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ABSTRACT
Adverse drug events cause substantial morbidity and
mortality and are often discovered after a drug comes to
market. We hypothesized that Internet users may provide
early clues about adverse drug events via their online
information-seeking. We conducted a large-scale study
of Web search log data gathered during 2010. We pay
particular attention to the specific drug pairing of
paroxetine and pravastatin, whose interaction was
reported to cause hyperglycemia after the time period of
the online logs used in the analysis. We also examine
sets of drug pairs known to be associated with
hyperglycemia and those not associated with
hyperglycemia. We find that anonymized signals on drug
interactions can be mined from search logs. Compared
to analyses of other sources such as electronic health
records (EHR), logs are inexpensive to collect and mine.
The results demonstrate that logs of the search activities
of populations of computer users can contribute to drug
safety surveillance.

BACKGROUND
The US Food and Drug Administration and other
organizations collect reports on drug side effects
from physicians, pharmacists, patients, and drug
companies.1–3 These reports provide valuable clues
about drug-related adverse events, but are incom-
plete and biased.4–6 As a result, adverse event alerts
for single drugs are often delayed as evidence accu-
mulates.7 8 These challenges are compounded in
the setting of adverse events resulting from mul-
tiple drugs that interact in unexpected ways.
Given that a significant use of the internet is for

health searches, we hypothesized that internet users
may provide early clues about adverse drug events
via their online information-seeking activities.9

Previous research on tracking seasonal influenza has
demonstrated that search logs can form an implicit
sensor network for health monitoring.10 11 In that
work, search logs accurately estimated the weekly
levels of influenza activity in different regions of
the USA, with a reporting delay of approximately
1 day. The authors showed that health-seeking
activity captured in queries to online web search
services mirrors trends in data gathered by trad-
itional surveillance systems based on virological and
clinical data.
We employed search log data for a different

purpose: we sought to harness people’s online
health-seeking search activity in the aggregate to
identify adverse drug events associated with drug
interactions. Patients may seek information on the
web about the drugs prescribed to them or to close
family members, and to explore the potential expla-
nations of new symptoms.12 We considered as a test

case an interaction between paroxetine (an anti-
depressant) and pravastatin (a cholesterol-lowering
drug), which was recently reported to create hyper-
glycemia.13 14 This association was extracted from
the US Food and Drug Administration adverse event
reporting system (AERS) using a data-mining algo-
rithm that aggregates reports to identify drug–drug
interactions.13 The finding was confirmed in a retro-
spective analysis of the electronic health records of
three regionally distinct medical institutions and con-
firmed in a mouse model.14 We hypothesized that
patients taking these two drugs might experience
symptoms of hyperglycemia and may have conducted
internet searches on these symptoms and concerns
related to hyperglycemia before the association was
reported in 2011.

METHODS
We analyzed the search logs of millions of consent-
ing web users who opted to share search activities
with Microsoft via the installation of a browser
add-on, spanning a 12-month period of all of 2010
and comprising searches on Google, Bing, and
Yahoo!. An anonymous identifier tied to the
instance of the browser add-on was used to track
the drugs and symptom queries that each user per-
formed over time (note that we were unable to dis-
tinguish between multiple users of the same
machine). Searches for information on prescription
drugs are common. We found that over one in 250
people (0.43%) pursued information on at least
one of the top 100 best-selling drugs in the USA,
including paroxetine and pravastatin, the medica-
tions that we focus on here.15

By examining words used in user queries, we
sought evidence that searches from people exploring
pravastatin and paroxetine over time (using logs from
2010) would have a higher rate of including
hyperglycemia-associated words than people search-
ing for only one of the drugs. The list of
hyperglycemia-related terminology that was used is
included in the supplementary materials (see supple-
mentary table S1, available online only). We gener-
ated the list based on a review of medical literature.
The list is broad to ensure that we covered a majority
of related symptoms. Although there are many pos-
sible causes for the symptoms listed, each can be asso-
ciated with hyperglycemia. We sought to detect
increases in the use of terms from the list in explora-
tory web searches by holding the list constant and
noting the presence or absence in user logs of queries
for the medications that have been found to cause
hyperglycemia when taken together.
We first mined the 12 months of search logs

to identify users who had searched for
hyperglycemia-related symptoms or terms. We then
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identified users in each of the following groups: (1) both (paroxe-
tine and pravastatin) searchers, comprising those who searched on
paroxetine (or one of its trade name variants: Aropax, Paxil,
Seroxat, and Sereupin) and pravastatin (or its trade name
Pravachol); (2) pravastatin, independent of paroxetine, searchers,
comprising those users who searched for pravastatin regardless of
whether they also searched for paroxetine; and (3) paroxetine,
independent of pravastatin, searchers, comprising those users who
searched for paroxetine irrespective of whether they also searched
for pravastatin.

