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ABSTRACT
Objective Drug–drug interaction (DDI) alerting is an
important form of clinical decision support, yet
physicians often fail to attend to critical DDI warnings
due to alert fatigue. We previously described a model for
highlighting patients at high risk of a DDI by enhancing
alerts with relevant laboratory data. We sought to
evaluate the effect of this model on alert adherence in
high-risk patients.
Methods A 6-month randomized controlled trial
involving 1029 outpatient physicians was performed. The
target interactions were all DDIs known to cause
hyperkalemia. Alerts in the intervention group were
enhanced with the patient’s most recent potassium and
creatinine levels. The control group received unmodified
alerts. High -risk patients were those with baseline
potassium >5.0 mEq/l and/or creatinine ≥1.5 mg/dl
(132 μmol/l).
Results We found no significant difference in alert
adherence in high-risk patients between the intervention
group (15.3%) and the control group (16.8%) (p=0.71).
Adherence in normal risk patients was significantly lower
in the intervention group (14.6%) than in the control
group (18.6%) (p<0.01). In neither group did physicians
increase adherence in patients at high risk.
Conclusions Physicians adhere poorly to hyperkalemia-
associated DDI alerts even in patients with risk factors
for a clinically significant interaction, and the display of
relevant laboratory data in these alerts did not improve
adherence levels in the outpatient setting. Further
research is necessary to determine optimal strategies for
conveying patient-specific DDI risk.

INTRODUCTION
Drug–drug interaction (DDI) alerts are commonly
employed by computerized physician order entry
(CPOE) systems and are considered a basic form of
clinical decision support.1–4 The potential benefits
of DDI alerting have not been fully realized,
however, due in part to high physician override
rates, with up to 96% of such warnings being over-
ridden.56 A well-recognized cause of this poor
adherence is ‘alert fatigue,’ a state in which physi-
cians become desensitized in the setting of fre-
quent, low-specificity alerts.7–10 A major danger of
alert fatigue is that physicians will fail to distinguish
between high-risk and low-risk warnings, leading to
failure to address critical safety concerns. We have
recently proposed a strategy for reducing alert
fatigue by highlighting alerts in patients at high risk
of a clinically significant interaction.11 This
approach, known as context-aware drug–drug inter-
action (CADDI) alerting, enhances alerts with key
laboratory data relevant to assessing an individual
patient’s DDI risk level. In this paper, we present

the results of a study evaluating the impact of the
CADDI model on physician adherence to DDI
alerts in high-risk patients. We also explore the clin-
ical impact of alert non-adherence in a high-risk
population.
To generate patient-specific alerts, the CADDI

model combines static information found in trad-
itional DDI alerts (eg, mechanism of action) with
patient laboratory data relevant to the clinical
outcome of the interaction. For example, CADDI
alerts for DDIs causing increased risk of bleeding
(eg, warfarin+azithromycin) would display the
patient’s latest prothrombin time, platelet count,
and hematocrit. Alternatively, an alert for an inter-
action causing prolonged QT duration (eg, levaquin
and amitriptyline) would show results such as
potassium, calcium, and digoxin level. The under-
lying theory for CADDI is that displaying relevant
data will help physicians quickly separate high-risk
from low-risk patients and thus improve the
‘signal-to-noise ratio’ in clinical alerting.
For this pilot study, we focused on DDIs asso-

ciated with hyperkalemia. Hyperkalemia-inducing
interactions are extremely common, as noted in a
recent study in which over 20% of all DDIs were
due to just two class interactions, both of which
were associated with hyperkalemia (ACE inhibitors
+potassium-sparing diuretics and ACE inhibitors/
angiotensin receptor blockers+potassium supple-
ments).10 DDI-induced hyperkalemia is also a
common reason for hospital admission in the
elderly and a frequent hospital complication.1213In
this study, we sought to determine whether enhan-
cing these DDI alerts with laboratory data relevant
to hyperkalemia would improve alert adherence in
high-risk patients.

METHODS
This study was a 6-month randomized controlled
trial that was started on February 22, 2011 and
concluded on August 30, 2011.

Setting and participants
The study was conducted at Wishard Health
Services in Indianapolis, Indiana. We obtained
approval for this trial from the institutional review
board at the Indiana University Medical Center.
Participants were 1029 physicians involved in out-
patient care (as defined by having written at least
one outpatient order in the preceding 12 months).
The group included 671 residents and 358 staff
physicians.
The unit of randomization in this study was the

provider. We listed the names of the eligible provi-
ders on a spreadsheet and assigned each a random
number using an online random number
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generator.14 We then sorted the list by the random number and
assigned the first half to the intervention group and the second
half to the control group. There was no significant difference in
the percentage of residents in the intervention arm (65%) and
the control arm (63%).

