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ABSTRACT

Recent advances in high-throughput sequencing
technologies have enabled a comprehensive dis-
section of the cancer genome clarifying a large
number of somatic mutations in a wide variety of
cancer types. A number of methods have been
proposed for mutation calling based on a large
amount of sequencing data, which is accomplished
in most cases by statistically evaluating the differ-
ence in the observed allele frequencies of possible
single nucleotide variants between tumours and
paired normal samples. However, an accurate de-
tection of mutations remains a challenge under
low sequencing depths or tumour contents. To
overcome this problem, we propose a novel
method, Empirical Bayesian mutation Calling
(https://github.com/friend1ws/EBCall), for detecting
somatic mutations. Unlike previous methods, the
proposed method discriminates somatic mutations
from sequencing errors based on an empirical
Bayesian framework, where the model parameters
are estimated using sequencing data from multiple
non-paired normal samples. Using 13 whole-exome
sequencing data with 87.5–206.3 mean sequencing
depths, we demonstrate that our method not only
outperforms several existing methods in the calling
of mutations with moderate allele frequencies but
also enables accurate calling of mutations with

low allele frequencies (�10%) harboured within a
minor tumour subpopulation, thus allowing for the
deciphering of fine substructures within a tumour
specimen.

INTRODUCTION

Cancer is caused by genetic alterations in which acquired
or somatic gene mutations, together with germline factors,
play definitive roles in cancer development. As such, com-
prehensive knowledge regarding somatic mutations in the
cancer genome is indispensable for the ultimate under-
standing of cancer pathogenesis. In this regard, the
recent advances in massively parallel sequencing
technologies have provided an unprecedented opportunity
to decipher a full registry of somatic events in the cancer
genome at a single nucleotide resolution (1). However,
accurate detection of somatic mutations from high-
throughput sequencing data may not always be a straight-
forward task because ambiguities in short read alignment
and sequencing errors are inevitably introduced during
sample preparation and signal processing, making it
difficult to discriminate true somatic mutations from
sequencing errors, especially for those mutations with
low sequencing depths or allele frequencies. The detection
of low allele frequency mutations is not only required for
specimens with low tumour contents but is also important
for capturing minor tumour subclones to understand the
heterogeneity of cancer (2–5) and the underlying causes of
tumour recurrence and therapeutic resistance.
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For calling somatic mutations, each candidate has to be
discriminated from germline variants and artifacts appear-
ing from sequencing errors. Although germline variants
can be effectively detected by relying on the base calls in
paired normal samples, the elimination of sequencing
errors may be a more complex task because of uncertain
allele frequencies and tumour contents. Most existing
approaches have adopted variants whose allele frequencies
in tumour samples are significantly higher than those in
normal samples, excluding variants whose allele
frequencies are high enough to indicate that they are
putative germline variants. Sequencing errors can be
eliminated to some extent by testing the differences in
allele frequencies, as they are expected to occur with
equal probability between tumour and normal samples.
To measure the significance of the difference in allele
frequencies, SomaticSniper (6) and jointSNVmix (7)
estimate the Bayesian posterior probability that tumour
and normal samples have different genotypes, whereas
our previous approach (8) and VarScan 2 (9) both rely
on the P-values from Fisher’s exact test.
Although a direct comparison between tumour and

normal samples has achieved a measure of success, a
more efficient approach to discriminate between seq-
uencing errors and genuine somatic mutations is possible
when prior information on sequencing errors is given. In
fact, the susceptibility to sequencing errors in each
genomic position is not uniform, but there are many
common sequencing error-prone sites across different ex-
periments, as shown by several previous studies (10–12) as
well as our current study. This implies that, by inferring
the susceptibility to sequencing errors at each genomic
site, we can achieve greater sensitivity in the detection of
somatic mutations at sites with no sequencing errors while
efficiently filtering false positives at sequencing error-
prone sites (Figure 1).
In this article, we propose a novel statistical approach

