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ABSTRACT
Objective Social networks have been used in the study
of outbreaks of infectious diseases, including in small
group settings such as individual hospitals. Collecting
the data needed to create such networks, however, can
be time consuming, costly, and error prone. We sought
to create a social network of hospital inpatients using
electronic medical record (EMR) data already collected
for other purposes, for use in simulating outbreaks of
nosocomial infections.
Materials and methods We used the EMR data
warehouse of a tertiary academic hospital to model
contact among inpatients. Patient-to-patient contact due
to shared rooms was inferred from admission-discharge-
transfer data, and contact with healthcare workers was
inferred from clinical documents. Contacts were used to
generate a social network, which was then used to
conduct probabilistic simulations of nosocomial
outbreaks of methicillin-resistant Staphylococcus aureus
and influenza.
Results Simulations of infection transmission across the
network reflected the staffing and patient flow practices
of the hospital. Simulations modeling patient isolation,
increased hand hygiene, and staff vaccination showed a
decrease in the spread of infection.
Discussion We developed a method of generating a
social network of hospital inpatients from EMR data.
This method allows the derivation of networks that
reflect the local hospital environment, obviate the need
for simulated or manually collected data, and can be
updated in near real time.
Conclusions Inpatient social networks represent a
novel secondary use of EMR data, and can be used to
simulate nosocomial infections. Future work should focus
on prospective validation of the simulations, and
adapting such networks to other tasks.

BACKGROUND AND SIGNIFICANCE
Hospital acquired infections (HAIs) are infections
contracted during the course of hospital-based
treatment of an unrelated condition. HAIs include
surgical site infections, catheter-related urinary
tract infections, ventilator-associated pneumonia,
and Clostridium difficile associated diarrhea,
among others.1 HAIs can occur sporadically or in
the setting of outbreaks, in which infection spreads
rapidly through contact between patients and their
environments, or patients and their healthcare
workers (HCWs). For example, numerous hospital
outbreaks of methicillin-resistant Staphylococcus
aureus (MRSA) have been described,2 and respira-
tory viruses such as influenza can spread rapidly
through a hospital environment, infecting both
patients and HCWs alike.3

HAIs are generally considered to be preventable
adverse events, and thus constitute an important
target in the efforts to improve the quality and
safety of healthcare delivery worldwide. HAIs lead
to prolonged hospital stays, disability, antimicrobial
resistance, high costs, and excess mortality. In
developed countries, 3.5% to 12% of hospitalized
patients acquire at least one HAI, with about
4 million cases occurring annually in Europe, and a
further 1.7 million cases in the USA.4 Such infec-
tions are not only highly prevalent, but deadly,
with a mortality rate of nearly 6%.5 In the USA,
the direct costs associated with HAIs have been
estimated at greater than $30 billion annually.6

Previous work has resulted in a variety of
approaches to the mathematical modeling of the
spread of infectious diseases. Traditionally, epide-
miologists have used differential equations to
model the dynamics of disease spread in commu-
nity settings.7–9 Such deterministic systems,
however, may be less accurate in approximating the
behavior of smaller, confined environments such as
hospitals, in which the point prevalence of a given
infectious pathogen can vary substantially, and sto-
chastic effects become significant.10–17 Moreover,
differences in the types of locations and the roles
of individuals must also be accounted for. A nurse
in the intensive care unit (ICU), for example, may
have sustained contact with a small number of
patients, all within the same physical space,
whereas a consulting physician may visit many
patients, both in and outside of the ICU, and thus
have a very different role in the propagation of an
infectious outbreak.
More recently, social networks have been investi-

gated as a tool to model infection transmission.8 18–20

In general, such models represent individuals as
nodes, and the epidemiologic links between them as
edges. These methods have been used to model com-
munity-based health problems such as smallpox,10 21–23

H5N1 influenza,24 obesity,24 and sexually transmit-
ted infections.25 Infection in the hospital setting has
been modeled to a lesser extent.21 26 27 Stochastic
simulations using such contact networks have been
used to derive insights into the dynamics of how
HAIs are propagated.10 12–15 17 21–23

