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Introduction: Antipsychotic drugs exert antipsychotic
effects by blocking dopamine D, receptors in the treat-
ment of schizophrenia. However, effects of D, receptor
blockade on neurocognitive function still remain to be elu-
cidated. The objective of this analysis was to evaluate
impacts of estimated dopamine D, receptor occupancy
with antipsychotic drugs on several domains of neurocog-
nitive function in patients with schizophrenia in the Clin-
ical Antipsychotic Trials in Intervention Effectiveness
(CATIE) trial. Methods: The dataset from the CATIE
trial was used in the present analysis. Data were extracted
from 410 subjects who were treated with risperidone, olan-
zapine, or ziprasidone, received assessments for neurocog-
nitive functions (verbal memory, vigilance, processing
speed, reasoning, and working memory) and psychopa-
thology, and provided plasma samples for the measurement
of plasma antipsychotic concentrations. D, receptor occu-
pancy levels on the day of neurocognitive assessment were
estimated from plasma antipsychotic concentrations, using
population pharmacokinetic analysis and our recently de-
veloped model. A multivariate general linear model was
used to examine effects of clinical and demographic char-
acteristics, including estimated D, occupancy levels, on
neurocognitive functions. Results: D, occupancy levels
showed significant associations with the vigilance and
the summary scores. Neurocognitive functions, including
vigilance, were especially impaired in subjects who showed
D, receptor occupancy level of >77%. Discussion: These
findings suggest a nonlinear relationship between pre-
scribed antipsychotic doses and overall neurocognitive
function and vigilance. This study shows that D, occupancy
above approximately 80% not only increases the risk for
extrapyramidal side effects as consistently reported in
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the literature but also increases the risk for cognitive im-
pairment.
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Introduction

Neurocognitive impairment is considered to be a core
feature in schizophrenia and has a strong correlation
with real-world functioning of patients." While antipsy-
chotic drugs play a principal role in the treatment of
schizophrenia, high doses of antipsychotic drugs have
been associated with negative consequences on global
neurocognitive function® as well as specific cognitive
domains, including processing speed,® visual memory,
delayed recall, performance IQ, and executive function.*
Antipsychotic drugs, including atypical antipsychotics,
have been related with mixed results in terms of effects
on the neurocognitive impairment due to this illness™;
however, many of these studies involved methodological
shortcomings, including small sample sizes and insuffi-
cient neurocognitive measures.” ° Therefore, effects of
antipsychotic drugs on neurocognitive function still re-
main to be elucidated.'’

Accumulated evidence has shown that the dopaminer-
gic system in the central nervous system is profoundly
associated with cognition.'! For example, the availability
of dopamine D, receptors has been reported to have a
significant impact on neurocognitive function, including
attention and executive function, in healthy subjects.'!
Similarly, the blockade of dopamine D, receptors by
risperidone has a negative correlation with attention in



patients with schizophrenia.'? Furthermore, neurocogni-
tive performance, including verbal fluency, spatial span,
planning, and sequence generation, was found to be pos-
itively correlated with both dopamine D; and D, receptor
binding levels, but mainly with D, binding levels in
patients with Huntington’s disease.'> Animal studies
have also endorsed the pivotal role of the dopaminergic
system in neurocognitive function; in mutant mice, the
absence of D, receptors has been demonstrated to impair
performance in spatial working memory and perceptual
discrimination.'*!?

We have recently reported that striatal dopamine D,
receptor occupancy by antipsychotic drugs, including ris-
peridone, olanzapine, and ziprasidone, can be reliably esti-
mated from plasma concentrations of these drugs.'® In
addition, recent advances in nonlinear mixed-effects popu-
lation pharmacokinetic methods have made it possible to
predict individual pharmacokinetic parameters for antipsy-
chotic drugs, including peak and trough plasma concentra-
tions, using 2 or more sparsely collected blood samples in
a real-world setting.!” By combining these models, the do-
pamine D, receptor occupancy levels at peak and trough
can be reliably estimated using the measurement of antipsy-
chotic plasma concentrations at 2 separate time points.'®

