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Abstract

Circulating barrier disruptive agonists bind specific cell membrane receptors and trigger signal 

transduction pathways leading to activation of cell contractility and endothelial cell (EC) 

permeability. Although all cells in tissues including vascular EC are surrounded by compliant 

extracellular matrix, the impact of matrix stiffness on agonist-induced signaling, cytoskeletal 

remodeling and EC barrier regulation is not well understood. This study examined agonist-induced 

cytoskeletal and signaling changes associated with EC barrier disruption and recovery using 

pulmonary EC grown on compliant substrates of physiologically relevant (8.6 kPa) stiffness, very 

low (0.55 kPa) and very high (42 kPa) stiffness. Human pulmonary microvascular and 

macrovascular EC grown on 0.55 kPa substrate contained a few actin stress fibers, while stress 

fiber amount increased with increasing matrix stiffness. Thrombin-induced stress fiber formation 

was maximal in EC grown on 42 kPa substrate, diminished on 8.6 kPa substrate, and was minimal 

on 0.55 kPa substrate. These effects were linked to a stiffness-dependent increase in thrombin-

induced phosphorylation of the Rho kinase target, myosin light chain phosphatase (MYPT1), and 

regulatory myosin light chains (MLC). Surprisingly, EC barrier recovery and activation of Rac 

GTPase-dependent barrier protective signaling reached maximal levels in EC grown on 8.6 kPa, 

but not on 0.55 kPa substrate. In conclusion, these data show a critical role of extracellular matrix 

stiffness in the regulation of the Rac/Rho signaling balance during onset and resolution of agonist-

induced EC permeability. The optimal conditions for the Rho/Rac signaling switch, which 

provides an effective and reversible EC cytoskeletal and permeability response to agonist, are 

reached in cells grown on the matrix of physiologically relevant stiffness.

© 2012 Elsevier Inc. All rights reserved.

Correspondence and requests for reprints should be addressed to: Konstantin G. Birukov, MD, PhD, Lung Injury Center, Section of 
Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave, Office N-611, Chicago, IL 
60637, Phone: 773-834-2636, Fax: 773-834-2683, kbirukov@medicine.bsd.uchicago.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Microvasc Res. Author manuscript; available in PMC 2014 May 01.

Published in final edited form as:
Microvasc Res. 2013 May ; 87: 50–57. doi:10.1016/j.mvr.2012.12.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

endothelium; hydrogels; stiffness; cytoskeleton; thrombin; monolayer recovery; Rho signaling; 
MLC; PAK1; cortactin

Introduction

The vascular endothelium functions as a semi-selective barrier for macromolecule transport 

across the vessel wall. EC respond to external stimuli by cytoskeletal rearrangements and 

activation or inhibition of contractile machinery, which determine the barrier enhancing or 

barrier disruptive EC response (Dudek and Garcia, 2001; Mehta and Malik, 2006). 

Activation of Rho GTPase and Rho-associated kinase (Rho kinase) is a key mechanism of 

EC permeability induced by barrier-disruptive and inflammatory agonists (Birukova et al., 

2004; Birukova et al., 2012b; Essler et al., 1998; Kakiashvili et al., 2009). Rho signaling is 

further potentiated in agonist-stimulated EC monolayers exposed to pathologic cyclic stretch 

(Birukova et al., 2006b). Activated Rho kinase phosphorylates and inactivates myosin light 

chain phosphatase (MLCP) by phosphorylating Thr695, Ser894, and Thr850 (Essler et al., 

1998; Fukata et al., 2001) leading to the accumulation of phosphorylated regulatory myosin 

light chains (MLC), actomyosin contraction and disruption of the endothelial barrier 

(Birukova et al., 2004; van Nieuw Amerongen et al., 2000).

