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Objectives. To characterize the trajectories of laboratory- and real world-based speed of processing (SOP) over 5 years 
using finite latent growth mixture modeling, and to explore associated baseline individual-level predictors and functional 
outcomes in 2,802 community-dwelling older adults from the Advanced Cognitive Training for Independent and Vital 
Elderly cohort.

Method. Laboratory- and real world-based SOP and functional outcomes were assessed over 5 years, and candidate 
individual-level predictors were collected at baseline.

Results. After controlling for intervention assignment and demographic information, 4 distinct trajectories were iden-
tified: 4.6% of older adults had poor laboratory-based SOP and very poor real world-based SOP that both declined sub-
stantially over time; 17.9% had poor laboratory- and real world-based SOP that declined moderately; 38.7% had neutral 
laboratory- and real world-based SOP that maintained stable; and 37.9% had good laboratory- and real world-based SOP 
that declined slightly. Non-White, depression, subjective memory complaints, and vascular factors predicted the trajecto-
ries. The trajectories significantly differed in the rate of decline in basic activities of daily living, instrumental activities 
of daily living, and grip strength over time.

Discussion. Heterogeneous trajectories of SOP exist in old age. Future interventions addressing SOP should target the 
vulnerable group with poor SOP over time.
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Background
Speed of processing (SOP), defined as “the rate at which 
information, once made available to the senses, is processed 
and understood at the cognitive level,” is a fundamental 
brain process related to temporary information manipula-
tion (Ball & Vance, 2007; Salthouse, 1996). SOP is also a 
sentinel brain function and among the first cognitive abili-
ties to decline in normal aging as well as in many health 
conditions, such as neurodegenerative diseases, psychiatric 
disorders, and vascular diseases (Awad, Gagnon, & Messier, 
2004; Ball, Edwards, & Ross, 2007; Twamley, Ropacki, & 
Bondi, 2006). According to a recent review, SOP reflects 
the integrity of multiple neural networks involved in most 
higher-order cognitive functions (e.g., memory, reasoning, 
and language; Eckert, 2011). Despite the pervasiveness of 
decline in SOP, the rate of decline in SOP highly varies 
across individuals. Some individuals experience only subtle 
declines in SOP, which do not interfere with daily activi-
ties, whereas other individuals show substantial decline in 
SOP, which significantly affects daily activities and may 
even herald progression to dementia (Han et  al., 2011; 
Sylvain-Roy, Bherer, & Belleville, 2011). To understand the 

heterogeneity of SOP decline with age, the type and trajec-
tory of SOP need to be examined at the individual level.

Most experimental assessments of cognitive abilities 
take place in the laboratory, an environment that allows for 
strict control of experimental conditions and is hoped to 
produce more reliable assessments of the constructs being 
examined. Similarly, SOP has traditionally been evaluated 
using laboratory-based tests in which the time and accuracy 
of performance on some repeated and abstract tasks are 
recorded, such as Useful Field of View (UFOV; Owsley, 
Ball, Sloane, Roenker, & Bruni, 1991), or a trail making test 
called the Connections Test (Salthouse et  al., 2000). These 
tasks emphasize rapid processing of visual stimuli. However, 
processing speed is not a unitary construct; it relies on the 
dynamic coordination of multiple neural systems (Eckert, 
2011). Laboratory-based SOP tests often fail to capture 
the complex operations involved in performing different 
real-world everyday tasks. For example, driving requires 
one to rapidly process different visual stimuli in order to 
navigate and operate the vehicle safely, whereas grocery 
shopping places different demands on flexible processing 
of simultaneous verbal and spatial stimuli. Assessments that 
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directly reflect real world-based demands on processing speed 
can enhance the clinical significance of SOP assessment. More 
recently, ecologically validated cognitive tests, such as Road 
Sign Test (Ball, Beard, Roenker, Miller, & Griggs, 2000), and 
timed instrumental activities of daily living (TIADL; Owsley, 
Sloane, McGwin, & Ball, 2002), have been developed to 
assess SOP involved in everyday tasks (driving, grocery 
shopping, managing medication, etc.). SOP assessed in more 
traditional laboratory-based tasks may not be equivalent to 
SOP assessed in more ecologically valid real-world tasks given 
the different types and numbers of neural systems involved 
(Kliegel, Martin, McDaniel, & Phillips, 2007). Accordingly, 
dissociable patterns of laboratory- and real world-based SOP 
may predict dissociable functional outcomes.

On the other hand, SOP performance assessed using 
laboratory- and real world-based measures may not always 
show similar unidirectional decline in terms of longitudi-
nal trajectory (Owsley, McGwin, Sloane, Stalvey, & Wells, 
2001). Recent studies suggest that older adults who have 
substantial decline as measured by real-world SOP tasks 
often have functional decline in activities of daily living and 
may be at risk for dementia, whereas those with poor SOP 
based on laboratory assessments do not have the same func-
tional decline and are at less risk of developing dementia 
(Koehler et al., 2012; Sternang, Wahlin, & Nilsson, 2008). 
These findings underscore the heterogeneity of SOP decline 
at the individual level and the notion that laboratory-based 
and real world-based assessment of SOP may differ with 
respect to functional outcomes and risk for dementia.

