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Diabetes is one of the major metabolic diseases and affects a large 
number of people. It has been estimated that the prevalence of 

diabetes will increase from 2.8% in 2000 to 4.4% in 2030 (1). Diabetes 
is caused either by insulin deficiency, due to a lack of insulin produc-
tion, or insulin resistance, in which the target cells no longer respond 
to insulin. These insulin-related abnormalities cause membrane 
defects that are associated with changes in cation permeability, espe-
cially for Ca2+. It is now well accepted that altered Ca2+ permeability 
results in defects in smooth muscle, endothelial cells, cardiac muscle 
and neuronal cells, which can lead to microangiopathy, atherosclero-
sis, cardiomyopathy and neuropathy, respectively (2). Ultimately, 
these processes induce local and generalized ischemia, contractile dys-
function, loss of sympathetic influences and, eventually, impaired car-
diac performance (2-4). In epidemiological studies, diabetes is 
associated with an increased incidence of heart failure even after 
adjusting for the presence of hypertension and coronary artery disease 
(5). Although the exact reasons for cardiac dysfunction in diabetic 
cardiomyopathy are not clear, metabolic derangements with respect to 
excessive use of free fatty acids (FFAs) and the reduced use of glucose, 
as well as hormonal imbalances and subcellular defects due to insulin 
deficiency or insulin resistance have been suggested to account for 
structural defects in the diabetic heart (2,3). In addition, marked 
alterations in biochemical and functional activities of different subcel-
lular organelles such as extracellular matrix, sarcolemma (SL), sarco-
plasmic reticulum (SR), mitochondria and myofibrils have been 
identified in the heart under chronic diabetic conditions (2). Because 
of the role of the SR in Ca2+ handling and the role of mitochondria in 
energy production (3,6), the present review intends to focus on the 
mechanisms, as well as the significance, of SR and mitochondrial 
defects in diabetic cardiomyopathy. Because Ca2+ handling defects in 
cardiac membranes are invariably associated with the occurrence of 
intracellular Ca2+ overload (3,4,6), the involvement of this mecha-
nism in the pathogenesis of diabetic cardiomyopathy will also be dis-
cussed briefly. The contribution of changes in SL, which maintains 

Ca2+ homeostasis, myofibrils, which serve as contractile machinery, 
and extracellular matrix, which controls the permeability of cations, 
during the development of diabetic cardiomyopathy have been 
described previously (3,7) and, thus, it is not our intention to de-
emphasize their role in diabetes-induced cardiac dysfunction.

CARDIAC SR DYSFUNCTION IN DIABETES
By virtue of its ability to release and accumulate Ca2+, SR are con-
sidered to play a major role in the process of excitation-contraction 
coupling in the myocardium. Voltage-gated L-type Ca2+ channels in 
the SL membrane are activated on depolarization of cardiomyocytes 
and permit the entry of Ca2+, which releases more Ca2+ from the SR 
Ca2+ stores through the ryanodine receptor (6). This Ca2+ reaches 
myofibrils, binds to troponin C, releases the inhibition of actomyosin 
by troponin I and triggers the sliding of thick and thin filaments 
resulting in cardiac contraction. The increased level of cytosolic Ca2+ 

is then lowered by the combined actions of the SR Ca2+ pump ATPase 
(SERCA2a), the SL Na+/Ca2+ exchanger and the SL Ca2+-stimulated 
ATPase, as well as the mitochondrial uniporter (6). It has been shown 
that SERCA2a is the main mediator for lowering the cytoplasmic 
concentration of Ca2+ and is regulated by a SR protein, phospholam-
ban. Although Ca2+ is bound to calsequestrin in the lumen of SR, the 
formation of a quaternary complex of SR proteins (junction, triadin, 
calsequestrin and the ryanodine receptor) is believed to release Ca2+ 

from the SR (8). Thus, different SR proteins are involved in the 
accumulation, binding and release of Ca2+ from the SR tubules, and 
changes in their contents and activities appear to disturb Ca2+ homeo-
stasis. In fact, a depression in the SR Ca2+-release activity would 
depress cardiac contraction, whereas a decrease in the SR Ca2+- uptake 
activity would impair cardiac relaxation (6).

