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ABSTRACT
Objective To extract drug indications from structured
drug labels and represent the information using codes
from standard medical terminologies.
Materials and methods We used MetaMap and
other publicly available resources to extract information
from the indications section of drug labels. Drugs and
indications were encoded by RxNorm and UMLS
identifiers respectively. A sample was manually reviewed.
We also compared the results with two independent
information sources: National Drug File-Reference
Terminology and the Semantic Medline project.
Results A total of 6797 drug labels were processed,
resulting in 19 473 unique drug–indication pairs.
Manual review of 298 most frequently prescribed drugs
by seven physicians showed a recall of 0.95 and
precision of 0.77. Inter-rater agreement (Fleiss κ) was
0.713. The precision of the subset of results
corroborated by Semantic Medline extractions increased
to 0.93.
Discussion Correlation of a patient’s medical problems
and drugs in an electronic health record has been used
to improve data quality and reduce medication errors.
Authoritative drug indication information is available
from drug labels, but not in a format readily usable by
computer applications. Our study shows that it is feasible
to use publicly available natural language processing
resources to extract drug indications from drug labels.
The same method can be applied to other sections of
the drug label—for example, adverse effects,
contraindications.
Conclusions It is feasible to use publicly available
natural language processing tools to extract indication
information from freely available drug labels. Named
entity recognition sources (eg, MetaMap) provide
reasonable recall. Combination with other data sources
provides higher precision.

BACKGROUND AND SIGNIFICANCE
The effective use of clinical decision support (CDS)
in a computerized provider order entry (CPOE)
system has been shown to improve the safety and
quality of drug prescribing, resulting in significant
reduction in medication errors.1–4 For this reason,
the Centers for Medicare and Medicaid Services
incentive program for the ‘meaningful use’ of elec-
tronic health records (EHRs) requires the inclusion
of CPOE and CDS elements as the core set of
objectives to be achieved by all participants.5 6 To
provide timely advice during the drug prescribing
process, the CDS function needs access to knowl-
edge about drugs, such as therapeutic class, drug–
drug interactions, adverse effects, indications, and
contraindications. The availability of standardized
drug knowledge bases has been identified as one of

the critical elements that can help to realize the
benefits of CDS.7

Drug knowledge bases are generally derived
from three types of sources.8 Home-grown sources
are laborious to create and maintain. Commercial
sources can be expensive, and their use often
implies ‘locking-in’ to a specific company or
vendor. Both home-grown and commercial knowl-
edge bases often use proprietary rather than
national or international data standards, and this
hinders their interoperability and potential for
sharing across institutions or practice settings.
Publicly available knowledge bases do not have
some of the above drawbacks. However, the exist-
ing public resources are limited. The NDF-RT
(National Drug File-Reference Terminology) devel-
oped by the Veterans Administration offers a classi-
fication of drugs by their chemical structure,
mechanism of action, physiologic effect, and thera-
peutic intent.9–12 It also provides some links from
drugs to disease entities which can be indications
or contraindications. However, NDF-RT has been
found to be deficient in some aspects, such as drug
class information.13 14

One of the most comprehensive, current and
authoritative sources of drug information is already
available to the public in the form of drug package
inserts (drug labels). The drug labels for most pre-
scription drugs, and many over-the-counter drugs,
can be found on the DailyMed website,15 collab-
oratively created and maintained by the FDA (Food
and Drug Administration) and the National Library
of Medicine. To date, DailyMed delivers drug label
information for almost 40 000 drugs. These elec-
tronic drug labels follow the SPL (structured
product labeling) standard that enhances their
machine readability.8 16 17 However, SPL only pro-
vides a structure to separate the drug label into sec-
tions (eg, Clinical pharmacology, Indications and
Usage, Contraindications, Precautions, and Adverse
reactions), and the content of the individual sec-
tions is still in free narrative text. To unleash the
power locked in these narrative texts, they need to
be transformed into data encoded in standard ter-
minologies, which can then be used by the infer-
ence engine in a CDS application. We have
explored an automated way to do this by a well-
established natural language processing (NLP) tool
(MetaMap).18 19 Here we report our method and
its evaluation.
For this study, we focused on the indications

