methods predicting RNA secondary structures. Pairs of
methods were scored on the basis of an MCC value
calculated using base pair counts (TP, FP, FN and TN)
for the entire pairwise data set. In other words, MCC
scores for pairs of a reference structure and a predicted
structure were not averaged. This so called ‘per-residue’
classification is less prone to bias resulting from uneven
distribution of RNAs with different lengths (71). MCC,
sensitivity and PPV were also calculated for every pair of
reference and predicted structures, and their averages are
available online via the CompaRNA website.

The automated processing of RNA structures for
testing involves arbitrary exclusion of difficult cases that
could not be handled correctly by many prediction
methods. For instance, all RNA structures with
backbone breaks are removed. CompaRNA also ignores
helices composed of two separate single-stranded RNAs
(e.g. chains C, F, I and L from the PDB record 3SIV),
single-stranded RNAs that base pair with single-stranded
DNAs (e.g. 3GTM, chain M) and RNA-DNA hybrids
(e.g. 3GTK, chain R). During the automated processing
and annotation of RNAs from the PDB data set, we used
the RNAView program (64). We decided to use it because
it is an established method, it is relatively robust (it has
produced meaningful output for all PDB records we have
tested in CompaRNA) and it is relatively fast. There are,
however, cases where the annotation by RNAView can be
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controversial, especially in terms of standard base pair
definitions. For instance, in chain ‘h’ of the PDB record
3JOL, RNAView regards U1654 as forming a canonical
Watson—Crick base pair both with G1671 and G1672.

Data sets used for benchmarking

The RNAstrand data set is much larger than the PDB
data set; therefore, current benchmarks on the
RNAstrand data sets may be considered more reliable
statistically. However, RNAstrand-based benchmarks
are not blind, and we cannot exclude the possibility that
some of the sequences in the testing set were used for
training some of the methods tested in our work. This
might also be true for the PDB data set, as the experimen-
tal determination of RNA tertiary structure is often
preceded by the determination of its secondary structure.
It has to be also noted that the PDB data set is biased
towards shorter sequences. Thus, we agree with
Hajiaghayi et al. (10) that there is no ‘ideal” data set that
would be suitable for benchmarking all RNA structure
prediction methods, and it is in the best interest of the
methods’ user to know the strengths and weaknesses of
different methods when tested on data sets with different
characteristics. We hope that our division of the PDB- and
RNAstrand-based data sets into various subsets will help
the users select the methods that perform best for the par-
ticular type of sequences. Recently, Widmann ez al. (72)
prepared a set of hand curated RNA alignments, which
may also be used for testing comparative methods predict-
ing RNA secondary structure.

Not all reference RNA structures from the RNAstrand
and PDB databases have been submitted to every method
tested in the CompaRNA benchmark. The reason
was that individual methods have been added gradually
over time during the development of CompaRNA; in
particular, several methods were published after the initi-
ation of CompaRNA (e.g. ProbKnot has been tested
since 10 August 2010 and IPknot since 1 July 2011). On
1 September 2012, we have added CMfinder to
CompaRNA. The late addition of CMfinder to
CompaRNA benchmarks means that there are currently
no comparisons of CMfinder with other methods on the
PDB data—it has only been tested on the RNAstrand
data set. This case proves that any method can be added
to CompaRNA benchmarks at any time, and it can be
tested on the RNAstrand data right away, although it
may take time for a method to gather sufficient number
of predictions on new structures appearing in PDB to
appear in the benchmark with statistically significant
scores. New methods for RNA structure prediction are
published every now and then; hence, there is a tradeoff
between including new methods in the benchmark and
having large test sets for all methods tested. We decided
to be inclusive rather than exclusive, as we believe that this
approach yields more useful information for both users
and developers of methods. With the growing number of
RNA structures in the PDB, newly included methods will
have a chance to be compared with their older competitors
on growing data sets, as the rankings are periodically
updated on the CompaRNA website.

Every time new RNA structures are released from the
PDB database, their sequences are submitted by
CompaRNA to a large number of methods predicting
RNA secondary structure (41 programs as of 3 October
2012), and the obtained predictions are stored on the
CompaRNA server. The predictions are generated as
soon as the reference RNA structures have been processed
and saved. The short period between the release of new
RNA structures in the PDB database and the testing by
CompaRNA serves to minimize the likelihood that the
web server methods being benchmarked could ‘learn’
the correct structures before the testing begins.