A wide variety of alterations in the SR Ca2+-transport activities have 
been observed in hearts during the development of chronic diabetes 
induced by streptozotocin (2,3). Ganguly et al (9) reported that a 
decrease in Ca2+-uptake activity in SR vesicles was associated with a 
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Although diabetes due to insulin deficiency or insulin resistance is a major 
cause of heart disease, the pathogenesis of cardiac dysfunction during the 
development of diabetic cardiomyopathy is not fully understood. Varying 
degrees of defects in subcellular organelles, such as sarcolemma, mitochon-
dria, sarcoplasmic reticulum, myofibrils and extracellular matrix have been 
observed in the diabetic heart. These subcellular abnormalities in chronic 
diabetes become evident with the occurrence of hormonal imbalance, meta-
bolic defects, oxidative stress and intracellular Ca2+ overload. During the 
initial stages of diabetes, hormonal imbalances, including elevated plasma 
levels of catecholamines and angiotensin II, as well as metabolic defects, 
appear to favour the development of oxidative stress; these changes lead to 
subcellular defects in the myocardium. Reductions in sarcoplasmic reticular 

Ca2+ pump and Ca2+ release channel function are associated with cardiac 
dysfunction, whereas alterations in sarcolemmal Na+/Ca2+ exchanger and 
Na+/K+ ATPase activities contribute to intracellular Ca2+ overload at late 
stages of diabetes. The continued accumulation of Ca2+ in mitochondria 
produces Ca2+ overload in these organelles, and this change induces impair-
ment of energy production and depletion of energy stores as well as further 
promotion of oxidative stress in chronic diabetes. Generation of oxyradicals 
due to impaired electron transport results in the opening of mitochondrial 
pores, leakage of toxic proteins and myocardial cell damage in diabetes. 
These observations support the view that alterations in sarcoplasmic reticu-
lar and mitochondrial functions produce intracellular Ca2+ overload and 
depletion of energy stores and, thus, play an important role in the develop-
ment of cardiac dysfunction in diabetic cardiomyopathy.
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depression in SERCA2a activity; these changes in diabetic animals were 
prevented by insulin administration. Similar defects in the cardiac SR 
Ca2+-transport activity due to diabetes were shown by other investiga-
tors (10,11). Abnormalities in SR Ca2+ release were also identified in the 
diabetic heart (12,13). By using an experimental model of alloxan-
induced diabetes in rats, Golfman et al (14) showed that SR Ca2+-uptake 
and Ca2+-release activities were depressed in the diabetic heart. 
Furthermore, impaired Ca2+-uptake and Ca2+-release activities were 
seen in noninsulin-dependent diabetic hearts (15,16). A depression of 
SR Ca2+ release channels in diabetes was also evident from experiments 
using the rapid cooling myocardial contracture technique as well as 
ryanodine receptor binding studies (17). These observations suggest that 
SR function in the diabetic heart may be defective as well as contribu-
tory to depressed cardiac performance in chronic diabetes. Depression of 
the SR Ca2+-uptake activity for a prolonged period in chronic diabetes 
can also produce intracellular Ca2+ overload. 

MECHANISMS OF SR DEFECTS
The decreased SR-transport activities in the diabetic heart may be 
related to alterations in protein content as well as regulatory mechan-
isms in the SR membrane. In this regard, decreases in Ca2+ uptake and 
Ca2+ release were associated with depressions in the levels of SERCA2a, 
ryanodine receptor and phospholamban proteins in diabetic hearts 
(12,18,19), except in one study where phospholamban protien content 
was increased (12). While some investigators have also reported reduc-
tions in SR ryanodine receptor (20,21) and phospholamban protein 
content (20), others have shown no change in SERCA2a protein con-
tent (20-22) in the diabetic heart. The SERCA2a messenger RNA 
levels were either unaltered (21,22) or decreased (20), and messenger 
RNA levels for the ryanodine receptor were depressed (20,21), whereas 
those for phospholamban were either unaltered (20) or increased (21). 
The conflicting results with respect to gene and protein expressions for 
SERCA2a and phospholamban may be due to differences in the dur-
ation and severity of diabetes in these various studies. Differential 
changes in SR activities and protein content during the development 
of diabetes have also been described previously (14,23,24). Nonetheless, 
these observations support the view that alterations in SR function and 
SR remodelling occur in the diabetic heart (3). Remodelling of other 
subcellular organelles, including SL and myofibrils, has also been 
reported during the development of diabetic cardiomyopathy (3,4). 