For the purpose of elucidating the relationship between
neurocognitive function and estimated dopamine D, re-
ceptor blockade by antipsychotics, the Clinical Antipsy-
chotic Trials in Intervention Effectiveness (CATIE) trial
provides an ideal dataset in light of its unprecedented large
sample size, comprehensive neurocognitive assessments,
and assessment of plasma antipsychotic concentrations
with which population pharmacokinetic models have
already been developed for risperidone, olanzapine, and
ziprasidone.'® ' The objective of this report was to eval-
uate impacts of estimated dopamine D, receptor occu-
pancy with risperidone, olanzapine, and ziprasidone on
several domains of neurocognitive function in patients
with schizophrenia in the CATIE trial. Our working hy-
pothesis was that the relations between cognitive functions
and D, occupancy would be U-shaped. That is, cognition
remains impaired at low D, occupancy, and medium D,
occupancy may improve cognition; however, high occu-
pancy of D, receptors impairs cognition. This hypothesis
came from the following observations in the literature:
(1) a moderate amount of antipsychotic drugs generally
improves cognitive functions,’ (2) an excessive blockade
of dopamine D, receptors by antipsychotics is associated
with worsening in cognitive functions,'? and (3) an insuf-
ficient blockade of dopamine D, receptors by antipsy-
chotics does not fully exert its therapeutic effect.?

Methods

Study Design

The CATIE trial was funded by the National Institute of
Mental Health to compare the effectiveness of atypical
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antipsychotics and a single conventional antipsychotic
medication in patients with schizophrenia; the details of
the study were reported elsewhere.® Briefly, the study
was performed between January 2001 and December
2004 at 57 clinical sites in the United States. One thousand
four hundred and ninety-three patients between ages 18
and 65 years with a diagnosis of schizophrenia on the basis
of the Structured Clinical Interview of the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition
participated in the CATIE trial. Patients were initially
randomized to olanzapine (7.5-30 mg/day), risperidone
(1.5-6.0 mg/day), ziprasidone (40-160 mg/day), quetiapine
(200-800 mg/day), or perphenazine (8-32 mg/day) under
double-blind conditions and received treatments for up
to 18 months or until treatment was discontinued for
any reason (phase 1).

Data used in the present analysis were derived from sub-
jects who were receiving risperidone, olanzapine, or zipra-
sidone, completed assessments for psychopathology and
neurocognitive function at months 1 and 2, respectively,
and provided plasma samples for the assessment of plasma
antipsychotic concentrations. These 3 drugs were included
in the present study because the nonlinear mixed-effect
models were already established for them using the data
from the CATIE studies.'” ' All participants gave written
informed consent to participate in the protocols approved
by the local institutional review boards.

Assessments for Cognition, Psychopathology, and
Extrapyramidal Symptoms

Neurocognitive assessment was performed at month 2.
The neurocognitive tests were chosen by a group of advi-
sors based upon the following considerations; sensitivity
to neurocognitive impairment in schizophrenia, relation
to functional outcome, potential sensitivity to treatment,
and practicality for various antipsychotic clinical trials
for schizophrenia.”**?* The following 5 neurocognitive
domain scores were calculated from 9 neurocognitive
test summary scores and standardized to create z scores
for each domain in the CATIE trial: verbal memory, vig-
ilance, processing speed, reasoning, and working mem-
ory. The verbal memory domain score was calculated
from the Hopkins Verbal Learning Test, which assesses
verbal learning and memory. The vigilance domain score
was calculated from the Continuous Performance Test,
which assesses attention. The processing speed domain
score was obtained from category instances, the Grooved
Pegboard, and the Revised Wechsler Adult Intelligence
Scale Digit Symbol Test, which represents processing
speed. The reasoning domain score was derived from
the Wisconsin Card Sorting Test and the Revised
Wechsler Intelligence Scale for Children Mazes. The
working memory domain score was calculated from
the Letter-number test of auditory working memory
and a computerized test of visuospatial working memory.
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A neurocognitive summary score was calculated by cre-
ating a z score of the average of the 5 standardized do-
main scores. The following information was also
collected: age, sex, years of education, and concomitant
mediations. The Positive and Negative Syndrome Scale
(PANSS) and Simpson-Angus Scale (SAS) were also con-
ducted at month 1.