We counted the number of users in each of the three user
groups, and the number of users in each group who searched
for at least one of the terms associated with hyperglycemia (ie,
the intersection with the set of hyperglycemia searchers). These
populations can be visualized with a Venn diagram, as shown in
figure 1. Letters denote different subsets of searchers, with a
referring to those who searched on both paroxetine and pravas-
tatin and also searched on hyperglycemia-related terminology,
and b to those who searched on both drugs. Subsets d1 and d2
refer to those who searched on pravastatin and on paroxetine,
respectively. Subset c1 denotes those who searched for pravasta-
tin and hyperglycemia-related terms and c2 those who searched
on paroxetine and hyperglycemia-related terms.

We used disproportionality analysis6 to assess the increased
chance of a user searching for hyperglycemia-related terms
given that they searched for both pravastatin and paroxetine.
Reporting ratios (RR) are computed based on observed versus
expected adverse reports.16 Given the broad spectrum of infor-
mation goals on the web, for the search logs, we used a condi-
tional disproportionality analysis that introduces a contextual
focus to minimize false positives. In this case, we sought evi-
dence for increased searches for hyperglycemia-related terms
within the specific context of searches on a drug or drugs of
interest. In exploring the potential influence of the two drugs
together, we considered people who have searched for each of
the drugs individually over the same period as controls.

Given the subsets of users defined above, disproportionality
analysis was used to identify drug pairs that occur at higher than
expected frequencies with hyperglycemia-related terms. RR is
defined as observed/expected or (a/b)/(c/d). Observed is defined
as the fraction of users who searched for both pravastatin and
paroxetine (b) who also queried for hyperglycemia symptoms
(a), and expected is defined as the fraction of users who
searched for pravastatin (d1) who also searched for hypergly-
cemia symptoms (c1), or (symmetrically) the fraction of users

who searched for paroxetine (d2) who also searched for hyper-
glycemia symptoms (c2).

When RR is based on expected for pravastatin as background
and search logs, a is the number of users in the paroxetine and
pravastatin set who searched for hyperglycemia-related termin-
ology; b is the number of users in the paroxetine and pravastatin
set; c1 is the number of users in the pravastatin-only set who
searched for hyperglycemia-related terminology, and d1 is the
number of users in the pravastatin-only set. Figure 1 shows how
each of these variables (a–d) relates to the three user groups
defined earlier and their intersection with each other and all
hyperglycemia searchers. We similarly computed RR with
expected conditioned on paroxetine as background.

RESULTS
User groups and prevalence
To perform the analysis described in the remainder of this
article, we analyzed 82 million drug, symptom, and condition
queries from 6 million web searchers. To ensure coverage, we
looked for co-occurrences of the two medications for each user
within the 12-month timeframe. For the group of users showing
these co-occurrences, paroxetine and pravastatin did not
co-occur within the same query; 29.61% of the observed drug
pairs occurred in searches within the same day, 41.90% within
the same week, and 60.89% within the same month. Figure 2
shows the fraction of users in each of the groups who queried
for any of the hyperglycemia-related terms in supplementary
table S1 (available online only). The value for background in
the figure is the fraction of all users who queried for the
hyperglycemia-linked terms independent of the presence of pra-
vastatin and paroxetine in any of their queries. The figure shows
that people who searched for both paroxetine and pravastatin
over the 12-month period were more likely to perform searches
on the terms associated with hyperglycemia (approximately
10% of users who searched for the drug pair) than those who
searched on only one of the drugs (approximately 5% of parox-
etine users, approximately 4% of pravastatin users).
Approximately 0.3% of all users searched for one or more
terms from the list (shown as background in the figure). The

Figure 1 Venn diagram showing the different user groups in our
analysis (not drawn to scale).