The use of growth mixture modeling (GMM) in lon-
gitudinal cognitive aging research emphasizes interindi-
vidual differences in intraindividual change (Hagenaars 
& McCutcheon, 2002). However, the traditional GMM 
approaches can only examine the trajectory of one dimen-
sion of cognitive domain, such as laboratory-based SOP. 
As stated, SOP is a multidimensional phenomenon that 
includes heterogeneous patterns of laboratory- and real 
world-based SOP. A  common alternative using the tra-
ditional GMM is to combine the laboratory- and real 
world-based SOP (by using a composite score) into one 
variable of SOP. However, such approach may still obscure 
important patterns of SOP. For example, it would be hard 
to distinguish moderate impairments of laboratory- and 
real world-based SOP (indicating potential mild cognitive 
impairment) from relatively low level of laboratory-based 
SOP but high-level real world-based SOP (indicating 
normal aging process). Moreover, laboratory- and real 
world-based SOP may change in different rates. In the 
current study, a relatively new approach of GMM, called 
“finite mixture model,” was applied to model the growth 
heterogeneity of laboratory- and real world-based SOP. 
This approach identifies discrete classes by adding a latent 
categorical variable where each latent class has its own 
model of growth. The unreliability of classification and 
within-class  variance and covariance is taken account to 

estimate the probability of membership in each class for 
each individual (Muthen & Shedden, 1999).

Further, the change of cognitive abilities can be viewed 
as the result of an individual’s genetic, behavioral, and envi-
ronmental characteristics that are combined to promote or 
suppress brain or neural plasticity, in addition to the influ-
ence of two major demographic factors—age and education 
(Daffner, 2011). Different trajectories of laboratory- and 
real world-based SOP may reflect the distinct contributions 
of underlying pathology as well as psychological and behav-
ioral changes. Because SOP trainings have successfully 
improved or maintained laboratory- and real world-based 
SOP abilities in the general elderly population (Ball et al., 
2002), to determine the group that is most vulnerable to the 
SOP decline will orient future SOP training to more dedi-
cated targeted population given the cost-effectiveness con-
sideration. Further, older adults with different patterns of 
laboratory- and real world-based SOP may experience dif-
ferent functional outcomes, which have not been explored.

There were three specific aims in this study: (a) to char-
acterize the trajectories of laboratory- and real world-based 
SOP over 5 years using latent class modeling; (b) to explore 
the baseline individual-level profile that can predict the tra-
jectories; and (c) to compare the changes of functional out-
comes over time by the trajectories.

Method

Design
A secondary data analysis was performed using data collected 
from the Advanced Cognitive Training for Independent and 
Vital Elderly (ACTIVE) trial (Ball et al., 2002). The ACTIVE 
trial is a prospective, randomized, controlled trial designed 
to evaluate three types of cognitive training intervention 
on cognitive abilities in community-dwelling older adults. 
The ACTIVE trial enrolled 2,832 community-dwelling 
older adults (>65  years old at baseline) without dementia 
(as screened using Mini-Mental State Examination ≥ 23). 
Participants were excluded from the study if they had 
substantial decline in basic activities of daily living (BADL) 
function, certain life-threatening medical conditions (e.g., 
cancer), or severe sensory loss or communicative problem at 
baseline. Participants were recruited from six metropolitan 
areas in the United States. The recruitment strategies for 
each site differed and details on these and other aspects of 
the ACTIVE trial are available elsewhere (Jobe et al., 2001). 
A sample of 2,802 participants were randomized to one of the 
three cognitive training groups or a no-contact control group 
and were included in this secondary analysis. The training 
interventions consisted of memory training, reasoning 
training, and SOP training. There were 10 original training 
sessions. A subset of participants in the three training groups 
also attended four booster training sessions 11 and 35 months 
after the original training sessions. Institution-specific 
institutional review boards approved the ACTIVE protocol 
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and consent was obtained for each participant prior to 
participation. Latent class modeling allowed us to utilize the 
whole sample from the ACTIVE trial in the analysis because 
variables related to intervention assignment (i.e., group 
assignment, attendance of booster sessions, and recruitment 
site) were controlled in the analysis.

Measurement
Laboratory- and real world-based SOP measures were 
administered at baseline, and at 1-, 2-, 3-, and 5-year 
follow-up visits per the ACTIVE protocol (Willis et  al., 
2006). The data collection did not occur at 4-year follow-up. 
Laboratory-based SOP was measured using the UFOV 
(Owsley et al., 1991), a computerized measure of visual pro-
cessing speed and attention. This test requires the participant 
to respond via button press to visual stimuli presented on 
a computer monitor. Reaction times for responses to four 
increasingly complex subtests were recorded. For each sub-
test, a double staircase method was used to determine the 
optimal presentation speed in which participants correctly 
complete the task 75% of the time. The optimal presentation 
speed for all four subtests was combined; fewer milliseconds 
to correctly perceive the target reflected a faster visual SOP.