Population Pharmacokinetic Analysis

Subjects who participated in the CATIE trial provided
plasma samples for the measurement of concentrations
of risperidone plus 9-hydroxyrisperidone (active moiety),
olanzapine, or ziprasidone at more than one time points.
Using these samples, plasma antipsychotic concentrations
at peak and trough that corresponded to the dose given on
the day of cognitive assessment were calculated for each
individual using the established population pharmacoki-
netic models and extracting the Empirical Bayes Estimates
for the pharmacokinetic parameters from each of these
individuals.?**” These parameters were utilized to calcu-
late the expected peak and trough concentrations for
each of risperidone, 9-hydroxyrisperidone, ziprasidone,
and olanzapine for the dosage regimen on the day of
the neurocognitive assessments. Thus, the model-predicted
values of the plasma concentrations were used to calculate
the peak and trough dopamine D, receptor occupancy
levels for each individual on the day of neurocognitive
assessments. The precision and reliability of this estima-
tion has recently been confirmed in our population phar-
macokinetic study.?® The nonlinear mixed-effect models
for olanzapine, risperidone, and ziprasidone were pre-
viously established using the CATIE data.'®?' These
original studies used to establish the population phar-
macokinetic models comprised 1236 risperidone and
9-hydroxyrisperidone concentrations from 490 subjects,
1527 olanzapine concentrations from 523 subjects, and
568 ziprasidone concentrations from 233 subjects, respec-
tively. All 3 compounds were adequately described using
a one-compartment linear model with first-order absorp-
tion. The previously established models utilized exponen-
tiated or log-normal interindividual variability on each
pharmacokinetic parameters, a mixture distribution to
assign the tri-modal distribution of clearance as CYP
2D6 genotype was not available for risperidone, an age
effect on clearance of the 9-hydroxyrisperidone moiety,
and sex, race, and age effects on olanzapine disposition.

Estimation of Dopamine D, Receptor Occupancy

By using the predicted plasma concentrations of antipsy-
chotics at peak and trough on the day of cognitive assess-
ment, corresponding dopamine D, receptor occupancy
levels were estimated, using our recently developed
model.'® Briefly, dopamine D, receptor occupancy levels
were estimated by incorporating the predicted plasma
concentration of risperidone active moiety, olanzapine, or
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ziprasidone into the following one-site binding model:
occupancy (%) = a x (plasma level/[plasma level + EDs]),
where « is the maximum receptor occupancy attributable
to the antipsychotic drug, and EDs, is the estimated plasma
concentration of the antipsychotic drug associated with 50%
of receptor occupancy, which was obtained in the systematic
review and pooled analysis (Risperidone active moiety: a =
88.0%, EDsg=4.9 ng/ml; olanzapine: a=90.7%, EDsy=7.1
ng/ml; and ziprasidone: a = 88.2%, EDs, = 32.9 ng/ml).'®
Mean values of those peak and trough dopamine D, recep-
tor occupancy levels were obtained for further analyses.

Statistical Analysis

Statistical Analyses Were Carried Out Using SPSS Ver-
sion 19.0 (SPSS Inc., Chicago). To test the hypothesis,
subjects were divided into an equal number of 4 groups
(ie, 102 or 103) based on the predicted dopamine D, re-
ceptor occupancy on the day of cognitive testing (low D,
occupancy group: 15.5-62.7%, n = 102; slightly low D,
occupancy group: 62.7-71.8%, n = 102; slightly high
D, occupancy group: 71.9-77.2%, n = 103; and high
D, occupancy group: 77.2-85.8%, n = 103). A multivar-
iate general linear model was used to examine effects of
antipsychotic drugs (ie, risperidone, olanzapine, or zipra-
sidone), dopamine D, receptor occupancy levels (ie, those
4 groups), age, education years, PANSS total score, SAS
mean score, and the use of anticholinergics on 5 neuro-
cognitive domain and summary scores. In addition, to
exclude a possibility of potential interaction between
age and estimated dopamine D, receptor occupancy,
we performed additional analysis, using the data from
subjects aged less than 50; another multivariate general
linear model was used to examine effects of the above
demographic and clinical characteristics other than age
on 5 neurocognitive domain and summary scores. Vari-
ables of interest were compared among the 4 dopamine
D, receptor occupancy groups, using a one-way ANOVA
for parametric data and chi-square test for categorical
variables. When appropriate, we also examined group
differences with pairwise comparisons using Turkey-
Kramer HSD (honestly significant difference). A P value
of <.05 was considered statistically significant (2-tailed).

Results

Subject Characteristics

Four hundred and ten subjects who provided plasma sam-
ples of risperidone plus 9-hydroxyrisperidone, olanzapine,
or ziprasidone and received neurocognitive assessments at
month 2 and the PANSS and SAS at month 1 were iden-
tified. Demographic and clinical characteristics of these
subjects were summarized in table 1. Mean + SD daily
doses of risperidone, olanzapine, and ziprasidone on the
day of neurocognitive assessments were 3.9 = 1.3 mg,
19.7 = 7.0 mg, and 100.5 = 57.9 mg, respectively.