for the detection of somatic mutations, which explicitly
takes into account prior information of sequencing
errors. By introducing a Bayesian statistical model, we
propose a framework for empirically estimating the
distribution of sequencing errors by using a set of
non-paired normal samples. Using this approach, we can
directly evaluate the discrepancy between the observed
allele frequencies and the expected scope of sequencing
errors. The proposed approach, which we call Empirical
Bayesian mutation Calling (EBCall), is superior to several
existing methods in calling somatic mutations with
moderate allele frequencies. In addition, we demonstrate
that EBCall can effectively detect a series of somatic
mutations that have allele frequencies of <10% with a
high degree of accuracy, thereby identifying sub-
clonal structures of cancer cells that cannot otherwise be
found.

MATERIALS AND METHODS

Patient samples and sequencing procedures

After receiving informed consent, paired tumour-normal
samples were obtained from 20 patients with clear cell

renal cell carcinoma (ccRCC) by sampling their specimens
during surgical operations. Of the samples obtained, 13
paired tumour-normal samples were used for a perform-
ance evaluation of the mutation detection, and all 20 of
the normal samples were used for estimating the
sequencing errors as non-paired normal reference
samples. In addition, to compare the choice of normal
reference samples, 20 normal samples collected from
patients with paediatric acute myeloid leukemia
(ped-AML) were also used; the informed consent for
these sample collections were obtained from the patients’
parents. This study was approved by the ethics committees
of the University of Tokyo and Gunma Children’s
Medical Center.

Genomic DNA and total RNA were extracted from the
samples using QIAamp DNA Investigator kit (Qiagen)
and the RNAeasy Total RNA kit (Qiagen) with DNase
treatment, respectively, according to the manufacturers’
protocols. For whole-exome sequencing, SureSelect-
enriched exon fragments were subjected to sequencing
using HiSeq 2000, as previously described (8). The
ccRCC samples were sequenced from October 2011 to
February 2012, whereas the ped-AML samples were
sequenced from April 2012 to June 2012. For 10 ccRCC
samples, whole-genome sequencing and RNA sequencing
were performed using HiSeq 2000, according to standard
protocols recommended by Illumina. The mean
sequencing depth for each sample was 65.9–223.0
(Supplementary Table S1 and S2).

Outline of the mutation calling method

The outline of EBCall is shown in Figure 2. The key
concept in EBCall is that sequencing data of multiple
non-paired normal samples are used to estimate possible
sequencing errors at each genomic site. For this purpose,
we modelled the sequencing errors that follow a Beta-
binomial distribution, the parameters of which were
estimated using the sequencing data from multiple
non-paired normal samples (Figure 3). The allele
frequencies of the observed variants in the tumour DNA
were then compared with the inferred sequencing error
distribution at the corresponding genomic positions to
exclude sequencing errors. Germline Single Nucleotide
Polymorphism (SNPs) were eliminated using sequencing
data from the paired normal DNA.

Alignment of sequencing data

The sequencing reads were aligned to NCBI Human
Reference Genome Build 37 using Burrows-Wheeler
Aligner, version 0.5.8 (13) with the default parameter
settings. Polymerase chain reaction (PCR) duplications
were eliminated using Picard (http://picard.sourceforge.
net/). Low-quality reads showing >5 mismatches with
the reference genome or those whose mapping quality
was <30 were excluded from further analysis as we did
in (8).

For RNA sequencing data, a two-step alignment
strategy adopted in Genomon-fusion (under submission)
was used, in which all sequence reads were first aligned
to the known transcript sequences (UCSC known genes)
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using bowtie (14), and the non-aligned reads were then
aligned to the genome sequences using blat (15). For the
whole-genome sequencing data, all reads were aligned
using blat.