A more ecologically valid approach to real world-based 
SOP assessment involved two timed tasks: The Road Sign 
Test (Ball et al., 2000) and the TIADL (Owsley et al., 2002). 
The tasks simulate the speed required by stimuli relevant 
to real-world activities of daily living. The Road Sign Test 
included 12 computerized test trials. Each trial required 
rapid processing of visual information from road signs with 
and without red slashes displayed in computer screening. 
Participants were instructed to ignore the signs with red 
slashes and to react to the signs without red slashes. For 
bicycle or pedestrian signs without a red slash, participants 
were required to click one of the mouse buttons as quickly 
as possible, whereas for the left or right turn arrow signs 
without a red slash, participants were required to move the 
mouse in the direction that the arrow pointed as quickly 
as possible. TIADL measured the speed and accuracy of 
performance on five everyday tasks. Interviewers pro-
vided standardized instruction about how to complete each 
task using stimulus materials. For each task, there was a 
required completion time in seconds (recorded using a stop-
watch) and an error code. Z-transformation was performed 
on laboratory-based SOP. A  composite score for the real 
world-based SOP was calculated using the mean and stand-
ard deviation of the original sample (n = 2,802) in the fol-
lowing procedure: Z-transformation was firstly performed 
on the raw score of each test, and then the mean score 
(composite score) of Z-scores of those tests was calculated. 
Higher composite scores indicated poorer levels of perfor-
mance on each SOP measure. The Z-scores for laboratory- 
and real world-based SOP tasks allowed comparison of the 
two types of SOP.

Individual-level predictors of SOP performance included 
race, depression, subjective memory complaints, and his-
tory of vascular health. All data were collected at baseline. 
Race was collected by self-report, and categorized into 
White versus other racial groups. Depression was measured 
by 12 items from the Center for Epidemiological Studies 
Depression (CES-D) scale (Radloff, 1977), a widely applied 
psychometric instrument for assessing depression. A  sum 
score was computed with higher scores indicating higher 
levels of depression. Internal consistency for this measure 
was 0.80 in this study. Subjective memory complaints were 
measured using 19 items from five domains of the Memory 
Functioning Questionnaire. Mean scores of items belong-
ing to the same domain were calculated, and the mean of all 
mean scores from each domain was calculated with higher 
scores indicating lower levels of subjective memory com-
plaints. The Memory Functioning Questionnaire has shown 
high internal consistency (0.83–0.94) and concurrent valid-
ity with standardized laboratory memory tests in elderly 
samples (Zelinski, Gilewski, & Anthony-Bergstone, 1990). 
In this study, internal consistency ranged from 0.86 to 0.91 
across domains. History of vascular health included history 
of vascular diseases and cardiovascular disease risk factors 
(CVDRFs). History of heart disease, congestive heart fail-
ure (CHF), and stroke were collected using a single ques-
tion “Has a doctor or a nurse ever told you that you have 
(heart disease, CHF, or stroke)?” Smoking was identified by 
a single question: “Do you smoke now?” Presence of other 
CVDRFs was obtained using the question: “Has a doctor or 
a nurse ever told you that you have (hypertension, diabetes, 
or high cholesterol)?” Data on height and weight were used 
in calculating body-mass index (BMI), and obesity was 
identified using BMI ≥ 30 kg/m2.

Functional outcomes included BADL, instrumental 
activities of daily living (IADL), grip strength, and two 
domains of health-related quality of life (HRQOL), physi-
cal and mental functioning. Self-report BADL and IADL 
were measured by items from the Minimum Data Set-Home 
Care interview at baseline, 1-, 2-, 3-, and 5-year follow-up. 
BADL performance was assessed with questions such as, 
“In the last 7 days, how much of the activity (e.g., combing/
brushing hair) did you do on your own?” using a response 
scale from 1 (independent) to 5 (total dependence). IADL 
performance was assessed with questions involving seven 
activities (e.g., planning meals, handling money and 
checks, and keeping track of doctor appointments) using 
a scale from 1 (did all on own) to 4 (fully performed by 
others). Sum scores of items from BADL and IADL were 
computed, respectively, with higher scores indicating lower 
levels of BADL or IADL functioning. Grip strength was 
included as a measure of general physical robustness and 
was assessed using a dynamometer (Lafayette Instruments, 
Layfayette, IN) at baseline, 3-year, and 5-year follow-up. 
Participants were allowed to make their maximal effort 
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with the dominant hand as instructed in the trial. One min-
ute of rest was taken between two trials. The mean of the 
scores from the two trials were computed. Higher scores 
indicated greater grip strength. Participants who had recent 
worsening of pain or of arthritis in their wrists, tendoni-
tis, or surgery on their hands or arms within past 3 months 
were waived from the grip strength test. Two domains of 
HRQOL, physical and mental functioning were meas-
ured by the Physical and Mental Component Summary 
Score from the Medical Outcomes Study SF-36 version 
1, a widely used valid and reliable measure in older adults 
(McHorney, Ware, & Raczek, 1993; Ware, 2000; Ware & 
Sherbourne, 1992). Data were collected at baseline, 3-year, 
and 5-year follow-up. The two summary component scores 
were calculated by an algorithm and results in standardized 
scores ranging from 0 to 100 with higher scores indicating a 
higher level of functioning (McHorney et al., 1993).

Participant’s age, sex, and years of education were also 
collected at baseline. Each participant’s codes on group 
assignment (one of three training groups or control group), 
attendance of booster sessions, and recruitment sites were 
also identified. All these variables were controlled in the 
latent class modeling.

Data Analysis
Latent class analysis was conducted using R, whereas 
all other analyses were conducted using IBM SPSS 
19.0. Before conducting latent class analysis, correlation 
between laboratory- and real world-based SOP measures 
at each visit was calculated using linear regression model 
taking real world-based SOP as the dependent variable and 
laboratory-based SOP as the predictor. Age, gender, years 
of education, group assignment, attendance of booster ses-
sions, and recruitment site were controlled. If the two types 
of SOP were highly correlated, the advantage of finite mix-
ture model would be less impactful.