section of the drug label. A comprehensive refer-
ence table linking drugs to their indications can be
used in various ways to enhance data quality in an
EHR. It provides the basis on which a patient’s
medical conditions can be correlated with their
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medications for the purpose of mutual validation.20 Carpenter
and Gorman studied the discrepancies between a patient’s
problem list and medications list in diabetic patients and sug-
gested that this could be a good way to improve the accuracy
and completeness of both lists.21 Burton et al22 derived an algo-
rithmic way to link medications and diagnoses in an EHR with
high overall sensitivity and specificity. Poissant et al23 reported
that single-indication drugs could help to generate a more com-
plete interinstitutional patient-specific health problem list.
Galanter et al implemented an alert mechanism embedded in
their CPOE system that prompted the physician to update the
problem list when the indication for a prescribed drug was not
present. They reported that 96% of the alerts were valid, and
95% of the problems added as a result of the alert were accur-
ate.24 In a subsequent study, they showed that indication-based
prescribing could help to reduce medication errors.25 In add-
ition to evaluating our indication extraction method, we com-
pared our results with drug indication information obtained
from two independent data sources—namely, NDF-RT and the
Semantic Medline project, which extracts semantic predications
from the medical literature using NLP.26–28

METHODS
Extraction of drug indications
The extraction of drug indication information from drug labels
was done in three steps:

1. Preprocessing of drug label information—all available drug
labels (in XML format) were downloaded as a zip file
from the DailyMed website. The individual files were
automatically extracted and passed to a parser (written in
Java) which:
A. Identified and extracted the ‘Indications’ section

labeled by the LOINC code ‘34067-9’ meaning ‘FDA
package insert indications and usage section’

B. Broke down the section into the smallest text segments
identifiable by the XML tags (eg, <section>,

<paragraph>, <item>). Each segment was stored as a
separate file. The purpose of this step was to facilitate
processing by MetaMap, which performed better with
short chunks of texts than with long paragraphs.

2. Identifying medical concepts by MetaMap—making use of
the Java application programming interface to the
MetaMap’s scheduler, the text segment files were sequen-
tially submitted to MetaMap. Each MetaMap output was
stored as a separate file for further processing.

3. Postprocessing of MetaMap output—this included the fol-
lowing steps:
A. All negated concepts were removed—based on its

implementation of NegEx, MetaMap flagged negated
Unified Medical Language System (UMLS) concepts.
Only UMLS concepts that were not marked negated in
the MetaMap output were retained.29

B. Semantic-type filtering—only UMLS concepts with
semantic types that belonged to the semantic group
‘disorders’ were retained.30 31

C. Additional filtering of concepts with the semantic-type
‘finding’—based on the table of semantic reclassifica-
tion by Fan and Friedman, only concepts that were
reclassified as disorder concepts were retained.32 33

D. Filtering of high-level concepts—Some high-level
UMLS concepts (eg, disease, inflammation, infection)
were not considered useful as indications. We identi-
fied 34 such concepts, which were removed from the
results list.

The above tasks were performed by a suite of Java programs,
which we called the Structured Product Labels eXtractor or
SPL-X in short (figure 1).

Linking the extracted indications to drug codes
We used RxNorm as our reference drug terminology and the
RxNorm concept unique identifier (RxCUI) to encode the
drugs.34 In RxNorm, a drug could be represented at different

Figure 1 Structured Product Labels eXtractor system process diagram.

Fung KW, et al. J Am Med Inform Assoc 2013;20:482–488. doi:10.1136/amiajnl-2012-001291 483

Research and applications



levels of abstraction, depending on whether additional aspects
of the drug, such as dose form and strength, were specified
(figure 2). For our study, we decided that the semantic clinical
drug form (SCDF) was the appropriate level of abstraction for
the following reasons. The ingredient level was potentially
ambiguous as the indications for the same chemical compound
could be different depending on the dose form (eg, steroids as
ointments, inhalants or tablets would have different indications).
On the other hand, difference in strength alone (distinguished at
the SCD, or semantic clinical drug level) seldom affected the
indications of a drug.

Each drug label was identified by a unique identifier called
SPL_SET_ID, which was found in the RxNorm data files. By
following the relationships between the RxNorm tables and
drug entities, a drug label could be linked to a drug at the
SCDF level. One label could be used in multiple drugs (eg, the
same label could apply to multiple dose forms of the same
drug, such as aspirin oral tablet and aspirin oral solution).
Conversely, multiple drug labels could be linked to the same

drug (eg, different manufacturers of the same generic drug
would have different drug labels).