Definition of variables

Let V be an entire set of possible nucleotide variations
consisting of combinations of genomic positions and

types of nucleotide changes (e.g. chr1:5, C > A or
chr20:10 000, A>AAG). Because sequencing errors are
often biased to one strand (6,9,16), the number of total
(d ) and variant reads (x) for a given variant, v2V, were
enumerated for each strand separately to distinguish
between short reads aligned with the positive (xa,v,+,
da,v,+) and negative (xa,v,–, da,v,–) strands, respectively,
where a denotes the type of sample, which is either

Figure 2. An illustrative description of the proposed method. For each genomic site, the distribution of sequencing errors is estimated using
non-paired normal samples from patients other than the target. The mismatch ratio of the target tumour sample is then compared with
the distribution. If the mismatch ratio deviates significantly from the distribution, the corresponding variant is then extracted as a somatic
mutation candidate. The target normal sample is used for filtering germline mutations.

Figure 1. Examples of mismatch ratios of other normal samples for mutation candidates with moderate P-values. In both cases, although the
mismatch ratios of the target tumour sample were relatively high, the numbers of corresponding supporting variant reads were small. For the
candidate on the left, the frequencies of non-reference alleles for other normal samples were consistently zero. Therefore, this supports the prediction
that the observed variant reads in the target tumour sample came from a true somatic mutation and not from sequencing errors. On the other hand,
for the candidate on the right, we often observed high frequencies of non-reference alleles for several different normal samples. Therefore, the
observed variant reads in the target tumour sample likely came from sequencing errors, and it was just by chance that there was no variant read in
the target normal sample.
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tumour (T), paired normal (N) or non-paired normal
reference sample (Ri, i ¼ 1, 2, � � � , I).

Evaluation of sequencing errors using a
Beta-binomial model

The number of sequencing errors at a given position in
multiple samples is assumed to follow a binomial distribu-
tion characterized by a pre-determined parameter,
P. Here, we take a Bayesian approach in which the
sequencing error rate is a random variable following
the Beta distribution, a conjugate prior distribution of
the binomial distribution (Figure 3). We adopted a
Bayesian approach for the following two reasons. First,
although we have discussed that the proneness of
sequencing errors is common across multiple experiments
to some extent, subtle differences in various factors such
as reagents and DNA status can influence the sequencing
error rates. Hence, it is inappropriate to assume a homo-
geneous value for the sequencing error parameters for all
experiments. Second, as biological experiments tend to
generate a number of outliers, considerably robust infer-
ence should be performed. Bayesian modelling, which
usually covers a broader range than simple exponential
family distributions, serves this purpose.
Given an observed � 2 �, caused by a sequencing error,

the numbers of variant reads, (xRi, �,�Þ, in both strands in a
normal sample, Ri, are binomially distributed as

xRi, �,� � BinðdRi, �,�, pRi, �,�Þ, ði ¼ 1, � � � , IÞ,

where the sequencing error rate (pRi, �,�Þ follows a Beta
distribution:

pRi, �,� � Betað��,�,��,�Þ:

Under these assumptions, a predictive distribution of
the number of variant reads, called a Beta-binomial
distribution, can be described by the following formula:

PrðxRi, �,�jdRi, �,�,��,�,��,�Þ ¼

�ðdRi, �,�+1Þ

�ðxRi, �,�+1Þ�ðdRi, �,�+xRi, �,�+1Þ

�ðxRi, �,�+��,�Þ�ðdRi, �,� � xRi, �,�+��,�Þ

�ðdRi, �,�+��,�+��,�Þ

�ð��,�+��,�Þ

�ð��,�Þ�ð��,�Þ

,

where � is the Gamma function. Each Beta distribution is
regarded as a prior distribution, and its parameters, ��,±
and ��,±, are estimated from the observed data of
non-paired normal reference samples using a maximum
likelihood method, in which the parameter space was re-
stricted to ��,� ¼> 0:1 to avoid over-fitting:

�̂�,�, �̂�,�

� �
¼ argmax��,� ¼> 0:1X
i¼1, ���, I

log PrðxRi, �,�jdRi, �,�,��,�,��,�Þ
:

EBCall pipeline

In EBCall pipeline, somatic mutations were detected using
three major steps: the exclusion of less informative
variants (step 1) and possible germline variants (step 2),
and the sequencing of errors (step 3).