One specific challenge faced by social network
modeling is to collect the data that describe the
nodes and edges. In some simulation-based studies,
edges are generated by a series of random permuta-
tions, in order to evaluate the effects of different
connections.20 28 In community-based outbreaks,
such as outbreaks of sexually transmitted infec-
tions, contact between individuals can be deter-
mined by interviewing affected individuals,29 or by
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direct observation of patients and their surroundings.25

Newer approaches include the use of web-based surveys to
characterize temporal patterns of social contact among larger
groups.30 In hospital settings, contacts among patients and
HCWs can also be determined based on direct observations by
researchers.27

Each of these methods has important limitations that may
impede the successful implementation of social network analysis
techniques.31 Simulated connectivity data may be inaccurate or
unrealistic. Data from direct observation may be costly to
collect, and result in networks that lack generalizability. While
survey data may be easier to collect, these may lack sufficient
detail and completeness to yield realistic models. The increasing
abundance of electronic medical record (EMR) data presents an
opportunity to provide highly granular and accurate information
regarding the epidemiologic links that connect hospital inpati-
ents and staff.

In this study, we created a social network of hospital inpati-
ents using EMR data, in which patients are connected according
to shared rooms and shared contact with HCWs. We used a
modular design structure to allow the incorporation of add-
itional epidemiological data where available. We then used the
network as a platform to simulate nosocomial outbreaks of both
MRSA and influenza, and identify potentially mitigating
interventions.

MATERIALS AND METHODS
The study was conducted using EMR data collected at Stanford
University Medical Center, a 611-bed academic hospital. All clin-
ical data were extracted from the Stanford Translational Research
Integrated Database Environment (STRIDE), a research and devel-
opment project at Stanford University that includes a comprehen-
sive clinical data warehouse.32 Data were fully de-identified and
date-shifted in order to maintain compliance with Health
Insurance Portability and Accountability Act (HIPAA) guidelines.
The University’s Institutional Review Board deemed the project to
be non-human subjects research, and granted approval for the
extraction and analysis of de-identified data.

Data extraction
We extracted data covering a 70-day period of hospital admis-
sions, all of which were used to derive summary statistics. In
order to eliminate boundary cases, only data from days 35–45
were used in the simulations. All patients were included, result-
ing in 4891 unique patient-days. Data were retrieved by means
of structured SQL queries designed to run against the STRIDE
database schema. We extracted data from the hospital’s
admission-discharge-transfer (ADT) system, which provides
room and bed location, as well as dates and times for both
admission and discharge to and from each bed. In order to rep-
resent connections based on shared contact with HCWs, we
extracted metadata from clinical documents, which include the
document type, a unique anonymized author identifier, and the
author’s HCW role type (eg, ‘occupational therapist,’ ‘registered
nurse,’ ‘anesthesiologist,’ etc).

Data aggregation and graph formation
We developed a Python library that uses data files derived from
the SQL queries in order to generate pairwise connections
between individual patients based on sharing of rooms, shared
contact with HCWs, or both. For each calendar day, we calcu-
lated the amount of time in seconds during which two patients
were in the same room at the same time. For shared contacts
with HCWs, we used a directional approach in which one

patient was considered to be connected to another if a HCW
had written a clinical note on the first patient within the 2 h
preceding their writing a note on the second. One of us (DMM)
provided domain knowledge of the care of hospital inpatients,
in order to determine which HCWs were likely to have direct
physical contact with patients, and which clinical document
types were likely to reflect a direct physical encounter with a
patient. These likelihoods were compared with empiric data
generated in a separate study by Polgreen et al,27 in order to
verify their validity. Based on these evaluations, a binary value
was assigned to each HCW role and note type (see online
supplementary table 1). These were then used to infer shared
contact with a HCW between each pair of patients on each day.
Weights corresponding to the transmission probabilities were
then generated for the graph’s edges, based on a function of the
room-sharing time, and shared HCW contact.

We combined the networks for successive calendar days into a
directed acyclic graph (DAG) of epidemiologic links that change
with time. This DAG was used as the framework for the prob-
abilistic simulations of infectious outbreaks. We also evaluated a
number of network and hospital characteristics, including the
number of visits per ward, and the ward-specific distributions of
length of stay.