Table 1. Demographic and Clinical Characteristics of 410 Subjects

Characteristics Values

Age, years, mean = SD (range) 40.9 + 10.3 (18-62)

Male, 7 (%) 303 (73.9)
Ethnicity, n (%)
White 259 (63.2)
Others 151 (36.8)

Duration of education, years, 12.3 = 2.0 (3-21)

mean = SD (range)

Duration of treatment, years,
mean = SD (range)

16.5 + 10.9 (0-56)

Marital status

Married, n (%) 39 (9.5)

Previously married, n (%) 130 (31.7)

Never married, n (%) 241 (58.8)
Employment status

Unemployed, n (%) 349 (85.1)
Antipsychotics

Risperidone, n (%) 150 (36.6)

Olanzapine, n (%) 184 (44.9)

Ziprasidone, n (%) 76 (18.5)
Use of anticholinergics, n (%) 69 (16.8)

PANSS total score, mean + SD (range)
SAS mean score, mean = SD (range)

69.9 = 18.3 (32-131)
0.19 = 0.29 (0-1.83)

Note: PANSS, Positive and Negative Syndrome Scale; SAS,
Simpson-Angus Scale.

Mean = SD PANSS total and SAS mean scores were
69.9 = 18.3 and 0.19 = 0.29, respectively. Characteristics
of groups stratified by dopamine D, receptor occupancy
levels are detailed in table 2. No significant difference
was found in any of the total, positive, negative, or gen-
eral psychopathology scale PANSS score.

Association Between D, Receptor Occupancy and
Neurocognitive Function

Results of the multivariate general linear model are de-
tailed in table 3. While age and education years were found
to have significant effects on all of the subscale scores,
dopamine D, receptor occupancy levels also showed sig-
nificant association with the vigilance and the summary
scores. Mean values of neurocognitive scores, including
the vigilance and the summary scores, and dopamine
D, receptor occupancy levels demonstrated a nonlinear
relationship, where there seemed to be a cliff-fall-off at
higher occupancies (table 4 and figure 1). We therefore
conducted additional analyses to try to find the threshold.
Subjects were divided into the 2 groups based on consec-
utive cutoff points in increments of 1% between 70% and
85% in the dopamine D, receptor occupancy. Then, other
general linear models that included the same clinical and
demographic variables as the original model were built to
examine which threshold(s) resulted in the presence of sig-
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nificant effects of dopamine D, receptor occupancy on vig-
ilance and summary scores. The results revealed that
dichotomization of subjects based on 77%, 78%, or 79%
and 77%, 78%, 79%, 80%, or 81% were associated with
the presence of statistically significant effects of dopamine
D, receptor occupancy on vigilance and summary scores,
respectively. Another significant finding was an associa-
tion between the processing speed score and the PANSS
total score (table 3).

Since the mean differences across the D, groups may
account for other factors that were entered into the
model, especially age, another model was generated, us-
ing the data from 327 subjects aged less than 50 (see
online supplementary table 1) Estimated dopamine D, re-
ceptor occupancy levels showed significant association
with the vigilance, processing speed, working memory,
and the summary scores. Again, a nonlinear relationship
was found between mean values of these neurocognitive
scores and dopamine D, receptor occupancy levels (see
online supplementary table 2).

Discussion

To our knowledge, this is the largest study to investigate
neurocognitive function in relation to dopamine D, re-
ceptor occupancy with antipsychotic drugs in patients
with schizophrenia. The results demonstrated a nonlinear
relationship between prescribed antipsychotic doses and
overall neurocognitive function and vigilance; they were
especially impaired in subjects who showed D, receptor
occupancy level of >77%. Thus, our hypothesis regard-
ing the association of very high D, receptor occupancy
with impaired cognitive functions was supported, while
there was no evidence that supported the relationship
between very low dopamine D, occupancy and cognitive
dysfunction.