(i) To reduce the computational burden, only variants
satisfying all the following conditions are tested in
the following steps:
(a) The total numbers of reads at the relevant

position in each strand should be >7 in both
the tumour and paired reference:

dT, � ¼ dT, �,++dT, �,� > 7,

dN, � ¼ dN, �,++dN, �,� > 7;

(b) The mismatch ratio in the tumour sample
should be >0.1:

xT, �=dT, � > 0:1, xT, � ¼ xT, �,++xT, �,�;

(c) The variant should be supported by >3 reads:

xT, � > 3:

(ii) The following are excluded as putative germline
polymorphisms/variants:
(a) Those with a mismatch ratio of >0.02 in the

paired normal sample:

xN, �=dN, � > 0:02, xN, � ¼ xN, �,++xN, �,�;

(b) Those for which the number of observed
variant reads, xN,v, is within the 99% confiden-
tial interval of the expected read number, under
the assumption of a binominal distribution of
Bin(dN,v, 0.5) for dichotomous germline poly-
morphisms; and

Figure 3. A Beta-binomial sequencing error model. First, the error
rate for each sample is generated from the Beta distribution. The
number of short reads with sequencing errors is then generated accord-
ing to the binomial distribution using the parameters of the above error
rate for each sample. The parameters of the Beta distribution,
which determine the shape of the distribution, are given for each
possible variant.
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(c) Those registered in either dbSNP131, the 1000
genomes project, or our internal SNP database.

(iii) For each of the remaining variants, the cumulative
probabilities for the observed xT, �,+ and xT, �,�

under the null hypothesis, H0: the variant is from
sequencing errors, are provided by

P� �ð Þ ¼
X

x�xT, �,�
PrðxjdT, �,�, �̂�,�, �̂�,�Þ:

The combined P-value, P (v), corresponding to two
independent strands, P+ (v) and P� (v), is obtained accord-
ing to Fisher’s method:

P �ð Þ ¼ Prð�24 � P+ �ð Þ+P� �ð ÞÞ,

where �24 is a random variable distributed from the
chi-square distribution with four degrees of freedom. H0

is then tested with a type I error, (=0.001 by default), for
mutation calling. For base substitution mutations, we only
used reads with a base quality of �15 at the corresponding
positions for counting sequencing depths and variant
reads. Each threshold value used above can be changed
according to the purpose.

Evaluation of sequencing error susceptibility among
multiple samples

To examine how many error-prone sites exist and how
much they correlate among different experiments, we
evaluated the sequencing error proneness by using
normal samples of 20 ccRCC and 20 ped-AML patients.
For an accurate evaluation of sequencing errors, we
included only variants whose sequencing depths of
positive and negative strands are >20 for all samples.
Furthermore, we removed putative germline variants sat-
isfying the following conditions at least for one sample:

(i) Sequencing depths are >20;
(ii) The non-reference allele frequency is >0.2; and
(iii) At least one variant read is observed in both

positive and negative strands.

Furthermore, for base substitutions, we only used reads
with a base quality of �15 at the corresponding positions
for counting sequencing depths and variant reads, as
variants with low quality bases are often filtered in
actual mutation callings.

Comparison with other mutation calling methods

We evaluated the performance of EBCall for calling
somatic mutations with moderate allele frequencies
(>0.1) through a comparison with other publically avail-
able methods, along with our own previous approach
(designated as Genomon-Fisher) (8), which is obtained by
replacing step 3 in EBCall with Fisher’s exact test for
measuring the difference in the allele frequencies of the
variants between the tumour and paired normal samples.
The default setting was applied for running both
Genomon-Fisher and VarScan. For SomaticSniper, the -
q 30 -Q 15 option was used. In all cases, low-quality
reads with >5 mismatches or a mapping quality of