Impaired SR function in the diabetic heart is not only associated 
with depressions in the contents of Ca2+-cycling proteins but may also 
be due to a decrease in the phosphorylation of phospholamban 
(18,19,25). Although the activities of cyclic AMP-dependent protein 
kinase and Ca2+ dependent protein kinase were increased, the reduc-
tion in phospholamban phosphorylation was attributed to an increase 
in SR-associated protein phosphotase activity (25). The decrease in 
SR function in the diabetic heart has also been suggested to be due to 
an increase in the formation of advanced glycation end products (26). 
Because NADPH oxidase activation (27) and increased phosphotidyl 
inositol turnover (28) have been observed in diabetic hearts, it is 
likely that the depression in SR function may be due to oxidative 
modification of SR proteins and/or alterations in the phospholipid 
composition of the SR membrane, respectively. Furthermore, in view 
of the increase in the activities of proteolytic enzymes due to hypergly-
cemia and diabetes (7,29), alterations in SR function may be a conse-
quence of proteolysis of membrane proteins. The functional significance 
of changes in SR proteins is suggested from observations indicating 
that depressed levels of SERCA2a are associated with reduced cardiac 
performance in the diabetic heart (30,31). In addition, overexpression 
of SERCA2a in transgenic mice was found to improve cardiac func-
tion in diabetic cardiomyopathy (32). 

DEVELOPMENT OF INTRACELLULAR Ca2+ 

OVERLOAD
Several investigators have examined diabetes-induced changes in the 
intracellular concentration of free Ca2+ ([Ca2+]i) in cardiomyocytes as 

well as total Ca2+ content in the myocardium. The basal (Ca2+)i was 
observed to be either unaltered (33), increased (34) or decreased (35-
37) in cardiomyocytes from diabetic animals. Elevated levels of (Ca2+)i in 
the diabetic heart appear to be due to depression of the SR Ca2+-
uptake activity (9-11). On the other hand, the inability to detect the 
elevated levels of (Ca2+)i in diabetic cardiomyocytes may be due to 
accumulation of Ca2+ in mitochondria because these organelles are 
known to serve as Ca2+ sinks in pathological conditions (6,38). 
Because (Ca2+)i in cardiomyocytes is maintained by Ca2+ influx and 
Ca2+ efflux at the SL level as well as Ca2+ release and Ca2+ uptake by 
both SR and mitochondria (38), it is possible that the observed differ-
ences in the results for (Ca2+)i in the diabetic heart from different 
laboratories may be due to differential changes in Ca2+-transport activ-
ities in these subcellular organelles. Such differences in the observed 
changes in (Ca2+)i may also be attributable to differences in the stage 
and severity of diabetes (3). It should be noted that depressed Ca2+ 
efflux (32,39) and SL Ca2+ pump ATPase activity (40,41) as well as 
increased Ca2+ influx (28,42) and increased SL Ca2+/Mg2+ ecto-ATPase 
activity (3,43) in the diabetic heart would also raise (Ca2+)i and, thus, 
contribute to the occurrence of intracellular Ca2+ overload. 

Increased Ca2+ permeability due to changes in the composition of 
SL membranes has been suggested to raise (Ca2+)i in diabetic myocar-
dium (44). Furthermore, marked depressions in SL Na+/K+ ATPase 
activity (45-47) and SL Na+/Ca2+ exchanger activity (41,47-49) 
appear to play a major role in the development of intracellular Ca2+ 

overload in the diabetic heart. In this regard, a depression in 
SL Na+/K+ ATPase activity would increase the intracellular concen-
tration of free Na+([Na+]i) and this is exactly what was reported in 
diabetic cardiac muscle (50). Because SL Na+/Ca2+ exchangers are 
considered to be involved in Ca2+ efflux under normal conditions 
(3,6), the observed depression of its activity in diabetic heart would 
decrease Ca2+ efflux and raise (Ca2+)i in cardiomyocytes. On the other 
hand, an increase in (Na+)i in diabetes (50) can be seen to enhance 
the entry of Ca2+ in cardiomyocytes through the stimulation of SL 
Na+/Ca2+ exchangers in reverse mode (3,6,38). In fact, a net gain of 
Ca2+ or increased level of total tissue Ca2+ has been demonstrated in 
the diabetic myocardium (15,16,51,52). It is noteworthy that inter-
ventions such as SL Ca2+ channel blockers and angiotensin receptor 
antagonists, which are known to attenuate the occurrence of intra-
cellular Ca2+ overload, have been shown to partially prevent subcellu-
lar defects, cardiac dysfunction and ultrastructural damage in diabetic 
cardiomyopathy (13,53-55). These observations suggest that in addi-
tion to SR defects, alterations in SL Ca2+ cycling proteins may also 
participate in raising (Ca2+)i and inducing intracellular Ca2+ overload 
in the diabetic heart. 