The association between a high dopamine D, receptor
occupancy of >77% by antipsychotic drugs and impaired
neurocognitive function was observed in this study,
which is in line with the findings in the literature. Patients
with schizophrenia who were treated with high doses of
antipsychotic drugs (ie, 1134 + 840 mg/day of chlorprom-
azine equivalents [mean + SD]) showed significantly
poorer performance than those with standard doses
(ie, 473 = 268 mg/day of chlorpromazine equivalents
[mean + SD]) on visual memory, delayed recall, perfor-
mance IQ, and executive function.* Similarly, one clinical
positron emission tomography (PET) study demon-
strated that the attentional deficits were observed above
74% blockade of dopamine D, receptor by risperidone in
patients with schizophrenia.'? In animal experiments, the
5-choice serial reaction time task (SCSRTT) provides
substantial validity as a direct measure of attention
and bears a good analogy to the continuous performance
test?” that was adopted in the CATIE trial to measure
vigilance. The neurochemical lesion of nucleus
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Table 2. Characteristics of Subjects Stratified by Dopamine D, Occupancy

Characteristics

Low (n = 102)

Slightly Low (n = 102)

Slightly High (n = 103)

High (n = 103)

D, occupancy, %, range
(mean + SD)

Age, years, mean + SD (range)®

Male, n (%)

Duration of education, years,
mean = SD (range)

Duration of treatment, years,
mean = SD (range)

Antipsychotics®

Risperidone, n (%)
Olanzapine, n (%)
Ziprasidone, n (%)

Use of anticholinergics, n (%)

PANSS total score,
mean = SD (range)
PANSS positive score,
mean = SD (range)
PANSS negative score,
mean + SD (range)
PANSS general score,
mean = SD (range)

SAS mean score,
mean = SD (range)®

15.5-62.7 (49.0 = 11.4)

39.2 = 10.6 (20-62)
78 (76.5)
122 = 2.4 (3-21)

14.8 = 10.0 (0-40)

16 (15.7)

20 (19.6)

66 (64.7)

14 (13.7)
68.0 = 18.8 (32-108)

16.1 = 5.9 (7-33)
18.4 = 6.7 (7-36)
33.6 = 9.7 (16-56)

0.16 = 0.26 (0-1.5)

62.7-71.8 (67.6 = 2.6)

39.8 = 10.0 (20-62)
77 (75.5)
12.2 + 1.8 (6-18)

16.0 = 11.2 (0-39)

42 (41.2)

50 (49.0)

10 (9.8)

16 (15.7)
68.7 + 17.3 (32-113)

16.4 + 5.4 (7-31)
18.2 + 6.0 (8-35)
34.0 = 9.2 (16-57)

0.13 = 0.19 (0-0.8)

71.9-77.2 (74.4 = 1.6)

41.5 + 9.4 (21-59)
79 (76.7)
124 + 1.8 (7-21)

17.9 = 11.7 (0-56)

53 (51.5)
50 (48.5)
0 (0)
17 (16.5)
71.7 = 18.3 (34-131)

16.8 = 5.5 (7-35)
19.7 = 6.3 (7-38)
35.1 = 9.4 (18-58)

0.25 = 0.34 (0-1.83)

77.2-85.8 (80.1 = 1.9)

432 + 10.9 (18-62)
69 (67.0)
12.3 + 1.9 (3-18)

17.3 = 10.4 (0-42)

39 (37.9)
64 (62.1)
0 (0)
22 (21.4)
71.1 = 18.6 (33-120)

17.1 + 5.6 (7-31)
19.7 + 6.8 (7-38)
34.3 = 9.3 (16-62)

0.22 = 0.31 (0-1.5)

Note: Abbreviations are explained in the first footnote to table 1. No statistically significant differences were found in any of the other

variables.

4F3 406 = 3.15, P = .03 by the one-way ANOVA; no further statically significant difference was found by the Turkey-Kramer HSD

(honestly significant difference).
%6 = 200.8, P < .001.

°F5.406 = 3.58, P = .01 by the one-way ANOVA; no further statically significant difference was found by the Turkey-Kramer HSD.

accumbens septi (NAS) induced by intracerebral infu-
sions of neurotoxin 6-hydroxydopamine (6-OHDA) in
rats produced an 87% depletion of dopamine in the
NAS, which attenuated both speed and impulsivity of
responding on the SCSRTT.*® In human cortex, long-
term potentiation (LTP) of synaptic efficacy is considered
as a fundamental mechanism of learning and memory.
A single oral dose of dopamine antagonist, haloperidol,
depressed significantly the paired associative stimulation—
induced LTP-like plasticity at the systems level of
human cortex in 8 healthy subjects.’! Thus, excessive
blockade of dopamine D, receptor by antipsychotic
drugs or relative paucity of dopamine may have detri-
mental effects on neurocognitive function in patients
with schizophrenia.