Step 1: Bivariate latent class analysis. Data on laboratory- 
and real world-based SOP measures were jointly modeled as 
a bivariate GMM using the finite mixture method developed 
by Leisch (2004) and implemented in R package “FlexMix.” 
Age, gender, years of education, group assignment, attend-
ance of booster sessions, and recruitment site were con-
trolled for longitudinal performance of SOP measures in 
the modeling analysis. The researchers did not control these 
covariates for the class designation, which might interfere 
with the understanding of the natural course of SOP in old 
age, and might accidently assign participants who attended 
SOP training during ACTIVE trial into the same class. The 
choice of best fitting model was based on the following cri-
teria: the Akaike Information criterion (AIC), the Bayesian 
Information criterion (BIC), and the negative Log-likelihood. 
With the selected best model, the posterior probabilities are 
used to segment data from participants to the classes with 
maximum posterior probability. Each class should have more 

than 1% of the total sample (Jung & Wickrama, 2008). As 
an additional analysis for the association between the covari-
ates (i.e., age, gender, years of education, group assignment, 
attendance of booster sessions, and recruitment site) and the 
class, analysis of variance was applied to compare the contin-
uous covariates by the class, and chi-square test was applied 
to compare the categorical covariates by the class.

Step 2: Predictors of class membership were determined 
using a multinomial logistic regression model. The variable 
of four latent classes emerged in Step 1 was taken as the 
dependent variable using class 4 (i.e., the least impaired 
group) as the referent group and potential predictors (race, 
depression, subjective memory complaints, and history of 
vascular health) as independent variables.

Step 3: Changes of functional outcomes over time by 
latent class were examined using a series of generalized 
estimating equations (GEE) with unstructured working cor-
relation matrix (Zeger, Liang, & Albert, 1988). The four 
latent classes were considered as a categorical variable tak-
ing class 4 (i.e., the least impaired group) as the referent 
group and time considered as a continuous variable in the 
GEE models. Each health outcome was used as a dependent 
variable, and latent class, time, and an interaction between 
latent class and time were included as predictors. Any sig-
nificant main effects of latent class would indicate a dif-
ference in health outcomes across different latent classes, 
whereas a significant interaction term involving time would 
indicate different rates of change in health outcome over 
time as a function of the latent class.

Results
As shown in Table 1, participants at baseline were on aver-
age 73.6 years old and were predominately White (72.4%) 
and women (75.9%). For the rest of the 27.6% non-White 
participants, the majority was Black or African American 
(26.0%). The average years of education were 13.5.

Correlation Between Laboratory- and Real 
World-Based SOP
After controlling for age, gender, years of education, group 
assignment, attendance of booster sessions, and recruitment 
site, only 10%–16% of variances in real world-based SOP 
were explained by the laboratory-based SOP across visit 
(all p < .001).

Trajectories of Laboratory- and Real World-Based SOP
The most parsimonious model (one-class  model) was 
followed by sequentially increasing the number of latent 
classes up to five latent classes. After controlling for age, 
gender, years of education, group assignment, booster 
sessions, and recruitment site, the four-class bivariate latent 
class  model demonstrated the best fit as indicated by the 
lowest AIC, BIC, and negative Log-likelihood (Table 2).
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Table 3 shows the intercepts and slopes of laboratory- and 
real world-based SOP performance in each class. Figure 1 
shows the trajectories of the four classes based on two types 
of SOP (laboratory- and real world-based). Participants in 
class 1 (4.6% of participants, n = 128) had the worst SOP 
performance of the four classes at baseline, and the level 
of real world-based SOP was worse than the laboratory-
based SOP. In this class, both types of SOP declined fast-
est over time among the four classes, and real world-based 
SOP declined even faster than laboratory-based SOP (lab-
oratory-based SOP: I  =  1.00, S  =  0.13; real world-based 
SOP: I  =  2.20, S  =  0.22). Participants in class 2 (17.9% 

of participants, n = 501) had similar poor levels of SOP at 
baseline. Both types of SOP declined moderately over time 
(laboratory-based SOP: I = 0.64, S = 0.06; real world-based 
SOP: I = 0.69, S = 0.04). Participants in class 3 (38.7% of 
participants, n = 1,084) had relatively neutral levels of SOP 
at baseline, which were close to zero. Both types of SOP 
stayed relatively stable or declined very slightly over time 
(laboratory-based SOP: I = 0.06, S = 0.02; real world-based 
SOP: I = −0.03, S = 0.01). Participants in class 4 (37.9% of 
participants, n = 1,062) had comparable positive levels of 
SOP at baseline. Both types of SOP declined very slightly 
over time (laboratory-based SOP: I = −0.47, S = 0.01; real 
world-based SOP: I = −0.52, S = 0.02). In addition, 27 par-
ticipants (<1%) whose data on SOP measures were missing 
were excluded from the analysis.

The comparison of covariates by the class is presented in 
the supplementary data. Age, years of education, and recruit-
ment site, but not gender, group assignment, or attendance of 
booster sessions, significantly differed by the class.