In turn, recovery of EC monolayer integrity is controlled by Rac signaling. Physiologic 

activation of Rac by barrier-protective molecules (Birukova et al., 2007a; Birukova et al., 

2007b; Garcia et al., 2001; Vouret-Craviari et al., 2002) or physiologic mechanical forces 

(Birukov et al., 2002; Birukova et al., 2006b) enhances the peripheral actin cytoskeleton, 

induces peripheral redistribution of focal adhesions, and enhances the EC barrier. These 

effects are mediated by Rac1-mediated activation and phosphorylation of several Rac 

effectors including p21-associated kinase (PAK1) and cortactin (Birukova et al., 2010b; Lee 

et al., 2006; Uruno et al., 2001).

Although all cells in various tissues are surrounded by compliant extracellular matrix, the 

role of matrix stiffness in cell responses to circulating bioactive molecules has not been 

previously appreciated. In contrast to experiments in cell cultures grown on rigid substrates 

with stiffness in the GPa giga-pascals range (plastic, glass), cells in situ are surrounded by 

compliant extracellular matrix, and matrix stiffness varies in the range of 1 kPa in brain to 

~30 kPa in precalcified bone, and ~100 kPa in calcified sites of atherosclerotic rabbit 

thoracic artery (Flanagan et al., 2002; Liu et al., 2010; Matsumoto et al., 2002; Suki et al., 

2005). In lung tissue, the estimated stiffness range in the alveolar wall is ~ 5 kPa (R-45), 

although local stiffness variations in the lung parenchyma are within 0.5 – 3 kPa range and 

may increase 6–8 fold in fibrotic conditions (Liu et al., 2010). Emerging studies demonstrate 

that matrix stiffness affects cell signaling, cytoskeletal organization, levels of intercellular 

and intracellular force generation (Aratyn-Schaus et al., 2011; Krishnan et al., 2011; 

Maruthamuthu et al., 2011; Yeung et al., 2005), and may even define a fate of progenitor 

cells directing them towards neuronal, muscle or bone lineages (Engler et al., 2006). 

Alterations in matrix stiffness are associated with pathologic conditions. Increased matrix 
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stiffness has been implicated in various pathologies including cardiovascular disease, 

diabetes, aging and tumor progression (Cameron and Cruickshank, 2007; Chan and Dart, 

2011; Levental et al., 2009), and contributes to lung fibrosis by stimulating the Rho pathway 

of myofibroblast differentiation (Huang et al., 2012; Liu et al., 2010).

Although the active role of matrix stiffness in control of cell phenotype and intracellular 

signaling has been recognized, understanding of substrate stiffness-dependent regulation of 

endothelial permeability and barrier recovery remain limited. This study investigated the 

role of matrix stiffness on the agonist-induced cytoskeletal remodeling, activation of Rho 

and Rac signaling and recovery of macrovascular and microvascular EC grown on substrates 

with very low (0.55 kPa), physiologically relevant (8.6 kPa); and very high (42 kPa) 

(corresponding to fibrotic tissue) stiffness.

Materials and Methods

Reagents and cell culture

Unless specified, biochemical reagents were obtained from Sigma (St. Louis, MO). 

Reagents for immunofluorescence were purchased from Molecular Probes (Eugene, OR). 

Antibodies to phospho-Thr850 myosin-associated phosphatase (MYPT) were purchased from 

Millipore (Billerica, MA); antibody to diphospho-Ser19/Thr18 myosin light chain (MLC) 

was from Cell Signaling Inc (Beverly, MA); phospho-Ser423–PAK1 and phospho-Tyr421–

cortactin antibody were from BD Transduction Laboratories (San Diego, CA). Human 

pulmonary artery endothelial cells (HPAEC) and human lung microvascular endothelial 

cells (HLMVEC) were obtained from Lonza (Allendale, NJ), maintained in a complete 

culture medium according to the manufacturer’s recommendations and used for experiments 

at passages 5–7.