On the other hand, dopamine D, receptor blockade
with antipsychotic drugs has also been shown to improve
cognitive functions. Keefe et al’ conducted a meta-analysis
of 15 studies and found that atypical antipsychotic drugs
improved attention, executive function, working memory,
visuospatial analysis, verbal fluency, and digit symbol sub-
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stitution in patients with schizophrenia. Similarly, in a sys-
temic review of 20 previous reports that examined changes
in neurocognitive function followed by the treatment with
atypical antipsychotic drugs in patients with schizophre-
nia, significant improvements in overall neurocognitive
function were observed’; especially, effects for domains re-
lated with vigilance were consistently large. Combined
with the observation that an excessive blockade of dopa-
mine D, receptor by antipsychotic drugs was associated
with impaired neurocognitive function as described above,
these findings may suggest that a moderate degree of do-
pamine D, receptor blockade may provide amelioration in
neurocognitive dysfunction in patients with schizophrenia.

The efficacy and tolerability of all available dopamine
antagonist antipsychotics have been linked to their bind-
ing to dopamine D, receptors.** For most antipsychotic
drugs, PET studies have suggested the presence of a
therapeutic window of striatal dopamine D, receptor
occupancy (65%-80%) in younger patients,>>** with ex-
trapyramidal side effects more likely at more than 80%
dopamine D, receptor occupancy.***> Our recent pooled
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Table 3. Relationship Between Neurocognitive Scores and Subjects’ Characteristics (n = 410)

Verbal Memory Vigilance Processing Speed Reasoning Working Memory  Summary Score
P P P P P P
Characteristics Fdfl AR Value Fdfl’dfz Value Fdf])dfz Value Fdfl AR Value Fdfl’dfz Value Fdfl)dfz Value
Dz occupancy 0.583’399 .63 5.523’399 .002 14813’399 .14 1.273,399 .28 1.373’399 25 3.023,399 .03
level
Age 8301399 .004 11.55;399 .001 51.33;399 <.001 63.91;399 <.001 31.08;399 <.001 51.28; 399 <.001
Education year 43.99]’399 <.001 16.19]’399 <.001 31.75]’399 <.001 28.361’399 <.001 28.22]’399 <.001 53.26]’399 <.001
PANSS 2.68399 .10 0.601 399 .44 5111399 .02 0.44) 399 .51 1.631 399 .20 3211399 .07
SAS 0.52y 399 .47 0.171 399 .68 0.781 399 .38 0.071399 .79 0.474 399 .49 0.321399 .57
Antipsychotic 1.472’399 23 0.952’399 .39 1.572’399 21 1.692’399 .19 2.432’399 .09 1.702‘399 .19
medication
Use of 0.41 1,399 52 1.421399 .23 2.951,399 .09 3.271399 .07 3.061399 .08 3.581’399 .06
anticholinergics

Note: Abbreviations are explained in the first footnote to table 1. Statistics for these general linear models are as follows: verbal
memory: Fioa0 = 5.97, P < .001, R* = .13; vigilance: Fjg399 = 4.10, P < .001, R* = .10; processing speed: Fjg390 = 7.03, P < .001,
R* = .20; reasoning: Fjg 399 = 6.99, P < .001, R*=.19; working memory: Fig 399 = 4.64, P < .001, R* = .13; and summary score:
Fio399 = 8.22, P < .001, R? = 22. Statistically significant effects with P value of <.05 were described in bold.

analysis also supports the presence of the therapeutic
window in young adults with schizophrenia.?® Interest-
ingly, the results of this study may also endorse the upper
limit of this established therapeutic window of dopamine
D, receptor occupancy in terms of neurocognitive func-
tion. If the observations in the present study are confirmed
in future studies with a specific focus on the causal rela-
tionship between dopamine D, receptor blockade with
antipsychotics and cognitive function, the therapeutic win-
dow could also be used to predict the therapeutic dose
range of antipsychotic drugs to maximize therapeutic
effects and minimize detrimental effects of antipsychotic
drugs from a perspective of neurocognitive function.
The impairment of processing speed has been consis-
tently observed in patients with schizophrenia.***’ A recent

meta-analysis has shown that patients with schizophrenia
presented the most profound impairment on a digit symbol
coding test that measures processing speed among various
common neuropsychological measures.*® A reduced pro-
cessing speed is known to be observed in patients with
schizophrenia prior to the onset of the illness and is asso-
ciated with clinical and functional outcomes.***” These
data suggest that the decline of processing speed represents
an important behavioral marker of the pathophysiology of
schizophrenia. The significant association between the pro-
cessing speed and the PANSS total score that we observed
in this study is compatible with these findings.