Evaluation of the results
A sample of the drug indications extracted by SPL-X was
reviewed manually by physicians. Based on pharmacy prescrip-
tion filling data used in a separate project, we identified the
drugs that were frequently prescribed. The indications for the
most frequently prescribed drugs were reviewed, using an evalu-
ation tool built with Microsoft Access (figure 3). The reviewer
could see the drug name, all extracted indications, and the indi-
cations sections of the drug labels, with the specific words that
resulted in the extraction of a particular indication highlighted.
Each indication was rated as correct, near or incorrect. Owing
to feedback from reviewers that it was often difficult to differen-
tiate between near and correct, in the final analysis the near
scores were converted into correct scores (see ‘Results’ below).
The reviewers also recorded any indication that was mentioned
in the drug label but missed by SPL-X (false negative).
Indications that the reviewer knew about but were not men-
tioned in the drug label were not counted as false negatives. To
measure the inter-rater variability among the reviewers, 20
drugs were reviewed by all reviewers, the rest were reviewed by
a single reviewer. A failure analysis was done on the false posi-
tive and false negative indications for the 20 shared drugs.

Comparison with other independent data sources
Drug-indication pairs were extracted from the NDF-RT through
the UMLS by following the relationships ‘may_treat’ and ‘may_-
prevent’. The NDF-RT indications were mostly applied to the
IN or SCD level, and were propagated to the SCDF level
through the RxNorm relationships. Semantic associations
between drugs and the diseases they might treat were extracted
from Medline citations in the Semantic Medline project. These
associations were mostly at the IN level and were similarly

Figure 2 RxNorm drug entities at different levels of abstraction.

Figure 3 Drug-indication verification tool.
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propagated to the SCDF level. These two datasets were com-
pared with the output from SPL-X.

Statistical analysis
The performance of SPL-X was measured by the standard preci-
sion, recall and F score statistics. Inter-rater agreement was mea-
sured by pairwise κ statistics and the Fleiss κ statistic for
multiple raters, calculated using the R package for statistical
computing.35 36

RESULTS
We downloaded 7063 drug labels from the DailyMed website in
March 2010. Among them, 266 labels were non-human drugs
and were excluded. SPL-X processed the 6797 labels and sub-
mitted the text chunk files to MetaMap. After applying the neg-
ation, semantic type, and high-level concept filters, we
generated a final table with 19 473 unique drug–indication
pairs. In the table, the drugs were identified by their RxNorm
RxCUIs (at the SCDF level), and their indications were identi-
fied by UMLS CUIs. There were altogether 2104 unique
RxCUIs and 2910 unique CUIs. The full table and results of the
manual review can be downloaded as an appendix A to this
article.

The 300 most frequently prescribed drugs were chosen for
manual review by seven physicians. Each physician reviewed 60
drugs, of which 20 were common to all reviewers. Owing to a
software glitch, two of the unshared drugs did not display cor-
rectly in the tool, so only 298 drugs were finally reviewed. The
20 shared drugs contained a total of 172 indications. Each indi-
cation was given a score of ‘C’ (correct), ‘N’ (near), or ‘I’ (incor-
rect) by each reviewer. After the review, some reviewers
commented that it was often difficult to differentiate between
‘N’ and ‘C’; the ‘N’ category was used only sparingly. Among
the 1204 scores for the 172 indications of the shared drugs,

there were only 108 (9%) ‘N’ scores. For the 62 indications that
contained at least one ‘N’, in the majority of cases (55 indica-
tions) there were more ‘C’ than ‘I’ for that particular indication
among the reviewer scores. In 46 indications with at least one
‘N’, the rest of the scores were all ‘C’. For this reason, we
decided to collapse our categories and convert all ‘N’ to ‘C’. We
used the results from the 20 shared drugs to assess inter-rater
agreement. Pairwise κ values based on the two-category scores
ranged from 0.515 to 0.914 (table 1). The overall Fleiss κ for
multiple raters was 0.713 for the two-category scores.

The results of the manual evaluation are summarized in
table 2. The final score for the 20 shared drugs was calculated
by simple majority vote for each indication from the seven
reviewers. Using the consensus judgments for the 20 shared
drugs and individual judgments for the 278 unshared drugs, we
evaluated SPL-X extraction results. The overall recall, precision,
and F score of SPL-X were 0.95, 0.77, and 0.85, respectively.

Failure analysis of the false-positive cases (incorrect indica-
tions) among the shared drugs disclosed four types of errors
(table 3). In 25 cases (57%), MetaMap identified the wrong
concept. Word sense disambiguation remained a major weakness
of MetaMap in the presence of ambiguous terms, such as the
example shown in which ‘(bacterial) strain’ was confused with
‘(muscle) strain’ (note that to achieve higher recall we allowed
over-matching of the terms and we did not use the MetaMap
word-sense disambiguation option).18 NegEx failed to pick up
some negated concepts, which could be related to insufficiency
of the word-length window.