Figure 2 Percentage of users in each of the three user groups
searching for hyperglycemia-related terms. Percentage is computed per
week over 12 months of search log data. Background refers to the
fraction of all searchers who search for hyperglycemia-related
symptoms or terminology independent of the presence of the drugs in
the users’ search histories.
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figure also shows that the difference between the groups is con-
sistent over the 12-month period and that there are no temporal
variations such as seasonal effects.

Disproportionality analysis
Table 1 shows the results of the conditional disproportionality
analysis for RR computed using expected for pravastatin and
expected for paroxetine. The results in table 1 show that search-
ing with terms that capture hyperglycemia symptomatology is
observed more frequently in users searching for both drugs than
in those searching for each drug separately. This result based on
data from a non-clinical source resonates with findings from
AERS and laboratory analysis described earlier.13 15 As we know
the date that the discovery of the interaction was made public,
we could examine previous log data with confidence that the
logged activities were not influenced by information about
known interactions published later. However, as this is only a
single drug pair, it is possible that the results are explained by
an un-modeled mechanism or by chance.

Disproportionality analysis for known drug–drug
interactions
To address the concern associated with focusing on a single pair,
we tested 31 other drug pairs that are known to interact and
cause hyperglycemia (true positives, TP). Known drug–drug
interactions were extracted (and manually validated) from
textual monographs in DrugBank and the Medi-Span drug
therapy monitoring system. These sources are highly technical
in nature or require paid access, making it less likely that ordin-
ary health consumers would visit them and have the informa-
tion bias their searches. Note that this is a less strict criterion
than the pravastatin–paroxetine interaction, in which we could
guarantee that knowledge had not been available before the
public release of the information. In order to compile a set of
drug pairs that are not associated with hyperglycemia, we
created a negative set of 31 other drug pairs (true negatives,
TN) by associating drug pairs with a randomly chosen adverse
event, and removing any drug–drug event pairings that are
known to be associated based on external knowledge
(DrugBank, Medi-Span, Drugs.com, UMLS or SIDER). We
mapped the generic names for the drugs to their brand names,
as we did with paroxetine and pravastatin, and searched for the
presence of both drugs in the log data described above. We then
performed the same type of log-based disproportionality ana-
lysis, including computing RR based on the expected counts
from each drug in the pair.

Supplementary table S2 (available online only) presents the
results of this additional disproportionality analysis. The drug
pairs are ranked in descending order by the average RR for the
pair. We preserved the TP/TN label to show where in the list
the TP appear. If the log-based method performed perfectly,

then all TP would be ranked above all TN. The results show
that the majority of the drug pairs identified as having a strong
relationship with hyperglycemia are TP (ie, 74% of the top half
of the table is TP; two proportion Z-test; Z=−2.086, p=0.019)
and consequentially, the TN are least strongly related to hyper-
glycemia. In addition, if we assume that the pairings in which
the average RR values greater than 2 predict a TP (an RR value
of 2 has been shown to be a meaningful threshold in previous
work),17 18 we estimated a false positive rate of 12.5% from the
62 pairings we examined. To study performance further across
the range of threshold values, we constructed a receiver operat-
ing characteristic (ROC) curve, shown in figure 3. The area
under the curve (AUCAll) is 0.8189, signifying strong perform-
ance in distinguishing TP from TN using the log data.

As the behavioral data for a large population used in the ana-
lyses are noisy we sought in our first phase of study to be inclu-
sive with the use of a broad term list. We probed the sensitivity
of the results to reducing the set of terms to a more focused
subset of terms restricted to synonyms of hyperglycemia and
three primary hyperglycemic symptoms: polyphagia, polydipsia,
and polyuria (and their related synonyms). The focused list
appears in supplementary table S3 (available online only). The
ROC curve for the more focused subset is shown in figure 3.
The value of AUCFocused is 0.7429, showing good performance
in distinguishing TP from TN (ie, 71% of the top half of the
ranking is TP; two proportion Z-test; Z=−1.815, p=0.035).
The performance with the focused subset of terms is lower than
for the full set of hyperglycemia-related terminology, but not
significantly so (Z=0.914, p=0.180).19

To understand which of the terms yielded the most benefit,
we performed an ablation analysis of the symptoms/conditions.
We iterated through sets of terms for each of the conditions/
symptoms considered, starting with all terms, and successively
removed sets of terms whose deletion led to the largest decre-
ment in the area under the ROC curve. Figure 4 shows the list
of symptoms and conditions and the influence on AUC of
removing each of them with this greedy procedure.