In the present study, dopamine D, receptor occupancy
was not measured, using brain imaging techniques, but
estimated with our recently developed model; the

Table 4. Neurocognitive Scores Stratified by Dopamine D, Occupancy

z Score (Mean + SD)

D, Occupancy D, Occupancy Verbal Processing Working Summary

Level Range (%) Memory Vigilance Speed Reasoning Memory Score

Low (n=102) 15.5-62.7 0.084 = 1.077  0.174 = 0.964 0.159 = 0.958  0.311 = 0.866* 0.293 = 0.787  0.275 = 0.920

Slightly low 62.7-71.8 0.188 = 1.015  0.306 = 0.992°  0.223 + 0.889  0.259 = 0.899 0.229 + 0.880  0.323 = 0.937
(n =102)

Slightly high ~ 71.9-77.2 0.180 + 0.865  0.385 + 0.951°  0.167 = 0.913  0.285 = 0.853 0.309 = 0.736  0.354 = 0.839¢
(n =103)

High (n = 103) 77.2-85.8 0.025 = 0.990 —0.110 = 0.934 —0.085 = 0.903 —0.013 = 0.949 0.095 = 1.017 —0.008 = 0.951

Note: Significant differences were found in vigilance score, reasoning score, and summary score (£3 406 = 5.21, P = .002; F5 406 = 2.90,
P = .04; F;406 = 3.36, P = .02, respectively) by the one-way ANOVA.

4P =.049 by the Turkey-Kramer HSD (honestly significant difference), vs high D, group.

bp =012 by the Turkey-Kramer HSD, vs high D, group.

°P = .002 by the Turkey-Kramer HSD, vs high D, group.

4p = .025 by the Turkey-Kramer HSD, vs high D, group.
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Fig. 1. Neurocognitive domain scores and estimated dopamine D, receptor occupancy. Pearson’s correlation analysis did not find any
statistically significant linear correlation between neurocognitive scores and dopamine D, occupancy. Note that trend lines are shown only for
descriptive purposes; refer to table 4 for detailed comparison to test the nonlinear relationship between neurocognitive scores and dopamine

D, occupancy.

prediction performance of the model has been shown to
be reliable.'® Furthermore, in theory, dopamine D, re-
ceptor occupancy is not determined by plasma drug con-
centrations but by free and unbound concentrations. We
therefore compared the estimated dopamine D, receptor
occupancy levels between the model that we used in our
study'® and the method using the following formula:
f= CI(K + C), where f is the fraction of D, receptors
occupied, where C is free concentration in the plasma
samples, and where K is the drug dissociation constant
at D,. This additional analysis was not performed for ris-
peridone because of the following reason. It was possible
to estimate dopamine D, receptor occupancy for either
of risperidone or 9-hydroxyrisperidone; however, it was
unclear how to estimate the combined effects of risperidone
plus 9-hydroxyrisperidone in terms of dopamine D, recep-
tor occupancy. In addition, the percentage of free and
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unbound concentration of ziprasidone has been reported
in the literature; however, it has consistently been reported
as “greater than 99%.”* This lack of an exact value also
discouraged us from including ziprasidone in the additional
analysis. Thus, this additional analysis was performed, us-
ing the data from subjects on olanzapine (K = 2.3 ng/ml*’;
percentage of free and unbound drug concentration =
7%). Although the values obtained from those 2 models
were found to be closely correlated (Pearson’s r = .98 and
P <.0001), the values obtained from the formula were gen-
erally lower by 10%-20% than those from the Uchida pre-
diction model. Because we did not actually measure
dopamine D, receptor occupancy levels in the present
study, it was impossible to compare the precision of pre-
diction performance between those 2 methods. Therefore,
we decided to perform an additional analysis, using the
dataset of measured plasma drug concentrations and