Intervention
The intervention was the integration of context-specific patient
laboratory data into the standard DDI alerts displayed by our
CPOE system. Figure 1 shows a standard DDI alert. Figure 2 shows
an intervention alert with integrated relevant laboratory data.

To identify those interactions associated with hyperkalemia in
our CPOE, we used regular expressions to search the clinical
effects of all DDIs in our local knowledge base for those con-
taining either ‘hyperkalemia’ or ‘increased potassium.’ This
search revealed six class interactions (combinatorial of ACE inhi-
bitors, angiotensin receptor blockers, potassium-sparing diure-
tics, and potassium supplements). Using the CADDI model,
each of these DDIs was tagged as being associated with hyperka-
lemia. In the CADDI database, hyperkalemia was mapped using
the Logical Observation Identifiers Names and Codes (LOINC)
terminology to the concepts serum potassium (2823-3) and
serum creatinine (2160-0). Thus upon activation of the study,
when any of these interactions were triggered by an intervention
physician, the most recent values for potassium and creatinine
within the past 12 months were included in the DDI alert
(figure 2). As shown, the system displayed the result value as
well as the date and a textual descriptor if abnormal (eg, high).

Hypothesis
We hypothesized that the integration of patient-specific labora-
tory data into DDI alerts would improve adherence in patients
at high risk for DDI-induced hyperkalemia. We defined high
risk as having a baseline potassium >5.0 mEq/l and/or creatinine
≥1.5 mg/dl (132 μmol/l).

Data captured
Each time a DDI was triggered, we captured the relevant patient
laboratory data and whether or not the physician adhered to the

alert. Although the control alerts did not display relevant
laboratory results, we captured the same data (ie, most recent
potassium and creatinine) for patients in both groups.
Adherence was based on the final orders for the session in
which the alert appeared, and was considered positive if the
physician either (1) did not order the triggering medication, or
(2) ordered the triggering medication but discontinued the inter-
acting drug(s) cited by the alert.

Data analysis
We used generalized estimating equations (GEE) to determine
whether there was a significant difference in alert adherence
between the intervention and control groups. GEE is a method
for estimating regression model parameters when dealing with
correlated data.15 This approach helps account for the fact that
individual physicians may be more or less likely to override
alerts based on their own clinical habits, independent of the
study group. Physician responses were modeled as binary out-
comes and the exchangeable correlation structure was assumed
within physician. Assuming a conservative baseline alert adher-
ence rate of 10%, we need a sample size of 75 physicians in
each arm to trigger hyperkalemia-associated DDI alerts in order
to detect at least a 10% increase in intervention group adher-
ence, at the two-sided type I error rate 0.05 with power of at
least 90%. Analyzes were performed in the open-source statis-
tical computing environment R using the ‘geepack’ package.16

RESULTS
During the 6-month period, 101 intervention physicians and
102 control physicians triggered a total of 2140 alerts involving
the target DDIs. More alerts were triggered by the intervention
group (n=1174) than by the control group (n=966).

Table 1 shows the alert adherence rates overall as well as
stratified by high-risk and normal risk patients. Overall adher-
ence rates were low (<20%), consistent with other studies of
DDI alerting.5 6 17 As shown, no significant difference was seen
between the intervention and control groups in terms of adher-
ence to alerts in high-risk patients. In normal risk patients,
adherence was significantly lower in the intervention group than
in the control group.

Table 2 shows adherence rates stratified by baseline potassium
levels. At lower potassium values (<3.9 mEq/l), adherence was
markedly lower in the intervention group than in the control
group. While not part of our initial hypothesis, this pattern is
not unexpected; it suggests that physicians may have been reas-
sured by lower potassium values as they imply a decreased risk
of hyperkalemia.

Figure 1 Standard drug–drug interaction alert in the Gopher order entry
system. This figure is only reproduced in colour in the online version.

Figure 2 Context-aware drug–drug interaction alert enhanced with
relevant patient laboratory data. This figure is only reproduced in
colour in the online version.

