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Abstract
In recent years, geostatistical modeling has been used to inform air pollution health studies. In this
study, distributions of daily ambient concentrations were modeled over space and time for 12 air
pollutants. Simulated pollutant fields were produced for a 6-year time period over the 20-county
metropolitan Atlanta area using the Stanford Geostatistical Modeling Software (SGeMS). These
simulations incorporate the temporal and spatial autocorrelation structure of ambient pollutants, as
well as season and day-of-week temporal and spatial trends; these fields were considered to be the
true ambient pollutant fields for the purposes of the simulations that followed. Simulated monitor
data at the locations of actual monitors were then generated that contain error representative of
instrument imprecision. From the simulated monitor data, four exposure metrics were calculated:
central monitor and unweighted, population-weighted, and area-weighted averages. For each
metric, the amount and type of error relative to the simulated pollutant fields are characterized and
the impact of error on an epidemiologic time-series analysis is predicted. The amount of error, as
indicated by a lack of spatial autocorrelation, is greater for primary pollutants than for secondary
pollutants and is only moderately reduced by averaging across monitors; more error will result in
less statistical power in the epidemiologic analysis. The type of error, as indicated by the
correlations of error with the monitor data and with the true ambient concentration, varies with
exposure metric, with error in the central monitor metric more of the classical type (i.e.,
independent of the monitor data) and error in the spatial average metrics more of the Berkson type
(i.e., independent of the true ambient concentration). Error type will affect the bias in the health
risk estimate, with bias toward the null and away from the null predicted depending on the
exposure metric; population-weighting yielded the least bias.
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1. Introduction
Understanding measurement error impacts in studies of ambient air pollution and health is
challenging due to the use of group-level exposure measures derived from monitor data to
infer the adverse health effects of air pollution on the individual level. Moreover, the true
ambient air pollution level is not known. Here, we address measurement error in a time-
series analysis that utilizes health outcomes aggregated over a geographical area, with the
true unobserved exposure defined as the regulatory ambient concentration at individual
residences.

Measurement error is inherent in time-series epidemiologic studies of air pollution that rely
on ambient monitor data. Instrument error and, to a greater degree, exposure
misclassification due to the spatial variability have been shown to bias effect estimates in
large population studies (Chen et al., 2007; Goldman et al., 2010; Sarnat et al., 2010; Wilson
et al., 2007). Time-series studies that rely on central monitor data have been criticized for
uncertainty related to exposure measurement errors and the substantial variation present in
some air pollutant measures (Dominici et al., 2006). Both error amount and error type affect
health risk estimates and statistical power. An increase in the amount of error decreases the
statistical power to detect health associations (e.g., Goldman et al., 2011). Error type (e.g.,
classical and Berkson) has been demonstrated to modify the extent to which measurement
error attenuates health effect estimates (Armstrong, 1998; Goldman et al., 2011; Sheppard et
al., 2005; Zeger et al., 2000). Classical error is that in which the measurement varies
randomly about the true exposure. In contrast, with Berkson error the true exposure varies
randomly about the measurement, such as might be the case if an average of individual
exposures across the at-risk population is used to characterize ambient exposure. Purely
Berkson error is expected to decrease significance of an association but will yield an
unbiased effect estimate (Armstrong, 1998; Zeger et al., 2000). Because the distribution of
true concentrations cannot be known with certainty, assessment of error type for a given
dataset is challenging.

Increasingly, advanced spatial modeling techniques are being employed to gain insight on
the distribution of true ambient concentrations (Jerrett et al., 2010). Several studies have
developed methods for simulating air pollutant concentrations, taking into account both
spatial and temporal characteristics of concentrations (Nunes and Soares, 2005; Sahu and
Mardia, 2005); however, few studies have used such simulations to assess the amount and
type of measurement error in time-series studies (Peng and Bell, 2010). Gryparis and
coauthors (2009) used a smoothing method of spatial measurement error modeling to
explore the relative uncertainties associated with use of different exposure metrics in a study
of particulate matter (PM) and birth weight in greater Boston. Fuentes et al. (2006) utilized
multivariate regression to model the spatial structure of concentrations in order to quantify
uncertainties in an association between mortality and fine PM. Peng and Bell (2010)
estimated county-wide average concentrations to assess spatial misalignment error and apply
statistical methods to obtain adjusted health risk estimates in a time-series study of PM
components and hospital admissions for cardiovascular disease. Lee and Shaddick (2010)
jointly modeled pollutant concentrations and health data using a Bayesian spatio-temporal
model and found that pollution surface modeling may provide better health effect estimates
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in areas where a large number of monitoring sites are available, particularly for more
spatially varying species.