<30 were excluded in advance, as mentioned earlier in
the text for EBCall. Furthermore, the same filtering pro-
cedures as the step 1 and 2 in EBCall were applied to all
the method to equalize the conditions of sequencing
depths and allele frequencies. For the comparison,
somatic mutations were detected for whole-exome
sequencing data from 10 clear cell carcinoma samples,
for which a set of true positive mutations, �, was
defined using whole genome/RNA sequencing data as
follows:

� ¼ f� 2 �jdNG, � � 8, xNG, �=dNG, �

� 0:03, nNG, � � 1g \ff� 2 �jnTG, � � 4, xTG, �=dTG, �

� 0:08g [f� 2 �jxTR, � � 4, xTR, �=dTR, � � 0:08gg

,

where NG and TG/TR denote whole genome/RNA
sequencing data from normal and tumour samples,
respectively. Herein, we did not count mutation candidates
that do not satisfy dNG, � � 8 for either true or false positives,
as they may be germline mutations. Mutations in
non-coding regions excluding splice-sites were removed,
where the gene annotations were performed using
ANNOVAR (17). In addition, as SomaticSniper does not
call InDels, we mainly concentrated substitutions for this
comparison.

Validation of somatic mutations with low allele
frequencies (<0.1)

We evaluated the performance of EBCall for calling somatic
mutations with low allele frequencies (�0.1) by changing the
threshold value for the mismatch ratio in the tumour sample
to xT, �=dT, � > 0:02. For somatic mutations with low allele
frequencies to be accurately called, we further imposed that
a somatic mutation satisfy – log10(p

Fisher)> 0.8, where pFisher

is the P-value in Fisher’s exact test. Furthermore, we
stipulated that the number of read pairs with the variant is
greater than 3 so as to avoid double counting of a variant
located in both the two reads of single read pair with a small
insert size. Herein, we included all the mutations including
those in the non-coding regions to increase the number of
mutations from various clonal populations. All candidate
somatic mutations were validated by deep sequencings of the
PCR products of the relevant loci using HiSeq 2000, as
previously described (8). A candidate variant is thought to
be validated if and only if all the following conditions are
satisfied:

(i) The sequencing depth is >5000 for both positive
and negative strands;

(ii) The mismatch ratio in the paired normal samples is
<0.5%; and

(iii) The mismatch ratio in the tumour sample is 5 times
larger than that of the normal sample.

To compare the performances of EBCall and
Genomon-Fisher, we also validated several candidates
that were not called from EBCall but were called
from Genomon-Fisher from the top in terms of the
P-values.
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RESULTS

Susceptibility to sequencing errors

The distribution of mean sequencing error rates is shown
in Figure 4. Although the error rates were calculated using
high-quality sequencing reads (with a mapping quality of
�30) and high-quality bases (with a base quality of�15) for
substitution errors, there were many sites with relatively
high sequencing error rates, indicating the existence of
many sequencing error-prone sites. The higher rate of
sequencing errors causes the more harm. When both the
tumour and normal samples have a 2% sequencing error
rate, the probability that theP-value of Fisher’s exact test is
below 0.05 is �0.5% for the positions with a sequencing
depth of 80 for tumour and normal samples. On the other
hand, when the sequencing error rate is 5%, this probabil-
ity increases to �2.2%. As there are 2582 sites with >2%
mean sequencing error rate, we will obtain at least 13 false
positives at the same threshold for data with a mean
sequencing depth of 80. Furthermore, a subtle difference
in the sequencing error rates between the tumour and
normal samples caused by inconsistencies in the experimen-
tal conditions will generate an even higher rate of false
positives under real situations. Although not a small pro-
portion of sequencing errors was strand specific, there were
still many variants prone to bi-directional sequencing
errors (Supplementary Figure S1).
We next examined the consistency of sequencing error

rates across different sets of samples (Figure 5). The
sequencing error rates were highly correlated between
the two sets of 10 ccRCC samples. The sequencing error
rates were less consistent between the sets of 10 ccRCC
samples and 10 ped-AML samples, indicating that it is
better to use normal samples collected under conditions
as similar as possible to predict sequencing errors. The
correlations for InDels were stronger compared with the
base substitutions, implying that the sequencing errors
found in InDels are more systematic.