Table 1 Adherence rates to drug interaction alertsassociated with
hyperkalemia

Intervention group Control group

Alerts,
n

Adhered to,
n (%)

Alerts,
n

Adhered to,
n (%)

p
Value

In high-risk
patients

163 25 (15.3%) 167 28 (16.8%) p=0.71

In normal
risk patients

1011 146 (14.4%) 799 152 (19%) p<0.01

Overall 1174 171 (14.6%) 966 180 (18.6%) p<0.01

High-risk patients were defined as those with a baseline potassium >5.0 mEq/l or
creatinine >1.5 mg/dl.
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At higher potassium levels, we encountered two phenomena
that ran counter to expectations. First, the display of elevated
potassium levels—a clear indicator of risk for more severe
hyperkalemia—had no impact on alert adherence. Second, we
observed a step-wise worsening of adherence rates in the
control group as the baseline potassium increased. In neither
group did we see evidence that an elevated potassium level
prompted increased concern sufficient to improve adherence.

To explore these findings further and to gain insight into the
relative impact of alert overrides in patients with differing base-
line risk, we performed manual chart review for adverse events
in those patients with the highest and lowest potassium levels in
our study. We defined an adverse event as either of the following
events occurring within 90 days of the alert: (1) a potassium
level >5.5 mEq/l or (2) an emergency department visit or hos-
pital admission with a diagnosis of hyperkalemia. We selected a
total of 20 charts for review, representing the patients with the
10 highest and 10 lowest potassium values displayed to and
overridden by intervention physicians.

As shown in tables 3 and 4, 10 patients in the high potassium
group developed significant hyperkalemia with two requiring
hospital admission for further management. No adverse events
were seen in the low potassium group (table 4).

DISCUSSION
The most concerning finding in our study was the tendency of
physicians to override alerts in even the highest risk patients. In
both the control and intervention groups, adherence rates were
actually worse in patients with potassium values >5 mEq/l than
in patients with lower potassium values. Given the very straight-
forward effect of the drug interactions studied (ie, they increase

potassium), we would have expected more hesitation from phy-
sicians in overriding alerts in patients with elevated potassium
levels. Such hesitation appears warranted based on our manual
chart review, which showed that four of 10 individuals with
high baseline potassium developed severe hyperkalemia within
90 days of the overridden alert. The adverse event rate for these
patients, while drawn from a small sample, is considerably
higher than the expected rate of 2–6% based on previous
studies of alert overrides.6 18 It is also considerably higher than
in our sample of patients with very low baseline potassium
levels, in whom we saw no adverse events. Collectively, these
findings suggest that the clinical importance of a given DDI
alert should not be considered uniform across all patients but is
highly dependent on individual risk. This underscores the
potential value of DDI alerts that effectively communicate
patient-specific risk factors.

Unfortunately in terms of our intervention, we found that the
CADDI model of adding relevant laboratory data to outpatient
DDI alerts did not improve adherence in this setting. Even in
patients with laboratory values suggestive of a heightened risk
of clinically significant hyperkalemia, we saw no evidence of
increased adherence in physicians who were shown these abnor-
mal values. Interestingly, while our intervention was unsuccess-
ful in raising physician concern about high-risk patients, it
appeared highly effective in ‘reassuring’ providers when labora-
tory values suggested a low risk of adverse events. Indeed, in
those patients with baseline results conveying low risk for hyper-
kalemia (eg, potassium ≤3.9 mEq/l), substantially more alerts
were overridden when physicians were shown these values. This
finding suggests that such markers of low risk may ultimately be
used to suppress alerts when the likelihood of an adverse event
is low.

In considering why our intervention did not improve adher-
ence in high-risk patients, we offer three possibilities. The first
is that physicians simply ignored the alerts entirely. While pos-
sible, the statistically significant impact on adherence (although
negative in direction) seen in low-risk patients suggests this is
not the case. A second possibility is that patients in the high-risk
category clinically differed from lower risk patients in ways that
might actually increase the likelihood of alert non-adherence.
For example, high-risk patients may be seen more often in
clinic, resulting in more frequent monitoring and reduced phys-
ician concern about missing an interaction. Similarly, prescrip-
tions for chronic patients may be more likely to be renewals
than new treatments, lowering physician concern for an adverse

Table 2 Adherence rates stratified by baseline potassium levels

Intervention group Control group

Baseline
potassium

Total
alerts, n

Adhered
to, n (%)

Total
alerts, n

Adhered
to, n (%)

p
Value

<3 mEq/l 31 9.7 19 26.3 p=0.18
3–3.9 mEq/l 490 14.9 365 22.2 p<0.01
4–4.9 mEq/l 559 14.7 502 16.3 p=0.43
≥5 mEq/l 54 11.1 57 15.8 p=0.50

Table 3 Adverse events occurring within 90 days of interacting
drug prescriptions in the 10 intervention patients with the highest
baseline potassium values in our study

Patient ID
Baseline potassium
(mEq/l)