Preparation of polyacrylamide (PAA) substrates for endothelial cell cultures

PAA substrates were prepared on glass coverslips with an acrylamide/bis-acrylamide ratio to 

obtain gels with shear elastic moduli of 0.55 kPa, 8.6 kPa and 42 kPa and coated with 

collagen as characterized previously (Aratyn-Schaus et al., 2010; Yeung et al., 2005). 

Collagen was covalently attached to the top surface of the PAA hydrogel by using the 

bifunctional crosslinker sulfo-SANPAH (Pierce Thermo Scientific, Rockford, IL).

Immunofluorescence and image analysis

Endothelial monolayers plated on glass cover slips were subjected to immunofluorescence 

staining with Texas Red phalloidin to visualize F-actin, as described previously (Birukova et 

al., 2006a; Birukova et al., 2010a). The integrated fluorescence density of Texas Red 

phalloidin was measured using MetaMorph software. The results were normalized in each 

experiment.

Western blot analysis of MYPT, MLC, cortactin and PAK1 phosphorylation

Analysis of MYPT and MLC phosphorylation was used to monitor activation of Rho 

signaling, and levels of phosphorylated cortactin and PAK1 were measured as readouts of 

Rac activation, as previously described (Birukova et al., 2006b; Birukova et al., 2004).

Birukova et al. Page 3

Microvasc Res. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statistical analysis

Results are expressed as mean ± SD of three to six independent experiments. Experimental 

samples were compared to controls by unpaired Student’s t-test. For multiple-group 

comparisons, a one-way variance analysis (ANOVA) and post hoc multiple comparisons 

tests were used. P<0.05 was considered statistically significant.

Results

F-actin arrangement in control and thrombin-stimulated macrovascular and microvascular 
EC is controlled by substrate stiffness

Confluent and subconfluent EC cultures were grown on PAA hydrogels of different 

stiffness, as described in Methods. Both, confluent and subconfluent HPAEC and HLMVEC 

grown on low stiffness matrix (0.55 kPa) developed a fine network of actin filaments evenly 

distributed across the cell area. Increasing matrix stiffness caused gradual increase in actin 

stress fiber formation. In subconfluent EC cultures grown on 42 kPa substrate, more 

pronounced actin filament concentration at the cell periphery and formation of a distinct 

actin stress fiber rim were observed (Figures 1A, 2A, and 3A - left panels). Thrombin-

induced stress fiber formation was observed in confluent and subconfluent HPAEC and 

HLMVEC and increased with increasing substrate stiffness (Figures 1–3 – panels B). Of 

note, stiffness-dependent increase in stress fibers under basal conditions was less expressed 

in EC monolayers as compared to subconfluent culture. These data may indicate additional 

influence of cell-cell communications on cell responses to substrate stiffness. Most 

pronounced recovery of actin cytoskeletal structure at 30 min after thrombin treatment was 

observed in HLMVEC on 8.6 kPa substrate. Interestingly, partial dissolution of stress fibers 

after 30 min of thrombin stimulation and appearance of lamellopodia, which reflect the 

onset of EC monolayer recovery after thrombin challenge, was significantly reduced in EC 

grown on 42 kPa PAA hydrogels (Figure 3A,B).

Substrate stiffness dependent activation of Rho and Rac signaling in acute phase of 
thrombin-induced EC barrier disruption and during barrier recovery

We monitored levels of MYPT1 and MLC phosphorylation as the biochemical parameters 

reflecting the activation of thrombin-induced Rho pathway of cytoskeletal remodeling and 

EC barrier disruption (Birukova et al., 2004). Increasing substrate stiffness progressively 

enhanced thrombin-induced MYPT1 and MLC phosphorylation (Figure 4A,B,C). EC grown 

on substrate with the highest stiffness (42 kPa) exhibited the highest levels of MYPT1 and 

MLC phosphorylation under both, control and thrombin-stimulated conditions, which also 

remained elevated for a longer time. Quantitative analysis of thrombin-induced MYPT and 

MLC phosphorylation in HPAEC grown on substrates with different stiffness is shown in 

Figure 4D.