In previous work, we found instrument error and the lack of spatial autocorrelation of
ambient pollutant concentrations can lead to substantial reduction in statistical power and
potential attenuation of risk estimates (Goldman et al., 2010), with error type affecting the
amount of attenuation (Goldman et al., 2011). Our previous studies did not, however,
characterize the type of error actually present in ambient measurements or account for the
spatial heterogeneity in pollution levels. Moreover, while there has been substantial
discussion of the potential impact of error type, few studies have attempted to determine the
error type of air pollutant monitoring data in a time-series setting. To do this, the
relationship between the true ambient concentration and the measured ambient concentration
used in the health study should be understood and quantified. Receptor-based approaches for
assessing this relationship require detailed spatial and temporal observations that are not
typically available from ambient monitoring networks. Emissions-based models of ambient
air pollution, such as the Community Multi-scale Air Quality (CMAQ) modeling system,
observation-based interpolation methods, such as kriging (Mulholland et al., 1998), and
hybrids of these methods (Kaynak et al., 2009; Mendoza-Dominguez and Russell, 2001) are
able to capture many characteristics of ambient concentrations at high spatial and temporal
resolution; however, they fail to describe the low spatial dependence for some pollutants that
is evident from observational data. This is particularly relevant to assessing error in time-
series studies where monitors placed using criteria that do not necessarily maximize
representativeness are used to derive population average exposure. In this work, we use
geostatistical methods to create simulated ambient air pollution fields that have the desired
spatial and temporal distribution properties found in actual ambient monitor data for 12 air
pollutants. For each pollutant time-series, six properties were modeled: temporal
autocorrelation, spatial autocorrelation, mean, standard deviation, seasonal trend, and day-
of-week trend. Using these “true” ambient air pollution fields, monitor data are simulated
that incorporate instrument imprecision as classical error. Next, the amount and type of
measurement error present in using alternative time-series exposure metrics (i.e., central
monitor data and various monitor averages) to represent ambient air pollutant levels over
time and space is assessed. Finally, the impact of measurement error on health risk estimates
is predicted.

This work addresses measurement error with respect to the assessment of health risk
associated with ambient air pollution using a time-series study design and regulatory air
pollution monitors. This work does not address near-source variability in ambient air
pollution, such as near roadways, or variability in personal exposure.

2. Methods
2.1 Air Quality Data

To assess spatio-temporal trends in air pollutant concentrations, daily measures of ambient
monitor data for the 20-county study area for a 6-year period (1999–2004) were analyzed for
12 ambient air pollutants: 1-hr max NO2, 1-hr max NOx, 8-hr max O3, 1-hr max SO2, 1-hr
max CO, 24-hr PM10 mass, 24-hr PM2.5 mass, and 24-hr PM2.5 components sulfate (SO4

2−),
nitrate (NO3

−), ammonium (NH4
+), elemental carbon (EC) and organic carbon (OC). Data

were obtained from three monitoring networks: the US EPA’s Air Quality System (AQS),
including State and Local Air Monitoring System and Speciation Trends Network for PM2.5
component measurements; the Southeastern Aerosol Research and Characterization Study
(SEARCH) network (Hansen et al., 2003), including the Atlanta EPA supersite at Jefferson
Street (Solomon et al., 2003); and the Assessment of Spatial Aerosol Composition in Atlanta
(ASACA) network (Butler et al., 2003). While some differences exist between measurement
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methods used by the monitoring networks, these discrepancies have been discussed in detail
elsewhere (Goldman et al., 2010) and are expected to have a negligible impact on this
analysis.

Monitor site locations are shown in Figure 1. Data from six NO2/NOx monitors, five CO
monitors, five SO2 monitors, five O3 monitors, eight PM10 monitors, nine PM2.5 monitors,
and five speciated PM2.5 monitors were used. The following distributional features of the
pollutant fields were characterized: temporal autocorrelation, spatial autocorrelation, and
mean, standard deviation, seasonal trend, and day-of-week trend as functions of distance
from the urban center.

2.2 Characterization of Air Pollutant Temporal and Spatial Distributions
Short-term temporal autocorrelation is present in daily ambient air pollutant data due to
meteorological events occurring on time-scales of days to weeks. Correlations of data from
each monitor were calculated for one to fourteen day lags (see Supplemental Material,
Figure S.1 for central monitor results). The temporal autocorrelation trend with increasing
lag was similar for urban, suburban and rural monitors, so short-term temporal
autocorrelation was characterized as being independent of location. Across the 12 pollutants
studied, means and standard deviations of the one-day and two-day lag Pearson correlation
coefficients were 0.59 ± 0.13 and 0.33 ± 0.17, respectively. Secondary pollutants tend to
have greater levels of short-term temporal autocorrelation that persists over longer lag
periods.