Adverse event

Hyperkalemia Hospital admission

1 5.6 No No
2 5.5 Yes (5.7 mEq/l) Yes
3 5.4 No No
4 5.4 No No
5 5.4 Yes (6.9 mEq/l) Yes
6 5.4 No No
7 5.4 Yes (5.7 mEq/l) No
8 5.3 Yes (5.7 mEq/l) No
9 5.2 No No
10 5.2 No No

Table 4 Adverse events occurring within 90 days of interacting
drug prescriptions in the 10 intervention patients with the lowest
baseline potassium values in our study

Patient
ID

Baseline potassium
(mEq/l)

Adverse event

Hyperkalemia Hospital admission

1 2.5 No No
2 2.7 No No
3 2.7 No No

4 2.7 No No
5 2.8 No No
6 2.8 No No
7 2.8 No No
8 2.9 No No
9 2.9 No No
10 2.9 No No
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event. Finally, many patients with abnormal potassium and cre-
atinine levels may already be on hemodialysis, an effective
therapy for hyperkalemia and potentially reassuring to physi-
cians that any resultant hyperkalemia would only be transient.
Thus, unmeasured patient factors may have contributed to our
study’s negative findings.

A third potential explanation for our findings is that physi-
cians, accustomed to overriding alerts the vast majority of the
time and unaware of any resultant harm, simply do not gauge
patient risk accurately in the context of clinical alerts. In other
settings (eg, board exams), most clinicians would likely agree
that prescribing spironolactone to a patient with a potassium of
5.2 mEq/l is ill-advised. Yet in the moment of a DDI alert, stand-
ard clinical logic may be overruled by habit. Further research,
including prescriber interviews, will be necessary to determine
whether worrisome laboratory data were misinterpreted, cor-
rectly interpreted but overruled, or simply ignored. A follow-up
study in the inpatient setting, where patient acuity may be
higher and laboratory results more recent, is also necessary
before drawing firm conclusions on the potential impact of con-
textual data on DDI alert adherence.

User interface considerations
Our results suggest that we could have done more to intensify
the signal when a patient was at high risk of an event. Rather
than simply showing the relevant laboratory values and impli-
citly assuming physicians would make the necessary connec-
tions, we might have been better served by explicitly stating the
adverse effect of the interaction (eg, hyperkalemia and possible
arrhythmia) as well as the risk level of each patient. This state-
ment of elevated risk could then be accompanied by distinct
visual cues in the alert display (eg, colors, icons, location) to
match the heightened warning.19 20 Such tiering of alert display
has previously been shown to improve adherence.21 Optimally,
physician factors such as specialty, training level, and prior alert
history would also be used in defining the context of alert deliv-
ery. While the CPOE used in this study did not support such
capabilities, our institution is currently deploying a new order
entry system that will allow a much broader range of alert deliv-
ery styles for clinical decision support research.

Study limitations
Our study considered alert adherence only in the context of
whether or not a drug was ordered, but did not consider the
impact of alerts on laboratory monitoring or changes in medica-
tion dosing. It is possible that DDI alerts could have led to
increased monitoring or lower doses for intervention patients.
In future studies, we will incorporate drug monitoring and
dosing reductions as secondary measures of adherence. Also,
our study was carried out in the outpatient setting, where base-
line potassium values may have been months old in some cases
and perceived as not relevant; had we performed an inpatient
study using potassium values from the current admission, the
intervention effect may have been greater. Another limitation of
our study was that the definition of ‘high risk’ was based on
empirical clinical judgment and reflected thresholds we per-
ceived as likely to elevate physician concern for a potential
adverse event. However, these were not validated predictive
models of hyperkalemia risk. For future studies we hope to
develop such models in a data-driven fashion in order to accur-
ately calculate DDI risk for individual patients. Finally, our
manual review for adverse events was limited in size and
focused only on comparing those with the highest and lowest
potassium values. A larger analysis using a validated predictive

model of hyperkalemia is necessary to draw firm conclusions
regarding the clinical consequence of alert overrides based on
patient risk.

CONCLUSION
Physicians adhere poorly to hyperkalemia-associated DDI alerts
even in patients with risk factors for a clinically significant inter-
action, and the display of relevant laboratory data does not
appear to improve adherence in the outpatient setting.
Additional alert enhancements, including an explicit statement
of patient risk and tiered alert designs that better distinguish
between high- and low-risk patients may help convey DDI risk
more effectively and require study in this context. Further
research is also warranted to determine physician reasons for
DDI alert overrides in patients with clinical evidence suggestive
of increased risk for an adverse event.

Acknowledgements We would like to thank Jill Warvel for her assistance with
this project.