Individual-Level Predictors of Membership in 
Latent Class
At least 97.3% of the data on potential predictors were 
available. Table  4 shows the individual predictors of 
membership in each latent class using multinomial logistic 
regression with class 4 as the referent group. Compared 
with non-White, White participants were less likely to be 
in classes 1, 2, and 3 than to be in class 4. Every one unit 
increase in the score of depression (i.e., more depressive 
symptoms) would increase the participant’s likelihood of 
being in classes 1, 2, and 3 than being in class 4. Every one 
unit decrease in the score of subjective memory complaint 
(i.e., more memory complaint) would increase the 
participant’s likelihood of being in classes 1, 2, and 3 than 
being in class 4. Compared with those without any history 
of vascular disease or CVDRFs, participants having heart 
disease, CHF, stroke, and diabetes were more likely to be in 
classes 1, 2, or/and 3 than to be in class 4. On the contrary, 
obese participants and those with hypercholesterolemia 
were less likely to be in classes 1 and 2 than to be in class 4.

Table 1. Baseline Demographic and Health Characteristics 
(N = 2,802)

Age, mean (SD) 73.63 (5.91)
Men, n (%) 676 (24.1%)
White, n (%) 2,028 (72.4%)
Years of education, mean (SD) 13.53 (2.70)
Depression, mean (SD) 5.02 (5.28)
Subjective memory complaint, mean 
(SD)

4.64 (0.91)

History of vascular health, n (%)

  Heart disease 421 (15.0%)

  CHF 138 (4.9%)

  Stroke 195 (7.0%)

  Smoke 208 (7.4%)

  Obesity 1,114 (39.8%)

  Hypertension 1,428 (51.0%)

  Diabetes 358 (12.8%)

  Hypercholesterolemia 1,226 (43.8%)

Notes. CHF = congestive heart failure; SD = standard deviation.

Table 2. Model Fit for the Class

Model fit 
indicators

One-class  
model

Two-class  
model

Three-class  
model

Four-class  
model

Five-class  
model

AIC 36895.91 27992.58 26328.11 25839.57 26327.70
BIC 37156.26 28520.51 27123.63 26902.67 27123.22
Negative 
Log-likelihood

18411.96 13923.29 13054.05 12772.78 13053.85

Notes. AIC = Akaike Information criterion; BIC = Bayesian Information 
criterion.

Table 3. Parameters of Latent Class of Laboratory- and Real World-Based SOP

Class N (%)a

Laboratory-based SOP Real world-based SOP

Intercept (SE) Slope for time (SE) Intercept (SE) Slope for time (SE)

1 128 (4.6%)  0.9987 (0.0545)b 0.1300 (0.0138)b  2.1978 (0.0448)b 0.2246 (0.0161)b

2 501 (17.9%)  0.6398 (0.0275)b 0.0563 (0.0061)b  0.6873 (0.0224)b 0.0387 (0.0073)b

3 1,084 (38.7%)  0.0613 (0.0186)b 0.0218 (0.0038)b −0.0314 (0.0151)c 0.0079 (0.0046)
4 1,062 (37.9%) −0.4680 (0.0187)b 0.0123 (0.0035)b −0.5190 (0.0151)b 0.0205 (0.0044)b

Notes. SE = standard error; SOP = speed of processing. Age, gender, years of education, group assignment, booster sessions, and recruitment site were 
controlled when generating latent class. Laboratory-based SOP: Z-score of Useful Field of View scores; real world-based SOP: means of Z-scores of the Road Sign 
Test and timed instrumental activities of daily living scores.

aMissing: n = 27.
b<.05.
c<.001.
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Changes of Functional Outcomes Over  
Time by Latent Class
Table 5 shows the changes of functional outcomes over time 
by latent class using GEE models with class 4 as the referent 
group. After controlling for all potential covariates (age, gen-
der, years of education, group assignment, booster sessions, 
recruitment site, non-White, depression, heart disease, CHF, 
stroke, smoke, diabetes, hypertension, and hypercholester-
olemia), participants in the four latent classes did not dif-
fer in the baseline levels of functional outcomes. However, 
compared with class 4, classes 1, 2, and 3 all declined sig-
nificantly faster in IADL (range: 0.202–1.273 units per visit) 
and grip strength (range: 0.572–2.147 units per visit) over 

time. Compared with class 4, class 1 declined significantly 
faster in BADL (0.994 units per visit) over time.

For GEE models, participants who completed at least two 
waves visit were included in the analysis. Because partici-
pants who had comorbid conditions within past 3 months 
were waived from the grip strength test, a relatively large 
proportion of data on grip strength were missing (40.5%). 
The researchers compared the demographic and health char-
acteristics between the participants with and without data 
on grip strength, and found that participants without data 
on grip strength were older (M = 74.79 vs. 72.85, t = 8.66, 
p < .001), had lower levels of education (M  =  13.67 vs. 
13.32, t = −3.42, p = .001), had poorer IADL (M = 3.00 vs. 

Figure 1. Growth trajectories of laboratory- and real world-based speed of processing for each latent class.