Spatial autocorrelation depends on the distribution of emission sources and transport
phenomena. Correlograms were constructed for each pollutant using data from all monitor
pairs (Supplemental Material, Figure S.2). Primary pollutants, i.e., those largely emitted
directly to the atmosphere such as NOx, CO, SO2 and EC, have much less spatial
autocorrelation than secondary pollutants, i.e., those largely formed in the atmosphere such
as O3, NO3

− and SO4
2−. Pollutants of mixed origin, e.g., PM2.5 total mass and OC, have

intermediate levels of spatial autocorrelation. Isotropic exponential models of the
correlograms were developed, with the correlation coefficient at distance zero based on
collocated instrument data. To estimate an average spatial autocorrelation for the study
population, the correlogram for each pollutant was modeled as a function of distance from
the urban center, correlation coefficients at 660 census tract centroids were estimated using
this model, and these values were population-weighted and averaged by eq. 1 using 2000
census population data (Goldman et al., 2010).

(1)

Here, Rj is the Pearson correlation coefficient and Pj is the population at census tract j.
Values of R̄ ranged from 0.90 for O3 to 0.21 for SO2 (Supplemental Material, Table S.1).

Air pollutant monitor data tend to have a lognormal distribution. Log means and log
standard deviations are shown versus distance from the urban center in Supplemental
Material, Figures S.3 and S.4, respectively. Ambient concentrations of pollutants
predominantly from mobile sources (NO2, NOx, CO, and EC) decrease with increasing
distance from the urban center. Pollutants largely of secondary origin, such as O3 and PM2.5
mass, tend to be relatively spatially homogeneous. The mean and standard deviation of air
pollutant log concentrations were modeled as linear functions of distance from the urban
center to 60 km; beyond 60 km these values were fixed at rural background levels.
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Day-of-week and seasonal trends in air pollutant concentrations are shown in Supplemental
Material, Figures S.5 and S.6, respectively. These trends result from variation in emissions
by day-of-week and from variation in meteorology that affects mixing rates as well as
formation and removal rates by season. Day-of-week trends were found to be similar at
different monitor locations; these were modeled categorically. Seasonal trends were
modeled using fourth-order polynomial functions under the constraints that the value and
slope on the first day of each year are the same. Seasonal trends were found to differ
between monitors in urban, suburban, and rural locations; therefore, fitted coefficients were
varied with distance up to 60 km.

2.3 Simulation of Ambient Pollutant Fields
Daily air pollutant fields were generated for the 20-county Atlanta region (16,000 km2) at a
5-km resolution for a 6-year period (2,192 days) for the 12 ambient air pollutants.
Additionally, 10 independent sets of simulations of daily CO fields were produced to assess
the amount of numerical noise in this approach. These fields do not simulate actual ambient
pollutant concentrations on any given day, but simulate air pollution over time and space for
a population of days based on the characteristics described above. Simulations were
produced via a two-step process. First, the direct sequential simulation method (Soares,
2001) in the Stanford Geostatistical Modeling Software (SGeMS) (Remy, 2005) was used to
generate normalized fields (eq. 2) with the desired short-term temporal and spatial
autocorrelation.

(2)

Here,  is the normalized “true” pollutant level on day i at location j, Cij is the
concentration on day i at location j, μlnCj is the log concentration mean over all days at
location j (Supplemental Material, Figure S.3), and σlnCj is the log concentration standard
deviation over all days at location j (Supplemental Material, Figure S.4). Thus, at each

location j,  has a mean of zero and a standard deviation of one. SGeMS was used in this
application to provide spatial autocorrelation in two dimensions and temporal
autocorrelation in a third dimension.

The second step in generating pollutant field simulations was denormalization to yield
concentration fields with the desired means, standard deviations, day-of-week trends, and
seasonal trends. This was achieved by inverting eq. 2 and applying factors to achieve the
desired day-of-week and seasonal trends (eq. 3).

(3)

Here,  is the “true” concentration on day i at location j, μr is the log concentration mean
modeled as a linear function of distance from urban center r, σr is the log concentration
standard deviation modeled as a linear function of r, αwk is the day-of-week factor modeled
independent of r, and αyr is the season factor modeled as a fourth-order polynomial function
of r. Steps 1 and 2 were iterated in order to preserve the spatial and temporal autocorrelation
structure observed in the monitor data (see Supplemental Material, Figures S1 and S2) after
the simulated concentrations were denormalized and distribution trends were added. The
final parameters μr, σr, αwk, and αyr used to simulate spatial trends in the mean and
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standard deviation and temporal trends by day-of-week and by season, respectively, are
provided in Tables S.2 through S.4.