Performance comparison with other algorithms for
moderate allele frequencies

To compare the performance of different mutation calling
algorithms, we first sorted the candidate mutations ac-
cording to the accompanying confidence score for each
method (the combined P-value for EBCall, the P-value
of Fisher’s exact test for Genomon-Fisher and VarScan 2
and a somatic score for SomaticSniper) and checked the
relationships between the number of candidates and the
number of true positives (Figure 6). For mutations with
high confidence values, there was no clear difference
among the different calling methods used. However, for
low confidence values (i.e. after the 500th confident
mutation), EBCall showed higher true positive results
than the other methods, as indicated by the upward devi-
ation of the plot in Figure 6. The true positive rates
(TPR) of SomaticSniper decreased more rapidly than
those of other methods, whereas VarScan 2 and
Genomon-Fisher show comparable plots probably
reflecting the fact that both methods are based on
Fisher’s exact test. For InDels, EBCall showed at least
similar efficiency to VarScan 2 and Genomon-Fisher
(Supplementary Figure S2).

When using 20 ped-AML normal samples as non-paired
normal reference samples, the performance of EBCall
slightly worsened, which is reasonable considering the
lower correlation of sequencing errors between the
ccRCC samples and ped-AML samples. However, the
TPR was still higher than in the other existing approaches,
indicating that the proposed approach is robust to the
choice of normal reference samples to a certain extent.
To examine the required number of normal reference
samples, the performance of EBCall for different
numbers of normal reference samples was measured. As
shown in Supplementary Figure S3, it took 15–17 samples
for a performance saturation for both the ccRCC and
ped-AML reference samples.

Figure 4. Two bar plots showing the numbers of base substitutions and InDels, whose mean mismatch ratios are above the determined threshold
values. For instance, the numbers of base substitutions with mean mismatch ratios of more than 0.01, 0.02, and 0.05 are 4472, 2232, and 727,
respectively, while those of InDels are 717, 350, and 89, respectively.
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Next, we investigated the sample-wise sensitivity of each
method, in which the threshold value for each method was
determined under false positive rates of 0.05, (i.e.
6.54� 10�4 for EBCall, 1.97� 10�3 for VarScan, 60
for SomaticSniper and 5.85� 10�3 for Genomon-Fisher).
As shown in Supplementary Figure S4, EBCall generally
outperformed the other calling methods (P< 0.0074,
Mann–Whitney U test). The improvement in sensitivity
varied among the samples may depend on the difference
in the mean coverage of the sequencing and tumour
contents.

As shown in Figure 7, EBCall detected 51 more
mutations with six fewer false positives at the cost of
nine more false positives as compared with Genomon-
Fisher. Most of the mutations captured only by EBCall
showed low sequencing depths or low allele frequencies.
Furthermore, EBCall detected a number of mutations
whose P-value based on Fisher’s exact test is moderate
(0.1–0.01), maintaining a TPR of 95%. Many candidates
with low P-values showed high mean mismatch ratios in

other normal samples. These were generally considered to
be false positives resulting from sequencing errors that
were specific to the target tumour samples at sequencing
error-prone sites. To avoid these false positives and
maintain a high TPR, a high threshold value had to be
set for Genomon-Fisher. On the other hand, EBCall effect-
ively removed most of these false positives and recovered a
number of true somatic mutations. Furthermore, we
tested EBCall by changing the threshold values for base
qualities and mapping qualities and confirmed that the
efficiency our method is robust against different parameter
values (Supplementary Figure S5).
The processing time of EBCall for one sample was

6.5–9.7 h using single core CPU, Intel Quad Core Xeon
E5450, 3.0GHz), whereas those of VarScan 2, and
SomaticSniper were 3.2–6.6 h and 0.7–1.1 h, respectively.