Probabilistic model of infection spread
We used the social network described above to develop a prob-
abilistic model of the spread of infection through the hospital
(figure 1). The model consists of a group of N hospital inpati-
ents that persists over T days. There are therefore NT state
variables qi,t for i∈{1...N} and t∈{1...T}, where qi,t is the infec-
tion state of patient i on day t. Once a patient is infected, the
duration of the infection in days (d) is drawn from a discrete
distribution, d∼Pdur, where Pdur∈{1…D}, and D is the
maximum duration allowable. Each state variable qi,t has
domain {S, I1,… , ID, R}, where S indicates the patient is not
infected but susceptible, R indicates the patient is recovered
from infection, and Id indicates that the patient is currently
infectious and will remain so for d−1 more days. I1 indicates
the patient will enter the recovered state on the next day.

A patient can transition from the susceptible state (S) to an
infectious state (Id for some d) by acquiring the infection from
another patient (figure 1A). An infection passed from an
infected patient i on day t−1, to a second patient, j, on day t,
must travel along a link, k, which is a potential route of infec-
tion associated with a probability pk. This probability reflects
the strength of association between i and j as determined by
either the room-sharing or HCW-sharing parameters, depending
on the type of link. For room-sharing links, pk depends on the
duration of shared-room contact:

Pk ¼ 1� expðtWÞ

where τ is a constant specified by the user based on how conta-
gious the disease is, and W is the duration of room-sharing in
seconds. For HCW-sharing links, the probabilities (pk) are all
set to the same value, after clinical documents deemed not to
reflect physical contact have been excluded, as described
above.

Let Ki,t be the set of incoming links for patient i on day t, and
let jk be the source patient of link k. Let Ii,t be a binary variable
indicative of infection, where Ii,t=1 (infected) if qi,t∈{I1,… , ID},
and 0 (not infected) if qi,t∈{S,R}. Let q*,t denote the set of states
for all patients on day t. The probabilities of each possible
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transition qi,t−1→qi,t are then as defined by the following set of
equations:

Pðqi;t ¼ Sjqi;t�1 ¼ S; q�;t�1Þ ¼
Y
k[Ki;t

ð1� pkÞIjk ;t�1

Pðqi;t ¼ Idjqi;t�1 ¼ S; q�;t�1Þ ¼ PdurðdÞ

� 1�
Y
k[Ki;t

ð1� pkÞIjk ;t�1

0
@

1
A for 1 � d � D

Pðqi;t ¼ Rjqi;t�1 ¼ R; q�;t�1Þ ¼ 1

Pðqi;t ¼ Idjqi;t�1 ¼ Idþ1; q�;t�1Þ ¼ 1 for 1 � d � D

Pðqi;t ¼ Rjqi;t�1 ¼ I1; q�;t�1Þ ¼ 1

Simulation analysis framework
Using the probabilistic model described above, we simulated
nosocomial outbreaks of both MRSA and influenza. We used
parameters based on empirically derived estimates from the
medical literature, and tested the effects of various infection
control measures. Simulations were initiated by artificially
infecting an individual patient or small group of patients,
running the simulation forward in time, and counting the
number of infections within a target set of patients at a pre-
specified endpoint. The source set and target set were defined
by filtering on certain boolean attributes of patient nodes, such
as ‘the patient was in the operating room on this day.’ Using this
simple kernel, a variety of complex analyses can then be com-
posed, such as ‘estimate the probability that a patient who is on
the orthopedic unit will become infected by an outbreak started
in the emergency department (ED) three days earlier.’

We conducted a number of simulations originating in the ED,
a medical step-down unit, and a psychiatry unit, using the para-
meters shown in table 1. For each of the various hospital depart-
ments, we estimated the probability that any given patient
would become infected after 15 days (for MRSA) or 6 days (for
influenza).