2.4 Simulation of Monitor Data and Calculation of Exposure Metrics
To simulate measurements at actual monitor site locations, classical instrument error was
introduced to the simulated true values such that the Pearson correlation coefficient between
the simulated monitor data (Z) and simulated true ambient (Z*) equaled the square root of
the correlation between actual collocated instrument data (Z1 and Z2 ); i.e.,

 (Goldman et al., 2010). The simulated monitor data were then used to
compute the following exposure metrics: central monitor and unweighted average,
population-weighted average and area-weighted average of monitor data. The simulated
Jefferson Street monitor time-series was defined as the central monitor exposure metric. A
time-series of the unweighted average of simulated monitor data for each pollutant was
computed as a second exposure metric. A population-weighted average time-series was
computed from the simulated monitor data using census tract population from the 2000
census and a previously developed spatial interpolation method (Ivy et al., 2008). Lastly, an
area-weighted average was computed using spatially interpolated simulated monitor data
and census tract areas. These four time-series represent different exposure metrics that have
been used in time-series epidemiologic studies to characterize population exposure.

Measurement error, εij, was calculated for each exposure metric on each day i at each
location in space j as the difference between the simulated exposure metric (Zi), which is

only a function of time, and the simulated true ambient concentration ( ), which is a

function of both time and space: . Population-weighted Pearson correlation
coefficients were computed between εij and the “measured” time-series (Zi) and between εij

and the “true” concentrations ( ) by first calculating correlation coefficients over time at
the 660 census tract centroids and then weighting each coefficient by eq. 1. For Berkson

error, the expected value of  is zero, whereas for classical error the expected value

of  is zero. In the subsequent presentation of results, subscripts denoting time and
space and overbars denoting population-weighted averages are omitted for simplicity of
presentation.

Finally, an expected amount of bias in the risk ratio estimate due to measurement error for
each pollutant was calculated as the population-weighted slope of εij versus Zi based on our
previous findings (Goldman et al., 2011). In epidemiologic time-series studies, Poisson
regression models are often used to estimate risk ratios and confidence intervals for health
effects associated with exposures. Here the risk ratio is the estimate of the proportional
increase in the daily count of health outcomes, after controlling for potential confounding
variables, associated with a given increase in exposure. In a large population epidemiologic
study, there is error in the exposure estimate due to spatial variability that can bias the risk
ratio estimate as well as reduce the statistical power to detect an effect of pollution.

3. Results
3.1 Comparison of Ambient Monitor Data and Ambient Field Simulations

Simulation results are provided in Supplemental Material in parallel with the presentation of
observational data for the six features observed in monitor data described previously: short-
term temporal autocorrelation (Figure S.8 simulation; Figure S.1 observation), spatial
autocorrelation (Figure S.9 and Table S.5 simulation; Figure S.2 and Table S.1 observation),
mean (Figure S.10 simulation; Figure S.3 observation), standard deviation (Figure S.11
simulation; Figure S.4 observation), day-of-week trend (Figure S.12 simulation; Figure S.5
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observation), and seasonal trend (Figures S.13 and S.14 simulation; Figures S.6 and S.7
observation). Spatial trends in the mean and standard deviation and temporal trends by day-
of-week and by season are well simulated by the denormalization parameters used in eq. 2
(μr, σr, αwk, and αyr, respectively). Observed and simulated short-term temporal
autocorrelation and spatial autocorrelation are compared below; simulation of these features
is essential to the evaluation of measurement error in this study, requiring the use of
SGeMS.

Only small differences in short-term temporal autocorrelation (lags up to 14 days) were
observed between urban and rural monitors; therefore, short-term temporal autocorrelation
was modeled as independent of distance from the urban center. Observed and simulated
short-term temporal autocorrelation trends are compared at the central monitoring site
(Figure 2). The simulations capture the observed lower short-term autocorrelation of
primary pollutants, such as NOx, SO2, CO and EC, relative to secondary pollutants, such as
O3, SO4

2− and NO3
−.

Spatial autocorrelation, as characterized by correlograms, is well captured by the simulations
(Figure 3). The observed autocorrelation at distance zero is based on collocated instrument
data, whereas the simulated true ambient autocorrelation goes to one as distance approaches
zero. Instrument error is included by simulating monitor data, as described next.