Physiologically relevant substrate stiffness supports most efficient activation of Rac 
signaling during EC barrier recovery after thrombin

Several cytoskeletal Rac effectors, such as the Arp2/3 complex, p21Arc, p21-activated 

kinase (PAK1), and cortactin control cortical actin structure (Borisy and Svitkina, 2000; 
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Weed and Parsons, 2001). Increased autophosphorylation of PAK1 at Thr423, and cortactin 

phosphorylation at Tyr421 is mediated by Rac activation and has been previously observed 

during EC barrier recovery (Birukova et al., 2012a). Thrombin challenge did not affect 

PAK1 and cortactin phosphorylation state at an early time point (5 min data not shown), but 

significantly increased PAK1 and cortactin phosphorylation at 30 min after thrombin 

treatment, the time point corresponding to the monolayer recovery phase (Figure 5A,B,C). 

Interestingly, maximal levels of PAK1 and cortactin phosphorylation reflecting stimulation 

of Rac signaling were observed in EC grown on the substrate of physiologically relevant 

stiffness, while cortactin and PAK1 phosphorylation on very soft substrate was diminished 

compared to cells on 8.6 kPa substrate (Figure 5D). Because we used only one 

physiologically relevant stiffness index, we cannot exclude that more optimal stiffness 

conditions may exist in this range and promote even more rapid monolayer recovery than on 

8.6 kPa substrate.

Discussion

This study shows substrate stiffness dependent actin cytoskeletal arrangement in 

microvascular and macrovascular EC. Both cell types grown on very soft substrates 

exhibited less F-actin stress fibers, while cells grown on physiologically relevant or very 

stiff substrates exhibited a stiffness-dependent increase in stress fibers. In addition, lung 

microvascular and macrovascular EC grown on very stiff substrate showed dramatic 

circumferential accumulation of stress fibers. These data are in agreement with other 

observations, which revealed increased stress fiber content in fibroblasts grown on 

substrates with increasing stiffness (Yeung et al., 2005). Thrombin stimulation of pulmonary 

EC exhibited modest effects on stress fiber formation when cells were grown on very soft 

substrate. Furthermore, thrombin stimulation induced a gradual increase in stress fiber 

formation in EC grown on 0.55 kPa, 8.6 kPa and 42 kPa substrates. Surprisingly, we 

observed occasional lamellopodia formation in EC on very soft matrix at early times of 

thrombin treatment. These results may reflect spatial dysregulation of Rho-Rac signaling 

upon agonist stimulation of EC grown on very soft matrices.

A stiffness-dependent increase in stress fiber formation was paralleled by activation of 

MYPT1 and MLC phosphorylation. MYPT and MLC are downstream effectors of Rho. Rho 

GTPase signaling can be activated by thrombin via receptor-dependent mechanism 

(Birukova et al., 2004) or locally at the focal adhesions via recrutitment or activation of 

focal adhesion-associated mechanosenstitive guanine exchange factors (Guilluy et al., 

2011). Thus, the observed stiffness-potentiated Rho activation in control and thrombin-

stimulated cells reflected by phosphorylation state of MYPT and MLC may be controlled by 

mechanosensing at focal adhesions and translated to actin cytoskeleletal changes driven by 

MLC phosphorylation. Taken together, these data demonstrate that enhancement of 

thrombin-induced stress fiber formation is driven by Rho-dependent barrier disruptive 

signaling, which increases unidirectionally with increase in substrate stiffness. In turn, EC 

monolayer recovery and reestablishment of intercellular contacts and a peripheral actin 

cytoskeletal rim after thrombin is associated with upregulation of Rac signaling (Birukova et 

al., 2012a; Tauseef et al., 2008). Growing EC on very stiff substrate (42 kPa) delayed the 

disappearance of stress fibers and lamellopodia formation during the recovery phase after 
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thrombin stimulation (30 min), while most efficient recovery was observed in EC grown on 

the 8.6 kPa substrate. Differences in morphological changes of EC grown on physiologic 

and very stiff substrates were associated with significantly reduced levels of Rac signaling in 

EC on very stiff substrate monitored by levels of phosphorylated PAK1 and cortactin. 