CARDIAC MITOCHONDRIAL DYSFUNCTION  
IN DIABETES

While defects in SR function may play a critical role in the develop-
ment of impaired cardiac performance in chronic diabetes, abnormal-
ities in other subcellular organelles, including mitochondria, have 
been identified to occur in the diabetic heart (2-4). It should be noted 
that the main function of mitochondria in the heart is to produce 
energy in the form of ATP, which is required for cardiac contractile 
activity. These organelles are known to be intimately involved in 
the process of glucose and FFA metabolism by cardiomyocytes, and 
their oxidative phosphorylation activity is generally impaired in dif-
ferent types of failing hearts (56-58). Defect in energy production are 
invariably associated with impairment of the electron transport sys-
tem and the increased formation of oxyradicals in the mitochondria. 
Such events promote the development of oxidative stress, opening 
of mitochondrial pores, leakage of different mitochondrial proteins 
and the development of cardiomyocyte damage (2-4,16). In addition, 
mitochondria are known to serve as Ca2+ sinks in the cell and, when 
cardiomyocytes are faced with conditions of intracellular Ca2+ over-
load, it can result in Ca2+ overload in the mitochondria, defecencies in 
the process of oxidation of phosphorylation and enhanced production 
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of oxyradicals (4,6,38). Thus, it is essential to discuss the role of mito-
chondria in the process of substrate utilization and energy production, 
regulation of intracellular Ca2+ and the development of oxidative 
stress in the diabetic heart.

ENERGY PRODUCTION AND OXIDATION OF FFA
Although plasma levels of both glucose and FFA are elevated in diabetic 
subjects, glucose metabolism is markedly reduced due to impaired glu-
cose transport in cardiomyocytes (2,16). Glucose uptake in the diabetic 
myocardium is also reduced due to the elevated levels of FFA (57-59). 
On the other hand, FFA uptake is increased in the diabetic heart and 
FFAs are either incorporated into triglycerides or catabolized in the 
mitochondria (58). The increase in fatty acid oxidation in the diabetic 
heart (60-62) has been demonstrated to be due to the upregulation of 
perioxisome proliferator activated receptor α (PPARα) (63-65). Thus, it 
is evident that energy production in the diabetic myocardium is primar-
ily dependent on the oxidation of FFA by mitochondria; however, 
increased oxidation of FFAs for a prolonged period can impair the elec-
tron transport chain and mitochondrial oxidative phosphorylation 
activity. In fact, the respiratory and oxidative phosphorylation activities 
of cardiac mitochondria have been observed to be depressed in chronic 
diabetes (66-68). These changes in mitochondrial function were found 
to be associated with the depletion of high energy phosphate stores as 
well as depression in the performance of diabetic hearts (67,68). 

Excessive lipid uptake and increased mitochondrial fatty acid oxi-
dation are now well known to be associated with the accumulation of 
lipid droplets in the myocardium and the development of diabetic 
cardiomyopathy (2,16). In this regard, the upregulation of PPARα has 
been reported to play a critical role in mediating diabetes-induced 
lipotoxicity and pathological alterations in the myocardium (69-72). 
High levels of FFAs in the diabetic myocardium have been suggested 
to be intimately involved in the pathogenesis of cardiac cell damage as 
well as cardiac dysfunction (2,73). Such observations are further sup-
ported by the fact that palmitate and long-chain saturated fatty acids 
were found to induce apoptosis and cell death in cardiomyocytes 
(74,75). Accordingly, a shift in myocardial metabolism with respect to 
increased uptake, utilization and oxidation of FFAs may play an 
important role in the development of diabetic cardiomyopathy.

OXIDATIVE STRESS AND MITOCHONDRIAL 
ALTERATIONS

It is becoming clear that oxidative stress generated by different sources, 
including mitochondria, is a major factor in the pathogenesis of dia-
betic cardiomyopathy (3,4,76-80). Elevated levels of plasma glucose 