Benchmark results

Our results indicate that the best comparative methods
typically outperform the best single-sequence methods if
homologous RNA sequences are available. The best
comparative methods overall turned out to be Centroid-
Alifold, MXScarna, RNAalifold and TurboFold. The
performance of all of the comparative methods could
have been even better if the input data were prepared
manually. However, this is not possible in a fully auto-
mated benchmark. CompaRNA relies on the automatic
classification of RNAs into Rfam families by the Rfam
(59) online search engine (http://rfam.sanger.ac.uk/
search). These automated steps can be almost certainly
improved, and it is possible that different prediction
methods may require different pre-processing of the
input data to achieve optimal performance. For
example, in some cases, the number of sequences in the
seed alignments with identities to query in the range of 65—
95% was <20. In such cases, the sequence alignment or
collection was not used to test comparative methods at all.
This is why the robustness of comparative methods run on
all sequences from the seed alignment may be higher than
the robustness of methods run on the representatives of
the seed, as shown in Figure 3. It has to be emphasized
that optimally aligning RNA sequences is a difficult
problem and often intervention by human experts is
required to correctly align a set of diverged RNA
sequences. Thus, on the one hand, our benchmark
probably undervalues the performance of comparative
methods if they are run in a completely automated
mode, without any human intervention. The optimal
use of comparative methods may, therefore, require
more pre-processing than naively running automated
database searches and RNA alignment methods.
However, on the other hand, our benchmark suggests
that a big area of potential improvement in RNA second-
ary structure prediction may be in developing better
methods for automated collection and alignment of
RNA sequences.

Rankings on RNAstrand-derived data sets indicated
that, currently, ContextFold is the best-performing
single-sequence method. When the test set is restricted to
RNAs containing pseudoknots, Cylofold performs best.
However, because of the fact that Cylofold only takes as
input short RNAs (up to ~250 nt long), it is not suitable
for predicting structure for longer sequences. If a longer


http://rfam.sanger.ac.uk/search
http://rfam.sanger.ac.uk/search

RNA is expected to contain pseudoknots, then IPknot
should be used.

It is interesting to compare the performance of methods
predicting RNA secondary structure in the context of the
nature of their algorithms, i.e. whether a given method
was trained on RNAs with known secondary structures.
Examples of trained methods include ContextFold,
ContraFold and Murlet. Methods that do not rely on
the information about known RNA structures usually
predict secondary structure based on free-energy mini-
mization—examples include RNAfold and Sfold. The
methods that topped rankings in CompaRNA were
often trained, e.g. ContextFold, CentroidFold and
IPknot, in <case of single-sequence methods, or
CentroidAlifold in case of comparative methods. The
best untrained single-sequence method is Sfold (data not
shown; see the results of tests available online on the
CompaRNA website) and in case of pseudoknotted
RNAs—Cylofold. The best wuntrained comparative
methods according to our benchmarks are TurboFold,
MXScarna and RNAalifold.

It has to be emphasized that one cannot exclude that
the good performance of the trained methods, especially
ContextFold, is the result of an overfitting to the data used
for training. One has to be careful when comparing
the performance of trained methods using information
extracted from known RNA structures against pro-
grams that use Turner rules that were based on short
sequence optical melting. Nevertheless, from the perspec-
tive of a user, it is important to obtain accurate secondary
structure for any RNA sequence, regardless of whether
it was generated by a program that makes use of hom-
ologous sequences. If a user wants to predict secondary
structure for a member of a well-annotated RNA
family (e.g. tRNA), it is natural to wuse trained
methods instead of free-energy minimization. On the
other hand, if a user wants to predict secondary structure
for an RNA sequence that has no homologs or that
belongs to a poorly annotated Rfam family, then
methods based on free-energy minimization should be
recommended.

The results obtained from our benchmarks of RNA sec-
ondary structure prediction methods (i.e. the better
average performance of comparative methods than the
single-sequence methods) are similar to those observed
in the CASP experiments focused on protein structure pre-
diction (12). We hope that the results of CompaRNA
benchmarks will stimulate the community of developers
of RNA structure prediction methods to try new solutions
(or combinations of the existing solutions) that will elim-
inate the current bottlenecks and will contribute to the
improvement of wuseful tools available for the wide
research community. We hope to support a sportive com-
petition among the developers of methods predicting
RNA secondary structure.

Summary

Benchmarking the performance of methods for RNA sec-
ondary structure prediction may be regarded as contro-
versial—in particular the measures of success are
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arbitrary, and we are perfectly aware that there may be
many other ways of calculating the rankings, in which any
of the methods tested could score better. The same
problem concerns methods for protein structure predic-
tion, yet rigorous benchmarks, in particular CASP,
Livebench and EVA, have greatly contributed to the
progress in the field of protein structure prediction
[review: (73)]. Recently, a CASP-like benchmark called
RNA Puzzles has been organized: it involved only three
RNA 3D structures, for which secondary structures have
been determined (13). Thus far, there have been no initia-
tives in the field of structural bioinformatics of RNA
analogous to Livebench or EVA, and we strongly
believe that our efforts to follow these examples in
CompaRNA will stimulate the development of better
methods for RNA secondary structure prediction. We
are aware that no benchmarks are ideal, but we hope to
stimulate a discussion in the RNA field that will lead to
the development of commonly accepted test sets as well as
measures of performance. We cordially invite all devel-
opers to suggest new measures and ways of scoring and
ranking the methods, and we will gladly include them in
the CompaRNA server.

CompaRNA is available on two mirrors on the
Internet: http://comparna.amu.edu.pl/ and http://iimcb.
genesilico.pl/comparna/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary File.
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