Detection of mutations with low allele frequencies

In total, 557 candidate somatic mutations were called from
three tumour samples (RCC31, RCC88 and RCC102) by

Figure 5. A comparison of scatter plots of the mean mismatch ratios of the base substitution and InDels for two sets consisting of 10 ccRCC normal
samples each (upper), and 10 ccRCC normal samples and 10 ped-AML normal samples (lower). The correlation coefficients are 0.777, 0.723, 0.943
and 0.917 for the upper-left, lower-left, upper-right and lower-right panels, respectively.
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EBCall with an additional constraint for the Fisher’s
P-values (see ‘Materials and Methods’ section). Among
these, 395 were evaluable by deep sequencing, of which
349 were successfully confirmed as true mutations. The re-
maining 162 candidates were not evaluable in deep
sequencing owing to either a failure in the design of the
PCR primers or low sequencing depths (<5000) for either

positive or negative strands. Therefore, they were excluded
from the calculation of the true and false positives rates.

As shown in Table 1, high TPRs were obtained for can-
didates with high apparent allele frequencies (>10%): 100,
99.1 and 94.6% for RCC31, RCC88 and RCC102, respect-
ively. For mutations with lower allele frequencies (<10%),
TPRs were lower but still showed relatively high values of
79.3, 88.0 and 59.0% for RCC31, RCC88 and RCC102,
respectively. Among the 10 candidates called by only
Genomon-Fisher, only one was successfully validated.

Next, we investigated the causes of false positive results in
RCC102. We found that many false positive candidates
were supported by reads that were aligned more consistently
with the transcriptome than with the genome sequence
(Supplementary Figure S6), indicating that small amounts
of RNA may have contaminated the exome sequencing
library in RCC102, resulting in the calling of several false
positives owing to the existence of ambiguous alignments.
These false positives were successfully eliminated without
affecting the sensitivities by filtering those candidates that
have other mutations within 300bp from the mutation site,
through which the TPR increased to 83.6% (Table 2). As the
allele frequencies for this kind of false positive were mostly
below 10%, RNA contamination may have been problem-
atic only when calling mutations with a low allele frequency.

Finally, the distribution of allele frequencies calculated
in deep sequencing for each sample is plotted in Figure 8.
The histogram clearly shows the presence of minor
tumour subpopulations of cancer cells with <10%
allele frequencies in each sample, suggesting that the sen-
sitive detection of somatic mutations with low allele
frequencies is effective in capturing intratumoural
heterogeneity.

Figure 7. (Left) The comparative results between EBCall and Genomon-Fisher. Each point, in which the sequencing depth and variant allele
frequency are indicated, shows the candidate somatic mutations called by both or either of the two methods. The threshold values are determined
such that the false positive rates are 0.05. The green and red points show true positive mutations called by both of the two methods, and only
EBCall, respectively. The yellow, cyan and magenta points show false positive mutations called by both of the two methods, only EBCall, and only
Genomon-Fisher, respectively. The numbers of green, red, yellow, cyan and magenta points are 506, 51, 20, 9 and 6, respectively. There are no true
positive mutations called by Genomon-Fisher exclusively. (Right) The P-values of Fisher’s exact test and the mean mismatch ratio of 20 ccRCC
normal samples are plotted. The red and blue points show true positive mutations called and not called by EBCall, respectively. On the other hand,
the cyan and magenta points show false positive mutations called and not called by EBCall, respectively. The yellow vertical line shows the threshold
value of the Genomon-Fisher determined with false positive rates of 0.05.