Table 4. Membership in Latent Classes as a Function of Individual-Level Characteristicsa 

Class 1 Class 2 Class 3

Variable (analytic sample sizeb) OR 95% CI Wald χ2 p Value OR 95% CI Wald χ2 p Value OR 95% CI Wald χ2 p Value

White (2,775) 0.31 0.20, 0.47 29.44 <.001 0.30 0.23, 0.39 88.52 <.001 0.56 0.45, 0.70 27.27 <.001
Depression (2,745) 3.32 2.28, 4.84 38.97 <.001 2.68 2.09, 3.45 59.58 <.001 1.93 1.56, 2.40 35.53 <.001
Subjective memory complaints 
(2,739)

0.67 0.60, 0.74 52.73 <.001 0.76 0.70, 0.82 44.27 <.001 0.91 0.85, 0.98 6.18 .013

Heart disease (2,750) 1.83 1.08, 3.10 5.02  .025 1.07 0.76, 1.51 0.16 .693 1.44 1.11, 1.87 7.56 .006
CHF (2,751) 1.43 0.63, 3.25 0.74  .390 1.98 1.19, 2.74 6.90 .009 1.04 0.66, 1.65 .026 .872
Stroke (2,757) 2.05 1.05, 3.98 4.56  .033 1.79 1.17, 2.74 7.19 .007 1.28 0.89, 1.85 1.78 .183
Smoke (2,774) 0.70 0.31, 1.60 0.72  .397 0.90 0.57, 1.40 0.24 .627 1.35 0.96, 1.89 2.96 .086
Obesity (2,775) 0.60 0.40, 0.91 5.85  .016 0.77 0.61, 0.97 4.90 .027 0.95 0.79, 1.14 0.30 .586
Hypertension (2,775) 0.81 0.54, 1.21 1.09  .297 0.96 0.76, 1.21 0.14 .710 1.06 0.88, 1.27 0.40 .528
Diabetes (2,772) 2.18 1.29, 3.68 8.42  .004 1.80 1.28, 2.51 11.67 .001 1.36 1.02, 1.82 4.25 .037
Hypercholesterolemia (2,727) 0.56 0.37, 0.85 7.56  .006 0.88 0.70, 1.11 1.12 .290 0.97 0.81, 1.16 0.11 .741

Notes. Bold indicates significant p value. CI = confidence interval; CHF = congestive heart failure; OR = odds ratio.
aClass 4 is the referent group.
bBased on the total sample, not the classes.
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2.90, t = 7.27, p < .001) and BADL (M = 15.56 vs. 15.39, 
t = 2.49, p =  .013) functioning, and more concentrated in 
class 1 (7.2% vs. 2.8%, χ2 = 110.54, p < .001) compared 
with participants with data on grip strength. For the other 
functional outcome measures, 12.0%–17.8% of the data 
were missing. The patterns of differences in demographic 
and health variables between participants with and without 
those data were similar to the pattern in grip strength (data 
not shown).

Discussion
In this secondary data analysis, support was found for the 
hypothesis of extensive heterogeneity in both the type and 
trajectory of SOP with aging. Four distinct patterns emerged: 
4.6% of older adults had poor laboratory-based SOP and very 
poor real world-based SOP and both declined substantially 
over time (class 1); 17.9% had relatively poor laboratory- 
and real world-based SOP that declined moderately over 
time (class 2); 38.7% had relatively neutral laboratory- and 
real world-based SOP that remained relatively stable over 
time (class 3); and 37.9% had relatively good laboratory- 
and real world-based SOP that declined slightly over time 
(class 4). Second, non-White race, depression, subjective 
memory complaints, and a history of vascular disease and/or 
CVDRFs were found to predict membership of the trajecto-
ries. Finally, the researchers report that although individuals 
in these groups did not differ in baseline levels of functional 
outcomes, they did differ significantly in the decline rate of 
BADL, IADL, and grip strength over time.

SOP performance was examined in two ways—an 
abstract laboratory test and two ecologically validated 
tests. This study identified several longitudinal patterns 
and trajectories of SOP. Although the classes with initial 

neutral or positive laboratory- and real world-based SOP 
showed statistically significant decline over time, such 
decline (0.0079–0.0218 unit per visit) was actually subtle 
when comparing with the range of SOP scores (classes 3 
and 4). In contrast, the other two classes, which had initial 
poor or very poor laboratory- and real world-based SOP, 
demonstrated a relatively greater decline rate over time 
(0.0387–0.2246 unit per visit; classes 1 and 2). In addition, 
among the covariates of SOP, age appeared to be the only 
one having a theoretically meaningful and statistically sig-
nificant relationship with the SOP classification. That is, 
participants with older age tended to perform with poorer 
SOP abilities.

It should also be noted that compared with the other 
three classes that had similar levels of laboratory- and 
real world-based SOP, the poorest class (class 1)  had 
much worse real world-based than laboratory-based SOP 
performance at baseline, and real world-based SOP declined 
much faster over time. From the behavioral or cognitive 
standpoint, to complete real world-based SOP tasks may 
utilize compensatory strategies, such as common sense 
knowledge that maintained relatively intact in normal aging 
process (Reuter-Lorenz & Park, 2010). For example, when 
receiving the task of searching a telephone number in the 
yellow book, a cognitively healthy older adult may use his 
common sense immediately—to initiate the search using the 
alphabetical order of the family name, which may help save 
time on completing the task (Park & Reuter-Lorenz, 2009). 
The impairment in such compensatory mechanisms, which 
was possibly shown in class 1, may indicate the incidence 
of cognitive impairment. In fact, some investigators 
discretely examined laboratory- or real world-based SOP, 
suggesting the unique predictive value of real world- but 
not laboratory-based SOP on incident dementia (Koehler 

Table 5. Parameter Estimate (β ± SE) of Health Outcomes Over Time by SOP Latent Classa 

Variable Time Class Class × Time Analytical sample size

BADL  0.002 ± 0.0109 1 −1.372 ± 0.8563 0.994 ± 0.4613* 2,465
2 0.142 ± 0.1250 −0.011 ± 0.0301
3 −0.018 ± 0.0635 −0.008 ± 0.0164