corresponding dopamine D, receptor occupancy levels
that were used when the Uchida prediction model was de-
veloped. We estimated dopamine D, receptor occupancy
levels (n = 42), using the formula, and compared the results
with those obtained from the prediction model by Uchida
et al. As shown in online supplementary figure 1, the values
from the model by Uchida et al look more comparable to
the measured values than those from the formula; in fact,
the mean prediction error (%) and squared mean predic-
tion error (%)** also corroborate this finding (—0.1
[95% CI. —1.2-1.2] vs 23.1 [95% CI: 16.8-29.4]; 4.6
[95% CI: 3.5-5.8] vs 24.5[95% CI: 19.3-29.7], respectively).
However, this finding does not always mean that the
prediction model by Uchida et al that was used in this
study is superior to the formula that has a robust
theoretical basis. In theory, again, dopamine D, receptor
occupancy is dependent upon free and unbound drug
concentrations. This modeling issue clearly warrants fur-
ther investigations. Moreover, the region of interest in
97% of the PET data used for the development of this pre-
diction model by Uchida et al. was striatum. Although
a potential difference in D, receptor blockade by antipsy-
chotics between striatal and extrastriatal regions could be
attributable to the methodology used,* the findings in
the present study need to be replicated in future investi-
gations, using radiotracers that can assess extrastriatal
dopamine receptors. In addition, dopamine D, receptor
occupancy levels were calculated with an unconstrained
one-site occupancy model in this study. Therefore, for
example, 77% D, occupancy corresponds to 81%, 79%,
and 83% that were estimated with a maximum con-
strained occupancy of 100% for risperidone, olanzapine,
and ziprasidone, respectively.'® Even though the differen-
ces are small, it is important to remember that the esti-
mated D, receptor occupancy levels are not absolute
values.

Our focus on the dopaminergic system is not intended
to insist that neurocognitive function in schizophrenia is
solely related to effects in the dopaminergic system.
Clearly, this relationship is far more complex, and we cer-
tainly do not exclude the involvement of other systems.
For example, manipulations of the central serotoninergic
system can produce specific changes in cognitive func-
tioning.”**** We therefore estimated 5-HT, receptor
occupancy levels, using the EDsqg values reported in the
literature.*®*” 5-HT, receptors were almost saturated
in a majority of the subjects; in fact, 71.5% of the subjects
showed >90% occupancy and 92.4% showed >80% occu-
pancy, which may suggest a limited impact of the seroto-
nergic system on cognition in this study. However,
potential confounding effects through this system clearly
warrant further investigations. In addition, anticholiner-
gic effects have been reported to impair cognitive func-
tion both globally*® as well as in specific domains,
including memory*® and executive functioning.’*>' The
association between anticholinergic activity and cogni-
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tive performance are also strongly supported by the
studies that measured serum anticholinergic activity.’*>
Overall, anticholinergic burden due to all prescribed
medications was not evaluated in the present study al-
though the use of antiparkinsonian anticholinergic drugs
was taken into consideration, which has to be acknowl-
edged in light of the exposure-dependent detrimental
effects of those medications on cognition.*®

Several other limitations qualify our conclusions. First,
mean values of predicted peak and trough dopamine D,
receptor occupancy levels on the day of cognitive assess-
ment were used in this analysis; however, they did not
always represent the levels at the time of neurocognitive
assessments. Second, subjects were divided into 4 groups
according to their estimated dopamine D, receptor occu-
pancy levels in order to test the hypothesis; however, this
classification could be considered arbitrary, In our
hypothesis, we expected that effects of dopamine D,
receptor occupancy on cognitive functions would not
be simply linear but inverted U-shaped. To test this hy-
pothesis while taking other clinical and demographic var-
iables into consideration, we decided to divide subjects to
4 groups based on their dopamine D, receptor occupancy
levels and then examined the effects of dopamine D,
receptor occupancy on cognition, using a multivariate
general linear model. Still, it would have been ideal
to handle dopamine D, receptor occupancy as a contin-
uous variable from a statistical perspective. Third,
extrapyramidal symptoms are also expected to affect
cognition; we therefore included the SAS mean score
in the model but failed to find any statistically signifi-
cant effect on cognition in this study. However, this
does not always exclude any possibility of potential
effects of extrapyramidal symptoms on cognition. Sim-
ilarly, sedative effects of antipsychotic drugs could also
affect cognition, which was not taken into consideration
in the present study. These limitations clearly emphasize
the need for prospective studies with more comprehen-
sive assessments. Finally, it would have been ideal to in-
clude perphenazine that demonstrated comparable
clinical effects to newer antipsychotic drugs although
any model for the prediction of dopamine D, receptor
occupancy for this drug is not available.

In conclusion, the degree of dopamine D, receptor oc-
cupancy levels estimated from plasma concentrations of
antipsychotic drugs were associated with overall neuro-
cognitive function and vigilance in patients with schizo-
phrenia. This study shows that D, occupancy above 80%
not only increases the risk for extrapyramidal side effects
as consistently reported in the literature but also increases
the risk for cognitive impairment.

Supplementary Material

Supplementary material is available at
schizophreniabulletin.oxfordjournals.org.
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