Figure 6. Comparative performance for EBCall (20 ccRCC or
ped-AML normal samples used as normal reference sets),
Genomon-Fisher, VarScan 2 and SomaticSniper. The horizontal and
vertical axes show the number of candidate somatic mutations and
true positives (when changing the threshold of the confidence score
for each method) verified by whole genome and whole transcriptome
data, respectively.
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DISCUSSION

In this article, we have proposed a novel statistical frame-
work, EBCall, for detecting somatic mutations using a
massively parallel sequencing of the cancer genome. The
concept of using data from multiple samples to eliminate
sequencing errors is not completely new, but it has been
adopted in previous studies (10,16) to discriminate true

somatic mutations from errors in the targeted sequencing
of much smaller regions. However, most of these
approaches filter out somatic mutations with approxi-
mately the same common non-reference allele frequencies
among multiple tumour samples by regarding them as
common sequencing errors. Our approach, on the other
hand, uses multiple non-paired normal samples to expli-
citly estimate the distribution of sequencing errors.
Furthermore, we extended this approach to much larger
genomic regions (�50Mb) and accomplished accurate
mutation calling from whole-exome sequencing. EBCall
was not only superior to several existing methods for
somatic mutations with moderate-to-high allele freq-
uencies but also effectively detected somatic mutations
with low allele frequencies of <10%, which helps in the
identification of a clonal architecture within a cancer
population. The fact that EBCall was robust to the
choice of normal reference samples implies that we could
improve the accuracy of mutation calling just by using
normal samples available in a regular project. Although
we confined its application to exome sequencing data in
this article, we expect that our approach can improve the
accuracy in whole-genome sequencing data with moderate
sequencing depths.
A simpler approach for the empirical elimination of

sequencing errors would be to identify error-prone
genomic positions that satisfy an arbitrary set of criteria
(e.g. a 2% mismatch ratio for �3 samples among groups
of 20 normal samples) and exclude all variants at these
positions. However, as the number of sequencing errors
has a long-tailed distribution, setting a threshold value for
extracting a set of sequencing error prone sites is not a
trivial task. The use of overly strict criteria may not
remove false positives effectively. On the other hand,
when we filter too broad a range of error prone sites, we
may miss some true somatic mutations, even when their
allele frequencies are considerably higher than the slightly
elevated sequencing error rate at that position. Our
approach is more flexible in discriminating true mutations
from errors because it relies on a rigorous statistical
model.
Another approach is to eliminate sequencing errors

based on knowledge of the error-prone sequencing
features, such as a homo-polymer sequence and specific
sequence motifs (11,12). These features can be used to
eliminate more sequencing errors and achieve further im-
provements in accuracy. However, the prediction of
error-prone features may not be exhaustively identified
or uniformly applied to real sequencing data, regardless
of the experimental conditions.
As discussed previously, an understanding of the

intratumoural architecture of gene mutations provides
an important insight into the clonal evolution of tumour
cells, in which the detection of mutations with low allele
frequencies is of critical importance. A recent study ele-
gantly approached this issue using deep sequencing (�200)
of the whole genome in a breast cancer sample (5). Whole-
genome deep sequencing is a powerful approach for
detecting sufficient numbers of somatic mutations and
reliably identifying tumour subclones. However, the cost
of whole-genome deep sequencing for multiple samples

Figure 8. Histograms of the allele frequencies of validated mutations
for RCC31 (left), RCC88 (centre) and RCC102 (right).

Table 2. The numbers of true and false positives for mutations with

low (above 2% and below 10%) allele frequencies

Sample RCC31 RCC88 RCC102 RCC102
(filtered)

No. of true positives 23 22 46 46
No. of false positives 6 3 32 9

Table 1. The numbers of true and false positives for mutations with

moderate (above 10%) allele frequencies

Sample RCC31 RCC88 RCC102 RCC102
(filtered)

No. of true positives 78 109 71 69
No. of false positives 0 1 4 1
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remains expensive. Alternatively, with improved detection
of low allele frequency mutations, sequencing data
from more targeted regions, such as a whole exome, at a
similar depth (e.g. 150–300) can provide an opportunity
to capture a sufficient number of repertories of gene
mutations within the coding sequences and disclose fine
clonal architectures of mutations for multiple samples at
acceptable costs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2, and Supplementary
Figures 1–6.
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