Surprisingly, activation of Rac effectors at later times after thrombin stimulation in EC 

grown on the 0.55 kPa substrate was lower than in cells on the 8.6 kPa substrate. These 

results were obtained using macrovascular EC. However, although the impact of 

macrovascular endothelium in development pulmonary edema is less evident than 

microvascular EC, the molecular mechanisms of barrier recovery in EC from both vascular 

beds share common features and critically depend on activation of cortactin and Rac1 

GTPase pathway (Birukova et al., 2007c; David et al., 2011; Tauseef et al., 2008). Taken 

together, these results demonstrate that agonist-induced Rho signaling uniformly increases 

with increasing substrate stiffness, while activation of Rac signaling by EC during recovery 

is biphasic: it is reduced on substrates with very low or very high stiffness and stimulated in 

substrates of physiological stiffness. Delayed activation of Rac signaling after rapid 

activation of Rho-dependent EC permeability is a key mechanism driving EC barrier 

recovery (Tauseef et al., 2008). However, the mechanism of such a Rho/Rac switch is 

poorly understood, and precise mechanisms orchestrating temporal changes in Rho and Rac 

activities remain to be defined.

Control of intracellular signaling by substrate stiffness is under active investigation. 

Intracellular and extracellular mechanical forces generated by the actomyosin cytoskeleton 

and extracellular matrix induce activation of protein kinases and small GTPases located at 

focal adhesions and cell-cell junctions via a process of mechanotransduction (Orr et al., 

2006). Mechanical activation of focal adhesions may stimulate Rho signaling (Bershadsky et 

al., 2006). Therefore, decreased mechanical loading of focal adhesions in EC grown on very 

soft matrix may dampen full activation of Rho by this mechanism. The mechanism of 

maximal Rac activation in EC grown on 8.6 kPa substrate post-thrombin treatment is not 

clear. Similar to Rho, Rac can also be regulated by focal adhesion complexes. Rac signaling, 

critical for cell adhesion, protrusion dynamics (Nayal et al., 2006), endothelial barrier 

restoration and barrier enhancement (Birukova et al., 2008), was stimulated by activated 

PAK1 localized in focal adhesions (Birukova et al., 2008; Nayal et al., 2006). In turn, 

pathologic cyclic stretch decreased Rac activation (Katsumi et al., 2002) suggesting 

mechanical control of Rac signaling by mechanical forces. Current published studies testing 

Rac signaling activated by mechanical stimulation were performed on plastic or silicone 

substrates with very high, non-physiologic stiffness. Thus, the role of substrate stiffness in 

the physiologic range on Rac awaits further investigation.

In conclusion, the results of this study demonstrate a monophasic, stiffness-dependent 

increase of Rho signaling in EC upon thrombin treatment and biphasic stiffness dependent 

effects on delayed activation of Rac signaling in thrombin-stimulated EC grown on 

compliant substrates. Our data show that EC grown on substrates with physiologically 

relevant stiffness display a range of Rho and Rac activation, which ensures most efficient 

permeability response and rapid barrier recovery in physiological conditions in vivo. We 

speculate that changes in the lung vascular endothelial mechanical microenvironment in 
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pathological settings of acute lung injury, and inflammation of chronic conditions (lung 

fibrosis, emphysema, diabetes) may contribute to severity of lung barrier dysfunction and 

promote chronic changes in vascular permeability initiated by circulating pathologic 

mediators. Thus, better characterization of the vascular mechanical microenvironment in 

health and disease and efforts aimed at normalization of lung vascular mechanical properties 

may improve resolution of ALI and restoration of lung barrier properties.
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Non-standard abbreviations