The remaining two types of false-positive results were not
related to NLP itself. The concepts identified by MetaMap cor-
rectly represented the meaning in the drug label, but they were
not considered correct indications for our use case. Some
medical conditions mentioned in the indications section were
not indications. For example, hypertension was mentioned in
the indication section of the drug label for potassium chloride.
This was because some patients with hypertension could be
taking diuretic agents, which could lead to hypokalemia, which
might then require prescription of potassium chloride.
However, hypertension itself was not an indication for this
drug. For our study, we compiled a list of very general (or high-
level) concepts (such as disease, infection) that were not useful
as indications, and excluded them from our results. However,
the list was incomplete and some high-level concepts (eg, lesion)
were missed, contributing to the incorrect indications.

Among the 15 false-negative results (missing indications) in
the shared drugs, nine indications were present in the UMLS
(eg, anemia of chronic renal failure patients) but not found by
MetaMap. The other six indications were not present in the
UMLS (eg, recurrent calcium oxalate calculi).

Table 1 Pairwise κ values for the two-category scores (R1–R7,
the seven reviewers)

R1 R2 R3 R4 R5 R6 R7

R1 1 0.914 0.800 0.783 0.661 0.787 0.561
R2 1 0.772 0.752 0.629 0.787 0.527
R3 1 0.690 0.693 0.844 0.561
R4 1 0.764 0.769 0.654
R5 1 0.648 0.693
R6 1 0.515
R7 1

Table 2 Results of manual review of the extracted indications

Shared drugs (reviewed by all reviewers) Unshared drugs (reviewed by one reviewer) Combined

Number of drugs 20 278 298
Number of indications 172 3296 3468
Average indications/drug (range) 8.6 (5–16) 11.9 (1–130) 11.6 (1–130)
Correct indications 128 2546 2674
Incorrect indications 44 750 794
Missing indications 15 127 142
Recall 0.90 0.95 0.95
Precision 0.74 0.77 0.77
F score 0.81 0.85 0.85
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The NDF-RT data provided indications for a total of 6554
drugs (at the SCDF level), of which 1755 drugs were present in
our drug–indication table (83% of the 2104 drugs in our table).
For these 1755 drugs, there were 9935 unique drug–indication
pairs, of which 1966 pairs were exactly the same as our results
(ie, the same drug paired with the same indication). Among the
1966 drug–indication pairs of this concordant subset, 421 had
been manually reviewed and 409 were found to be correct,
representing a precision of 97% for this subset. Semantic
Medline data yielded indications for a total of 6074 drugs (at
the SCDF level), among which 1608 drugs were also in our
drug–indication table. Among these 1608 drugs, there were
148 116 unique drug–indication pairs, of which 4040 were
exact matches of our results. Among the 4040 drug–indication
pairs in the concordant subset, 977 were manually reviewed
and 905 were found to be correct, representing a precision of
93% (table 4).

DISCUSSION
Many studies that linked medical problems to medications used
special home-grown drug–indication reference tables. These
tables were often hand-crafted by physicians or pharmacists, and
the process was labor-intensive and time-consuming. The scal-
ability of the manual approach to thousands of drugs is ques-
tionable. NDF-RT fills this gap to some extent by providing
semantic relationships between drugs and indications which are
encoded in standard terminologies. However, NDF-RT has been
found to be incomplete in some areas. Information extracted
from the drug labels can be a useful alternative source of drug
information. Duke and Friedlin used NLP to extract adverse
reactions from drug labels and to map them to MedDRA terms,
and they achieved very good results.37 38 But their NLP
program was not available to others, nor did they describe their
algorithm in sufficient detail to allow it to be replicated else-
where. In this study, we report our method based on publicly
available resources.

One potential use of SPL-X is to supplement or augment
NDF-RT. For drugs that are not linked to indications in
NDF-RT, SPL-X can provide some useful information. For
drugs that are covered by NDF-RT, SPL-X can suggest add-
itional indications that have been missed. When our results were
corroborated by Semantic Medline predications, which were
also computationally generated (no human review involved), the
precision increased from 0.77 to 0.93. By reviewing a small
sample of indications discovered by SPL-X, corroborated by
Semantic Medline predications but not found in NDF-RT, we
found that a lot of them could be useful additions to NDF-RT.
Some examples are ‘coronary heart disease’ for nitroglycerin
patch, ‘bronchial spasm’ for albuterol inhaler, and ‘atrophy of
vagina’ for estradiol patch. Our method is not limited to drug
indications and can be applied, with minor modifications, to
other sections of the drug label whose primary content is within
the realm of findings, symptoms, and diseases, such as contrain-
dications and adverse effects.