IADL −0.221 ± 0.0363 1 −1.268 ± 1.4905 1.273 ± 0.5756* 2,465
2 −1.074 ± 0.5125 0.407 ± 0.1157***

3 −0.428 ± 0.3576 0.202 ± 0.0770**

Grip strength −0.080 ± 0.1621 1 1.118 ± 1.5797 −2.147 ± 0.9095* 1,668
2 0.989 ± 0.9043 −1.219 ± 0.3810**

3 0.085 ± 0.6161 −0.572 ± 0.2462*

Physical functioning −0.604 ± 0.1366 1 2.399 ± 2.8647 −0.749 ± 1.4346 2,306
2 −3.098 ± 1.3223 0.014 ± 0.3102
3 −1.380 ± 0.7824 0.023 ± 0.1792

Mental functioning −0.184 ± 0.0987 1 −5.795 ± 4.1045 1.293 ± 1.2155 2,306
2 0.282 ± 0.9589 −0.293 ± 0.2691
3 −0.704 ± 0.5972 0.060 ± 0.1546

Notes. Bold indicates significant p value. BADL = basic activities of daily living; IADL = instrumental activities of daily living; SE = standard error; 
SOP = speed of processing. Controlling for age, gender, years of education, group assignment, booster sessions, recruitment site, race, depression, heart disease, 
congestive heart failure, stroke, smoke, diabetes, hypertension, and hypercholesterolemia.

aClass 4 is the referent group.
*p < .05. **p < .01. ***p < .001.
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et al., 2012; Sternang, Wahlin, & Nilsson, 2008). It should 
also be noted that, class 2 also showed substantial but equal 
decline in laboratory- and real world-based SOP when 
comparing with classes 3 and 4.  The researchers do not 
have data on clinical diagnosis of cognitive impairment 
in ACTIVE data set. However, the classes 1 and 2 do 
warrant the attention of different stages of impairment, 
and the relationship between the pattern and trajectory of 
laboratory- and real world-based SOP and incidence of 
different stages of dementia (e.g., preclinical dementia, 
mild cognitive impairment, or Alzheimer’s dementia) 
deserves future examination. As a future exploration, it will 
also be important to investigate the possible role of brain 
networks in explaining different patterns of SOP abilities. 
That is, laboratory- and real world-based SOP assessment 
may tap different functional networks (Eckert, 2011). The 
cognitive operations of laboratory-based SOP may rely 
heavily on prefrontal cortex, whereas cognitive operation of 
real world-based SOP may recruit broader brain networks 
(e.g., frontal cortical, parietal, or temporal lobe networks), 
as well as require additional compensatory engagement 
of frontal cortex to offset possible age-related changes in 
other brain networks (Eckert, 2011). Disruption of multiple 
brain networks and failure of the compensation may be 
revealed by deficits in and decline of SOP measured with 
real world-based tasks (as seen in class 1). In addition, 
given the small proportion of participants in class 1 (4.6%), 
to avoid the potential overexaction of the classes (Bauer & 
Curran, 2003), reproducing this class with the substantial 
difference in the trajectories from other classes is needed in 
other cohort studies.

Taken together, the results of this study paint a fairly 
detailed portrait of individuals at risk for SOP decline. 
Beyond the influence of age, sex, and education, non-White 
(especially Black or African American) older adults who 
have symptoms of depression, subjective memory loss, and 
a history of several vascular related conditions (heart dis-
ease, CHF, stroke, and diabetes) are more vulnerable to SOP 
decline and by extension, functional decline. Accumulative 
evidence supports the value of depression and subjec-
tive memory complaint in predicting cognitive decline, 
and the two risk factors significantly influence each other 
(Amariglio, Townsend, Grodstein, Sperling, & Rentz, 2012; 
McDermott & Ebmeier, 2009). This study confirmed the 
predictive value of the two modifiable risk factors in under-
standing the pattern and trajectory of laboratory- and real 
world-based SOP abilities in a community-dwelling elder 
cohort without dementia at baseline. Compared with the 
class with best SOP abilities over time (class 4), the pre-
dictive patterns of these potential risk factors appeared to 
be relatively consistent across other classes. However, being 
Black and having severe subjective memory complaints, 
depression, heart disease, stroke, and diabetes posed the 
highest likelihood of being in the class with poorest SOP 
abilities (class 1), which further support the unique clini-
cal characteristics of class 1.  However, two limitations to 