RESULTS
A visual representation of the social network is shown in figure 2.
Most connections between patients were based on shared HCWs,

with fewer based on room-sharing. The greatest number of patient
encounters occurred in the ED, followed distantly by the main
operating room (see online supplementary figure 1). These depart-
ments had relatively short lengths of stay, whereas departments
such as the ICUs and psychiatry units had longer stays, with
greater variance (see online supplementary figure 2). The probabil-
ities for the spread of influenza between individual departments
are shown in figure 3. The risk of spread between wards was great-
est between the two psychiatry units, and between the cardiac unit
and coronary care unit. Simulated outbreaks initiated in the bone
marrow transplant unit tended to propagate locally. Both the ED
and the operating areas (main operating room, ambulatory surgery
center, and catheterization angiography laboratory) tended to have
low levels of incoming infection. Results were similar for MRSA,
but with lower probabilities overall (see online supplementary
figure 3).

The MRSA simulations predicted that an infection originating
in the medical step-down unit propagated to the ICUs, and to a
lesser extent, the neurosurgical, orthopedic, and cardiac units
(figure 4). Areas such as the ED and operating rooms were rela-
tively spared. A 50% increase in hand hygiene compliance sub-
stantially mitigated the risk of transmission, while preserving the
overall pattern of spread. In the case of the simulations initiated
in the psychiatric unit, the infection spread almost exclusively
within the originating unit and the second psychiatric unit, with
little effect on the other departments (figure 5). Modeling the
exclusive use of private rooms on the psychiatry units predicted
a decrement of one-third to one-half in the probability of
infection.

Table 1 Parameters for outbreak simulations

Parameter MRSA Influenza Source

Mean duration of colonization
(MRSA) or infection (influenza)

75 days 3 days Kajita et al,13

van den Dool et al17

Baseline room-sharing probability
of infection (day−1)

0.12 0.26* Nerby et al,33

van den Dool et al17

Baseline HCW-sharing probability
of infection (contact−1)

0.0169† 0.13* McBryde et al,15

van den Dool et al17

Vaccine efficacy NA 86% Thomas et al34

*Based on estimating HCW contact as ‘casual’ contact, and room-sharing as ‘close’
contact.
†Based on single contact risk squared.
HCW, healthcare workers; MRSA, methicillin-resistant Staphylococcus aureus.

Figure 1 Probabilistic model for the spread of influenza within a social network, using a ‘S-I-R’ (susceptible-infected-recovered) schema. (i) Each
day is considered as a collection of nodes that represent the patients in the hospital on that day. Individual patients are either infected, or not
infected (one of ‘Susceptible’ or ‘Recovered’), and transition between states based on their state at the previous time step, as well as the state of
their incoming nodes, connected by either room-sharing or healthcare workers-sharing links. (ii) The infected state is divided into sub-states
(I1 through ID) that reflect the number of days remaining during which the patient is infectious. Patient transitions between the various states are
governed by the probabilities shown. Li,t is the set of incoming links for patient i on day t. jℓ is the source patient of link ℓ. Ii,t is a binary variable
indicative of infection, where Ii,t=1 (infected) if qi,t∈{I1,… ,ID}, and 0 (not infected) if qi,t∈{S,R}. q∗,t denotes the set of states for all patients on day
t. Solid arrows represent deterministic transitions, while dashed arrows represent probabilistic transitions (see text for details). HCW, healthcare
worker.
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The influenza simulation predicted that an infection originat-
ing in the ED spread diffusely throughout the hospital, without
propagating in the ED itself (figure 6). Staff vaccination was pre-
dicted to decrease the spread of infection markedly.

DISCUSSION
While social networks have proven to be useful tools in model-
ing and investigating large scale outbreaks and pandemics, their
use in smaller settings such has hospitals has been less extensive.
The data required to build such networks are often collected
manually, and as such can be incomplete, inaccurate, and costly
to gather. An alternative to this approach is to rely on simulated

data, which may make numerous assumptions and be overly
simplistic. A potential solution is enabled by the increasing
prevalence of EMRs, which represent an important and valuable
source of health information available for secondary uses.

Our study is the first social network of hospital inpatients
generated using EMR data. Our approach has three important
benefits. First, rather than collecting data de novo, we used exist-
ing data collected in the course of clinical care, which was then
retrieved from an EMR data repository. Second, the data
derived from a particular hospital’s EMR reflect the local staff-
ing and patient flow patterns unique to that institution, and are
therefore ideally suited to characterize the nodes and edges of
the network. Third, our approach allows for near real-time
updating of social networks, as the EMR data itself is updated.
This feature ensures that changes in staffing and patient flow
practices are reflected in updated versions of the network, in
contrast to empirically derived networks that may become
outdated.