Contributors JDD designed the study, wrote the analysis plan, analyzed the data,
and drafted and revised the paper. He is guarantor. XL helped design the study,
analyzed the data, and revised the paper. PD helped analyze the data and revised
the paper.

Funding This work was supported by the Regenstrief Institute and by Indiana CTSI
Young Investigator Award KL2 RR025760 (A Shekhar, PI).

Competing interests None.

Ethics approval Indiana University IRB approved this study.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1 Kuperman GJ, Bobb A, Payne TH, et al. Medication-related clinical decision support

in computerized provider order entry systems: a review. J Am Med Inform Assoc
2007;14:29–40.

2 Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry
and clinical decision support systems on medication safety: a systematic review.
Arch Intern Med 2003;163:1409–16.

3 Glassman PA, Simon B, Belperio P, et al. Improving recognition of drug
interactions: benefits and barriers to using automated drug alerts. Med Care
2002;40:1161–71.

4 Hunt DL, Haynes RB, Hanna SE, et al. Effects of computer-based clinical decision
support systems on physician performance and patient outcomes: a systematic
review. JAMA 1998;280:1339–46.

5 van der Sijs H, Aarts J, Vulto A, et al. Overriding of drug safety alerts in
computerized physician order entry. J Am Med Inform Assoc 2006;13:138–47.

6 Weingart SN, Toth M, Sands DZ, et al. Physicians’ decisions to override
computerized drug alerts in primary care. Arch Intern Med 2003;163:2625–31.

7 Ash JS, Sittig DF, Campbell EM, et al. Some unintended consequences of clinical
decision support systems. AMIA Annu Symp Proc 2007;6–30.

8 Smithburger PL, Buckley MS, Bejian S, et al. A critical evaluation of clinical decision
support for the detection of drug-drug interactions. Expert Opin Drug Saf
2011;10:871–82.

9 van der Sijs H, Mulder A, van Gelder T, et al. Drug safety alert generation and
overriding in a large Dutch university medical centre. Pharmacoepidemiol Drug Saf
2009;18:941–7.

10 Zwart-van Rijkom JEF, Uijtendaal EV, ten Berg MJ, et al. Frequency and nature of
drug-drug interactions in a Dutch university hospital. Br J Clin Pharmacol
2009;68:187–93.

11 Duke JD, Bolchini D. A successful model and visual design for creating
context-aware drug-drug interaction alerts. AMIA Annu Symp Proc
2011;2011:339–48.

12 Juurlink DN, Mamdani M, Kopp A, et al. Drug-drug interactions among elderly
patients hospitalized for drug toxicity. JAMA 2003;289:1652–8.

13 Uijtendaal EV, Zwart-van Rijkom JEF, van Solinge WW, et al. Frequency of
laboratory measurement and hyperkalaemia in hospitalised patients using serum
potassium concentration increasing drugs. Eur J Clin Pharmacol 2011;67:933–40.

14 RANDOM.ORG—Integer Generator. http://www.random.org/integers/(accessed 29
Feb 2012).

15 Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized
estimating equation approach. Biometrics 1988;44:1049–60.

16 R Development Core Team. R: A language and environment for statistical
computing. Vienna:R Foundation for Statistical Computing, 2010.

Duke JD, et al. J Am Med Inform Assoc 2013;20:494–498. doi:10.1136/amiajnl-2012-001073 497

Research and applications

http://www.random.org/integers/
http://www.random.org/integers/


17 Judge J, Field TS, DeFlorio M, et al. Prescribers’ responses to alerts during medication
ordering in the long term care setting. J Am Med Inform Assoc 2006;13:385–90.

18 Hsieh TC, Kuperman GJ, Jaggi T, et al. Characteristics and consequences of drug
allergy alert overrides in a computerized physician order entry system. J Am Med
Inform Assoc 2004;11:482–91.

19 Phansalkar S, Edworthy J, Hellier E, et al. A review of human factors principles for
the design and implementation of medication safety alerts in clinical information
systems. J Am Med Inform Assoc 2010;17:493–501.

20 Zachariah M, Phansalkar S, Seidling HM, et al. Development and
preliminary evidence for the validity of an instrument assessing implementation
of human-factors principles in medication-related decision-support
systems—I-MeDeSA. J Am Med Inform Assoc 2011;18(Suppl 1):
i62–72.

21 Paterno MD, Maviglia SM, Gorman PN, et al. Tiering drug-drug interaction
alerts by severity increases compliance rates. J Am Med Inform Assoc
2009;16:40–6.

498 Duke JD, et al. J Am Med Inform Assoc 2013;20:494–498. doi:10.1136/amiajnl-2012-001073

Research and applications