In this study, we achieved an overall recall of 0.95 and preci-
sion of 0.77. One possible way to improve the performance of
our method might be to employ machine learning techniques.
For example, when we parsed the labels, we gathered informa-
tion about where a text chunk came from (eg, a table, list or
paragraph) based on the XML tags. It is possible that the text
chunks coming from lists or tables, which are normally shorter
and more concise, will contain less extraneous information
which caused some false-positive results in our study.
Theoretically, we could have given more weight to the results
derived from lists or tables to improve precision.

Another possible way to tweak weighting is by the MetaMap
score, which indicates the level of match between the input text
and the target UMLS concept. The fact that a drug can have
more than one drug label can also be exploited. Although drug
labels provided by different drug companies for the same drug
are often verbatim copies, when substantively different labels
for the same drug are available they could potentially be used to

Table 4 Comparison of SPL-X output with drug–indication pairs extracted from NDF-RT and Semantic Medline

NDF-RT data Semantic Medline data

Drugs Drug–indication pairs Drugs Drug–indication pairs

Indications extracted 6554 42507 6074 696297
Drug also in SPL-X output 1755 9935 1608 148116
Drug–indication pair same as SPL-X output (concordant subset) 1108 1966 1264 4040
Manually reviewed 209 421 234 977
Correct indications 208 409 231 905
Precision (concordant subset) 0.97 0.93

NDF-RT, National Drug File Reference Terminology; SPL-X, Structured Product Labels eXtractor.

Table 3 Failure analysis for false-positive indications

Type of error

Example Number of
cases (%)Drug Original text (matching string italicized) Concept identified

1. Wrong concept identified Dexamethasone/tobramycin
ophthalmic suspension

‘Staphylococci, … penicillin-resistant strains’ Muscle strain 25 (57)

2. Negated concepts Dexmethylphenidate extended
release capsule

‘Stimulants are not intended for use in …primary psychiatric
disorders, including psychosis’

Psychotic disorders 2 (5)

3. Not an indication Potassium chloride extended
release tablet

‘The use of potassium salts in patients receiving diuretics for
uncomplicated essential hypertension is often unnecessary…’

Uncomplicated
hypertension

14 (32)

4. High level concepts Cimetidine oral tablet ‘Treatment is indicated for 12 weeks for healing of lesions…’ Lesion 3 (7)
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validate each other. False-positive results due to undiscovered
high-level concepts can be avoided by updating our exclusion
list. Word-sense disambiguation and negation detection are the
main causes of NLP-related errors in our study. They are
not specific to our application, but are common, known
challenges in NLP.

Further discussion of these problems is beyond the scope of
this paper. Improving the recall will be more difficult since the
baseline is already quite high. A considerable portion of the
missed indications (six out of 15) is not present in the UMLS
and will not be recognizable by our method. Some of the
corpus-based methods that infer semantic types of the
out-of-vocabulary terms could be used to deal with the coverage
problem in the future.39

We have also carried out a systematic appraisal of the manual
review process, which was not reported by many authors. In
order to measure the inter-rater agreement, our evaluation
process had a 33% overlap of the reviewed drugs between
reviewers. Initially, we thought that a third category of ‘near
match’ (in addition to ‘correct’ and ‘incorrect’) would be neces-
sary to capture the marginal cases. It turned out that the extra
category was not necessary. In many cases, a ‘near’ score was
given because additional information in the drug label was not
covered by the UMLS concept. For example, MetaMap identi-
fied the concept ‘gastroesophageal reflux disease’ where the
drug label said ‘erosive gastroesophageal reflux disease’. For
most intents and purposes, the identified concept would be
good enough to be the indication. In this case, all reviewers
rated ‘correct’ except for one who rated ‘near’. Since the ‘near’
score was used infrequently, and most of them were associated
with more ‘correct’ than ‘incorrect’ scores, we removed the
extra category and converted all ‘near’ to ‘correct’ scores. The
two-category Fleiss κ of 0.713 shows that there is good agree-
ment between the reviewers and supports the reliability of the
review process.

CONCLUSION
In order to make use of the rich information in drug labels for
CDS or other purposes, it is necessary to extract and encode the
information in standard terminologies. Using a publicly available
NLP resource (MetaMap), we built a drug label information
extractor, SPL-X. We processed the ‘Indications’ section of over
6000 drug labels and developed a reference table linking drugs
to their indications, encoded in RxNorm codes (RxCUI) and
UMLS codes (CUI), respectively. Manual review of the results
showed that SPL-X has a recall of 0.95 and precision of 0.77.
Combination with other independent data sources improves the
precision. The same method can be used to extract information
from other sections of the drug label, such as contraindications
and adverse effects.
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