Figure 4 shows that hyperglycemia (and its synonyms such as
‘high blood sugar’) has the largest effect on AUCAll, followed by
each of the three core hyperglycemic symptoms in the order poly-
uria, polydipsia, and polyphagia. The AUC remains high even

Table 1 Results of disproportionality analysis for expected
(pravastatin), expected (paroxetine)

a b c d RR
95% CI (lower,
upper)

p Value
(one-tailed)

Expected
(pravastatin)

342 2716 2581 56 302 2.747 2.438 to 3.094 <0.0001

Expected
(paroxetine)

342 2716 3645 71 243 2.461 2.189 to 2.767 <0.0001

RR, reporting ratios.

Figure 3 Receiver operating characteristic curve for the identification
of drug pairs known to be associated with hyperglycemia using search
log data. Red (dashed) line denotes the performance when using all
hyperglycemia-related terminology in our set. Yellow (solid) line
denotes the performance of a more narrowly focused set of symptoms
strongly connected to hyperglycemia.
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when direct references to hyperglycemia (first bar in figure 4) are
removed (AUCAll−Hyperglycemia 0.7097), illustrating the value of
employing the pooled related symptoms and conditions for this
classification task. The most influential additional terms outside of
the core hyperglycemic symptoms (diabetes, dry mouth, etc.) are
also known to be related to hyperglycemia. The terms become less
strongly related as we move down the list. Note that removing
‘trouble breathing’ and ‘coma’ improves performance, signaling
that these terms may add noise to the classifier.

DISCUSSION AND CONCLUSIONS
Overall, these findings demonstrate the potential value of the log
analysis for identifying drug pairs linked to hyperglycemia and illus-
trate the generalizability of the method beyond just the pravastatin–
paroxetine pairing. Given that the majority of the TP can be identi-
fied from logs of search activity also provides validation for the set
of terms used to identify hyperglycemia-related searches (see sup-
plementary table S1, available online only). Given the many pairs
with little or no effect from the interaction also shows that the act
of searching for multiple drugs is insufficient on its own to explain
the heightened interest in hyperglycemia-related material.

The prolific use of web search to pursue information can be
likened to a large-scale distributed network of sensors for iden-
tifying the potential side effects of drugs. There is a potential
public health benefit in listening to such signals, and integrating
them with other sources of information. We see a potentially
valuable signal even though search logs are unstructured, not
necessarily related to health, and can include any words
entered by users. More in-depth analysis is needed to under-
stand better the biases and sources of noise in web search logs.
We particularly seek to understand potential non-
pharmacological explanations for the trends observed in the
log data. For example, confounding or hidden variables may
play a role in boosting searches for terms associated with symp-
toms of hyperglycemia for the joint cohort. For example,
demographic factors such as age and gender (not directly
observable via log data) may contribute to the observed interac-
tions. Psychological influences on health-seeking behavior may
also play a role. For example, people prescribed paroxetine for
anxiety may be more likely to focus on and enquire about

their symptomatology online than others, and this anxiety may
rise more than others with the growing list of prescribed medi-
cations. We note that the data do not support this potential
explanation; figure 2 shows that there is less of an effect for
those who search for paroxetine alone.

The pravastatin–paroxetine interaction was not known at the
time the logs were gathered (in 2010). Therefore, the analysis
we performed was similar to a prediction task. While further
work is needed to explore the predictive value of signals from
search logs, the methods and findings highlight the potential
value of harnessing anonymized search logs captured by internet
services as complements to other signals for pharmacovigi-
lance.20 We believe that patient search behavior directly captures
aspects of patients’ concerns about sensed symptomatology and
can complement more traditional sources of data for pharma-
covigilance, including AERS and electronic health record data.
We anticipate more sophisticated log-based detection of adverse
events associated with medications, and that these will contrib-
ute to the faster identification of drug safety information.
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