Our results demonstrate the utility of social networks in
deriving insight into the spread of HAIs. In the case of an influ-
enza outbreak that starts in the ED, our model predicts that the
infection spreads throughout the hospital, predominantly to the
medical wards and intensive care areas that are common destina-
tions for patients admitted from the ED. Despite the high
number of patients co-localized in the ED, the probability of
infection in the ED itself remains low, which likely reflects the
transient nature of admissions to that unit. By contrast, the
model MRSA outbreak originating in one of the psychiatry
units spreads extensively through this unit, as well as to the only
other psychiatric unit in the hospital. This pattern reflects the
staffing model of these units, which relies on specialized practi-
tioners who are likely to travel between these two units, but not
elsewhere in the hospital.

Figure 2 Social networks of hospital inpatients derived from
electronic medical record data in which patients are represented by
nodes, and the epidemiologic links between them are represented by
edges. Images shown depict patients on an single medical ward, on a
single day. (A) Network showing links based on room-sharing only.
(B) Network showing links based on healthcare workers-sharing. Closed
circles represent patients on the medical ward itself, while open circles
represent patients in other units.

Figure 3 Matrix showing the
probabilities for spread of influenza
between wards. The rows are the
source departments and the columns
are the target departments. The
shading in each cell indicates the
probability of disease transmission
from the ward indicated by the row,
to the ward indicated by the column,
with darker cells reflecting higher
probabilities. BMT, bone marrow
transplant; CCU, coronary care unit;
ICU, intensive care unit; OR, operating
room.

430 Cusumano-Towner M, et al. J Am Med Inform Assoc 2013;20:427–434. doi:10.1136/amiajnl-2012-001401

Research and applications



Our results also illustrate the utility of social networks in mod-
eling the effects of infection control interventions such as patient
isolation, hand hygiene, and staff vaccination. In the simulations
of MRSA, spread is mitigated by eliminating the room-sharing
connections, suggesting that patient isolation could be efficacious
in limiting the scope and extent of an outbreak. In the case of
influenza, decreasing the weight of HCW-sharing in the model
results in a substantial reduction in the probability of transmis-
sion, suggesting that staff vaccination may be an effective infec-
tion control measure. With the model framework established,
simulation parameters can be adjusted to reflect the infection
dynamics of different types of nosocomial diseases.

There are numerous use cases for EMR-derived social net-
works, most notably in the area of infection control.
Hospital-based infection control practitioners (ICPs) could use

such networks to determine staffing and patient flow practices
that might increase the risk of propagating HAI outbreaks, and
to model the impact of specific changes in said practices. When
combined with additional EMR data, such as vital sign, labora-
tory, and microbiologic data, social networks could be used to
track numerous different HAIs within the inpatient environ-
ment, and provide real-time analytics to ICPs. Future work in
this area should focus on applying machine learning methodolo-
gies to social networks in order to generate predictive models of
the spread of HAIs based on clinical features. EMR-derived
social networks could also be developed to model the effects of
social structures on practice patterns within the hospital, and to
optimize patient flow pathways.

We used a modular design in constructing the social network,
such that additional data describing physical interactions

Figure 4 Results of
methicillin-resistant Staphylococcus
aureus (MRSA) simulations conducted
using a social network of hospital
inpatients. The x-axis shows the
per-patient probability of colonization
at the end of 15 days. (A) Simulation
initiated with one infected patient in a
medical step-down unit (‘Intermediate
ICU’). (B) Effect of a 50% increase in
hand hygiene among healthcare
workers.