the study should be recognized, which temper the findings 
related to this individual portfolio. The first limitation is 
related to the vascular factors examined. In this study, partic-
ipant self-report data was used to assess history of vascular 
disease and CVDRFs, and this may result in exposure mis-
classification. The onset (e.g., midlife or late-life) of these 
factors was not ascertained. Although most studies have 
demonstrated a consistent negative effect of vascular disease 
and some CVDRFs (e.g., diabetes) on cognition, the effects 
of other CVDRFs, such as obesity and cholesterol levels on 
cognition have been less consistent. For both obesity and 
hypercholesterolemia, midlife but not late-life onset may 
be risk factors for cognitive decline (Anstey, Lipnicki, & 
Low, 2008; Naderali, Ratcliffe, & Dale, 2009). Additionally, 
hypercholesterolemia is in need of further classification, 
because high total cholesterol but not high low-density cho-
lesterol or low high-density cholesterol have been related to 
cognitive decline (Anstey et al., 2008; Naderali et al., 2009). 
Regardless, positive relationships between SOP and obesity 
and hypercholesterolemia were found, and the reasons for 
the associations in the current sample remain unclear and 
deserve further investigation in future studies. In addition, 
the researchers only examined single vascular diseases or 
CVDRFs in this study. Previous studies, including a report 
from the authors of this study, found that the influence of 
CVDRF appears to be additive, as concurrent CVDRFs pre-
dict cognitive decline to a greater extent than single risks 
(Lin, Friedman, Quinn, Chen, & Mapstone, 2012; Reitz 
et  al., 2011). It will be interesting to explore the prospec-
tive relationship between the number of vascular diseases or 
CVDRFs and pattern and trajectory of SOP measures over 
time. Next, other potential predictors of cognitive trajecto-
ries, such as physical exercise, mental activities, and APOE 
4 genotype (Middleton & Yaffe, 2010) were not included in 
this analysis, which should be considered in future studies.

Finally, it is not surprising that participants across SOP 
classes appeared to have similar functional outcomes (e.g., 
BADL, IADL) at baseline given the inclusion/exclusion 
criteria of the original ACTIVE study. That is, older adults 
with impaired BADL and Mini-Mental State Examination 
< 23 at baseline were excluded from the ACTIVE study, 
which purposely included a group of older adults without 
wide variation in baseline functional outcomes. However, 
the results suggest that SOP may be useful in predicting the 
rate of functional decline in initially non-demented older 
adults. That is, participants with poorer SOP trajectories 
(classes 1–3) were found to decline more rapidly in IADL 
and grip strength than participants with better SOP (class 
4). In addition, participants with the fastest SOP decline 
(class 1)  also declined significantly faster in BADL than 
participants with better SOP (class 4). These findings 
highlight the importance of carefully characterizing both 
the type and trajectory of SOP for predicting functional 
outcomes. It might not come as a surprise that SOP decline 
and IADL impairments are linked in this manner. Rapid 
processing of external information is critical to many 
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IADL’s such as cooking, finding food items during grocery 
shopping, and managing finances. Faster SOP also allows for 
more rapid responses to the environment. For example, rapid 
action is critical to quickly locate the hand rails and adjust 
body orientation when one trips and begins to fall (Vance, 
2009). Participants who had recent comorbid condition 
(e.g., pain or of arthritis in their wrists) were waived from 
the grip strength test, which made a subgroup of participants 
with lower education, poorer IADL and BADL functioning, 
and poorer SOP abilities to be excluded from the GEE 
analysis of the relationship between SOP classes and grip 
strength. Interestingly, within the remaining participants, the 
results still revealed a significant decline in grip strength in 
the classes with poor SOP abilities that declined fast over 
time (classes 1 and 2). Grip strength is a commonly used 
measure of frailty in the elderly and is strongly linked to 
future disability, morbidity, and mortality (Syddall, Cooper, 
Martin, Briggs, & Aihie Sayer, 2003). The association 
between SOP and grip strength reinforces the relationship 
between cognitive and physical health and their effects on 
functional capacities. Further, this relationship suggests that 
SOP is a sentinel cognitive process, similar to grip strength 
for physical function that can predict future functional 
outcomes. In addition, it should also be noted that class 3 had 
significantly faster decline in IADL and grip strength than 
class 4 did, although participants in the class had relatively 
stable laboratory- and real world-based SOP over time. Such 
groups may represent targets for health promotion programs 
to maximize the older adults’ functional health.

Although this notion is provocative, this study failed to 
find a longitudinal relationship between SOP and HRQOL. 
The overall level of HRQOL remained stable over 5 years, 
indicating that older adults in this study perceived them-
selves to be functioning mentally and physically normally. 
In this study, change in SOP may not immediately and sensi-
tively reflect older adults’ subjective functional state. Future 
studies may investigate whether intermediate functional out-
comes (BADL, IADL, or grip strength) serve as mediators 
between longitudinal changes in SOP and HRQOL.

Changes in SOP in old age can be easily measured and 
importantly, may be amenable to interventions that may 
fundamentally change the underlying brain networks or 
provide compensatory coping mechanisms involved in SOP 
information. Future interventions that target SOP abilities 
should target the vulnerable profile reported here to prevent 
or slow potential functional decline. SOP training gener-
ally involves computer-based game-embedded non-verbal 
mental exercises designed to improve the broad capacity for 
fluid mental processing efficiency. The training is based on 
neuroplasticity theory, which promotes neurotrophic fac-
tor production and neuro-genesis in animals. In cognitively 
normal older adults, approximately 5–10 hr of standardized 
SOP training resulted in improved laboratory-based SOP 
that was sustained up to several years post intervention, but 
the training failed to improve real world-based SOP (Willis 

et al., 2006). Similarly, in this study, the intervention assign-
ment from the original ACTIVE trial did not influence the 
classification of SOP measures. It indicates that SOP train-
ing may not be particularly effective for real world-based 
SOP ability. Older adults who have similar rate and level of 
decline in laboratory- and real world-based SOP (classes 2 
and 3) may benefit from SOP training. However, for older 
adults who showed much worse real world-based SOP abil-
ity (class 1), it is necessary to investigate other compen-
satory/rehabilitation strategies that can be combined with 
SOP training to slow the decline or compensate the impair-
ment in older adults’ real world-based SOP ability.
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