and advanced protein glycation end products have been shown to 
be involved in contributing toward generating oxidative stress in the 
diabetic heart (81-85). Increased levels of plasma hormones, such as 
angiotensin II, catecholamines and endothelins, have also been con-
sidered to promote oxidative stress in diabetic cardiomyopathy (3,86). 
Cardiac mitochondria have been reported to generate reactive oxygen 
species including superoxide radicals, hydroxyl radicals and hydrogen 
peroxide due to microangiopathy and subsequent hypoxia in chronic 
diabetes (3,82,87). Impaired insulin signalling as well as auto-oxida-
tion of glucose has also been demonstrated to affect mitochondria 
and to promote the development of oxidative stress in the diabetic 
heart (88,89). Hyperglycemia-induced apoptosis in the diabetic heart 
has been shown to involve mitochondrial cytochrome C-activated 
caspase-3, as well as depression in the mitochondrial reduced gluta-
thione content (90,91). In fact, normalizing mitochondrial superoxide 
production as well as overexpression have been observed to prevent 
hyperglycemia-induced cell damage (88,92). Furthermore, diabetic 
cardiomyopathy and cardiac dysfunction have been prevented by dif-
ferent antioxidants such as vitamin E, catalase and metallothionein 
(3,93,94). Taken together, the oxidative stress generated through the 
participation of mitochondria, as a consequence of hyperglycemia, 
excessive utilization of FFAs, impaired electron transport and oxida-
tive phosphorylation processes, seems to be a crucial factor for the 
genesis of diabetic cardiomyopathy.

Ca2+ HANDLING BY MITOCHONDRIA
In view of the ability of mitochondria to accumulate large amounts of 
Ca2+, these organelles are known to prevent and/or delay the occur-
rence of intracellular Ca2+ overload in cardiomyocytes under different 
pathological conditions (6,38). During the development of cardiac 
dysfunction and intracellular Ca2+ overload in chronic diabetes, mito-
chondria are believed to continue accumulating Ca2+, serving as a 
protective mechanism (3). However, these organelles become over-
loaded with Ca2+ with time and, thus, their respiratory and oxidative 
phosphorylation activities are impaired in the diabetic heart (3). 
Different investigators have reported a depression in the mitochon-
drial Ca2+ uptake activity in the diabetic myocardium under chronic 
conditions (14,67,68). Such a defect in mitochondrial Ca2+ uptake 
has been reported to occur following the loss of SR Ca2+-pump activity 
in diabetic cardiomyopathy (24) and has been proposed to be due to 
oxidative stress (3,4). Mitochondrial abnormalities in the process of 
energy production in the diabetic heart have also been reported to 
increase the intracellular concentration of H+ , which is considered to 
promote the occurrence of (Na+)i overload and cardiomyocyte swell-
ing (2,16). Although mitochondria are being established as a source of 

Figure 1) Role of oxidative stress in sarcolemma and sarcoplasmic reticu-
lum defects in the development of cardiomyopathy and cardiac dysfunction 
in chronic diabetes

Figure 2) Role of mitochondrial defects in the development of cardiomyop-
athy and cardiac dysfunction in chronic diabetes
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cellular Ca2+ signalling (95,96), the exact contribution of changes in 
these mechanisms in diabetic cardiomyopathy remains to be investi-
gated. Nevertheless, these observations regarding the participation of 
mitochondria in the regulation of intracellular Ca2+ at early and late 
stages of diabetic cardiomyopathy are consistent with the view that 
mitochondria play an important role in health and disease (97). 

CONCLUSIONS
From the foregoing discussion, it is clear that insulin deficiency or 
insulin resistance in diabetes is associated with a decrease in glucose 
utilization and an increase in the use of FFAs for the production of 
energy in cardiomyocytes. This metabolic shift, along with the ele-
vated levels of different hormones, including angiotensin II and cat-
echolamines, as well as hyperglycemia result in the occurrence of 
oxidative stress. Such mechanisms promote the development of intra-
cellular Ca2+ overload due to alterations in the SR and SL Ca2+-
transport systems and, thus, lead to cardiac dysfunction. These events 
during the development of diabetic cardiomyopathy are depicted in 

Figure 1. It is known that excessive oxidation of FFAs for a prolonged 
period of time, as well as intracellular Ca2+ overload due to the loss of 
SR Ca2+-pump activity impair the electron transport system, generate 
oxyradicals and contribute to further promoting oxidative stress in the 
diabetic heart. Defects in mitochondrial function in diabetes also 
result in the occurrence of (Na+)i

 overload and cardiomyocyte swell-
ing. In addition, mitochondrial abnormalities lead to a depression in 
oxidative phosphorylation and depletion of high energy stress as well 
as release of mitochondrial cytochrome C and the induction of cellular 
death. A scheme depicting all of these mitochondrial alterations is 
shown in Figure 2. The present article has attempted to emphasize the 
role of changes in both SR and mitochondria in the pathogenesis of 
cardiac dysfunction in diabetic cardiomyopathy.
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