Figure 5 Results of
methicillin-resistant Staphylococcus
aureus (MRSA) simulations conducted
using a social network of hospital
inpatients. The x-axis shows the
per-patient probability of colonization
at the end of 15 days. (A) Simulation
initiated with one infected patient in
‘Psych 1’ unit. (B) Effect of assigning
all patients to private rooms.
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between patients, hospital staff, and the hospital environment
could be easily incorporated. For example, we extracted EMR
data related to diagnostic imaging procedures that were used to

infer additional epidemiologic links between patients based on
visits to the same radiology department on the same day. We
simulated a case of MRSA in the MRI department, which

Figure 6 Results of influenza
simulations conducted using a social
network of hospital inpatients.
The x-axis shows the per-patient
probability of colonization at the end
of 6 days. (A) Simulation initiated with
one infected patient in the Emergency
Department. (B) Effect of healthcare
worker vaccination with 100%
compliance and 86% vaccine efficacy.

Figure 7 Results of
methicillin-resistant Staphylococcus
aureus (MRSA) simulation conducted
using a social network of hospital
inpatients, starting with one infection
in the magnetic resonance imaging
(MRI) department. The x-axis shows
the probability of infection in each
department at the end of 3 days, and
is based on room-sharing and
healthcare worker-sharing links, as
well as patient visits to the MRI suite.
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carried a 1% risk of transmission to any other patient visiting
the department on that day, an estimated parameter representing
the probability of transmission from either contaminated equip-
ment or colonized departmental staff members. After 3 days, the
risk of infection was greatest for patients in the ICUs, and on
the neurology and neurosurgical wards (figure 7). Other sources
of data might include EMR login data,35 as well as hospital real-
time location systems that use radiofrequency identification,
wi-fi, or wireless local area networks to track hospital equip-
ment, personnel, and patients.36

Our study has a few limitations that must be considered. First,
the quality of the social network derived depends on the accur-
acy and coverage of the EMR data on which it is based. In the
case of the present study, the ADT data that were used to derive
the room-sharing intervals were collected at a highly granular
level, such that transfers between rooms on the same unit are
registered, and length of stay in each room was recorded to the
second. We used authorship of clinical documents as a surrogate
for contact between HCWs and patients. This attribution
assumes that the authors of the given notes had some form of
physical interaction with the patient on the day the note was
written, and that HCWs documented their patient contacts in
the same order that the encounters themselves occurred.

Second, our model does not capture contacts outside of those
documented in the EMR. The influence of hospital personnel
who do not generate clinical documentation, including food
service workers and porters, is therefore not accounted for, nor
are brief or secondary visits that are not associated with a spe-
cific clinical note. Also not encompassed are the effects of visi-
tors to the hospital, which in the case of seasonal respiratory
viruses such as influenza, might be considerable.

Third, the results of our simulations are determined by the
parameters chosen to represent the infection dynamics of the
pathogen under consideration. Although we used parameter esti-
mates derived from previous empirical and simulation studies
reported in the literature, the accuracy of these in the setting of
our hospital environment is not known. Further work should
focus on refining the parameters used in the simulations, and
ultimately verifying the accuracy of predictions against a previ-
ously documented outbreak.

As with any study of HAI at a particular hospital, our results
cannot be generalized to other centers. However, unlike previ-
ous studies, our methods for generating social networks and
simulating outbreaks can be applied to any hospital with an
EMR implementation that supports ADT tracking, clinical docu-
mentation, and data warehousing. A less robust version could
also be built upon ADT data alone, although this would fail to
capture the important epidemiologic links between patients and
hospital staff.

CONCLUSION
We developed a method of generating social networks from
EMR data already collected for other purposes. Such networks
have the advantage of directly reflecting the staffing and patient
flow patterns of the hospital from which the data were taken,
and of being easily updated in near real time. As a proof of
concept, we applied this method to the problem of HAI, by
conducting probabilistic simulations of MRSA and influenza
infection across the network generated. We tested the effects of
implementing various infection control measures on transmis-
sion patterns.

Our methods can be applied most readily to the modeling
and understanding of HAIs, but might also be used to refine
staffing and patient flow practices within a hospital, or to

examine the influence of social structures on clinical practice
patterns. Future work should focus on refining the parameters
used to describe the infection dynamics of various HAIs, pro-
spective validation of the simulation experiments carried out,
and the integration of machine learning methodologies in order
to generate more robust predictive models, based on more types
of clinical data.
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