EC endothelial cells

HPAEC human pulmonary artery endothelial cells

HLMVEC human lung microvascular endothelial cells

MLC myosin light chain

MYPT myosin-associated phosphatase

PAK1 p21-activated kinase
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Figure 1. Stiffness dependent stress fiber formation in subconfluent human pulmonary artery 
endothelial cells (HPAEC)
A - Cells were grown on collagen-I coated polyacrylamide gels of different stiffness (0.55 

kPa, 8.6 kPa, and 42 kPa) and treated with thrombin (0.3 U/ml, 15 min). F-actin was 

visualized by immunofluorescence staining with Texas Red-conjugated phalloidin. B - 
Quantitative image analysis of thrombin-induced stress fiber formation in HPAEC under 

conditions depicted in panel A. Quantification of F-actin fluorescence intensity was 

performed as described in the Materials and Methods. *P<0.05, n=4 independent 

experiments.
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Figure 2. Stiffness dependent stress fiber formation in confluent thrombin-stimulated HPAEC 
monolayers
A - Cell monolayers were grown on collagen-I coated polyacrylamide gels of different 

stiffness (0.55 kPa, 8.6 kPa, and 42 kPa) and treated with thrombin (0.3 U/ml, 15 min). F-

actin was visualized by immunofluorescence staining with Texas Red-conjugated phalloidin. 

B - Quantitative image analysis of thrombin-induced stress fiber formation in HPAEC under 

conditions depicted in panel A. Quantification of F-actin fluorescence intensity was 

performed as described in the Materials and Methods. *P<0.05, n=3 independent 

experiments.
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Figure 3. Substrate stiffness dependent F-actin cytoskeletal remodeling in control and thrombin-
stimulated human lung microvascular EC (HLMVEC)
A - Cells were grown on collagen-I coated polyacrylamide gels of different stiffness (0.55 

kPa, 8.6 kPa, and 42 kPa) and treated with thrombin (0.3 U/ml, 15 min and 30 min). F-actin 

was visualized by immunofluorescence staining with Texas Red-conjugated phalloidin. B - 
Quantitative image analysis of thrombin-induced stress fiber formation in under conditions 

depicted in panel A. Quantification of F-actin fluorescence intensity was performed as 

described in the Materials and Methods. *P<0.05, n=4 independent experiments.
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Figure 4. Stiffness dependent activation of Rho signaling in thrombin-stimulated endothelium
HPAEC were grown on collagen-I coated polyacrylamide gels of different stiffness: A - 
0.55 kPa; B - 8.6 kPa; and C - 42 kPa; and treated with thrombin (0.3 U/ml) for indicated 

periods of time. Rho-kinase mediated phosphorylation of myosin light chain phosphatase 

(MYPT1) at Thr-850 and myosin light chain phosphorylation at Ser-19/Thr-18 was detected 

by immunoblotting with phospho-site specific antibodies. Tubulin staining was used as 

normalization control. D - Quantitaive densitometry analysis of thrombin-induced MYPT1 

and MLC phosphorylation dynamics in HPAEC grown on matrices with different stiffness. 
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*P<0.05, 0.55 kPa vs. 42 kPa; **P<0.05, 0.55 kPa vs. 8.6 kPa; n=3 independent 

experiments.
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Figure 5. Stiffness dependent activation of Rac signaling in HPAEC during recovery after 
thrombin
Cells were grown on collagen-I coated polyacrylamide gels of different stiffness: A - 0.55 

kPa; B - 8.6 kPa; and C- 42 kPa, and treated with thrombin (0.3 U/ml) for 15 min or 30 min. 

Autophosphorylation of Rac target PAK1 at Thr423 and cortactin phosphorylation at Tyr421 

reflecting activation of Rac signaling was detected by immunoblotting with phospho-site 

specific antibodies. Tubulin staining was used as normalization control. D - Quantitaive 

densitometry analysis of delayed PAK1 phosphorylation in thrombin-stimulated HPAEC 

grown on matrices with different stiffness. *P<0.05, n=3 independent experiments.
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