3.2 Exposure Metric Simulation
Time-series monitor data were simulated at actual monitor locations by introducing
instrument error, consistent in amount with that of collocated instrument data for each
pollutant and consistent in type with that of classical error on a log basis. Four alternative
exposure metrics were derived from the simulated monitor data: central monitor,
unweighted monitor average, population-weighted monitor average, and area-weighted
monitor average. Means and standard deviations for these four time-series, as well as for the
true population-weighted average calculated from the true ambient fields, are provided in
Table 1. For primary pollutants, the central monitor means and standard deviations are much
higher, and the area-weighted average values are lower, than those of other metrics, as
expected, due to the averaging of heterogeneous pollutant fields. Also as expected, the
monitor-based population-weighted metric has a mean and standard deviation most similar
to the true population-weighted average; differences are largely due to the limited number
and location of monitors. The unweighted average means and standard deviations tend to be
most similar to the population-weighted average values, indicative of the fact that more
monitors are located in areas of high population density.

3.3 Exposure Metric Evaluation of Error Type and Amount
Having produced simulated true air pollution fields and, from these fields, simulated
monitor data and exposure metrics, we now address the type and amount of error present in
each of the metrics for each pollutant. To assess the amount of numerical noise present, 10
independent sets of simulations of daily CO fields were produced. Standard deviations of
results using these 10 simulations, shown in the figures and tables that follow, demonstrate
that numerical noise impacts are small relative measurement error impacts.

As an indicator of error type, we calculate population-weighted Pearson correlation
coefficients between error (ε= Z − Z*) and Z*, the “true” ambient concentration, and also
between error and Z, the “measured” ambient concentration; results are shown in Table 2 for
the four exposure metrics, as well as for the true population-weighted average. A zero value
of R(ε,Z*) suggests classical error, i.e., error independent of the true value; a zero value of
R(ε,Z) suggests Berkson error, i.e., error independent of the measured value.
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The true population-weighted average, that is, the population-weighted average of the true
ambient concentration at all locations, has error of the Berkson type, as expected, as
evidenced by its near-zero values of R(ε,Z) (Table 2). This type of error would result in no
bias in the health effect estimate. However, because the ambient concentration is measured
imperfectly and at a limited number of locations, the error type when using the monitor-
based metrics is not Berkson (i.e., R(ε,Z) ≠ 0) or classical (i.e., R(ε,Z*) ≠ 0). The results in
Table 2 suggest that errors associated with use of the different monitor averages are similar
and perhaps more Berkson than classical, and errors associated with use of central monitor
data are more classical-like than errors associated with use of monitor averages.

As an indicator of the amount of measurement error, we calculate the population-weighted
correlation between measured exposure metric values and the true concentrations (Figure 4).
The greater the measurement error, the lower this correlation and the less representative of
population exposure is the measured exposure. In a time-series air pollution health effects
study, a lower correlation reduces the power to detect a given association. As expected,
primary pollutants such as CO, NO2, NOx, SO2 and EC have lower correlations than
secondary pollutants such as O3, SO4

2−, and NO3
−, indicative of greater measurement error.

Also as expected, central monitor data on average are less correlated with the true ambient
exposure than monitor average data. Interestingly, there is little difference between using an
unweighted average of monitor data or using a population-weighted average, likely due to
the fact that there are few monitors for each pollutant and these tend to be located in more
populated areas. Finally, it is noted that the population-weighted correlation between the
true population-weighted average and the true ambient concentration is only slightly higher
than the population-weighted correlation between the monitor averages and the true ambient
concentration. This suggests that the amount of error is largely due to the use of a single
metric to characterize exposure for a population for which there is spatial variability in the
exposure. Nonetheless, while the amount of error, as indicated by the population-weighted
average correlation between measured ambient concentration and true ambient concentration
(Figure 4), is similar across monitor-based average metrics, the type of error, as indicated by
the population-weighted correlation between error and the measured and true ambient
concentrations (Table 2), varies across metrics.

4. Discussion
Having used the simulation results to assess error type (Table 2) and amount (Figure 4) in
four monitor-based exposure metrics, potential impacts of measurement error on bias and
reduced statistical power in health risk estimates are discussed. Error type, as indicated by
the correlation between error and the measured and true exposure (i.e., R(ε,Z) and R(ε,Z*),
respectively), is expected to affect the bias in the health risk estimate whereas error amount,
as indicated by a lack of correlation between the measured exposure and the true exposure
(i.e., R(Z,Z*) < 1), is expected to reduce statistical power in the health risk estimate.

In previous work, we showed that the regressed slope, m, of measurement error (Z-Z*)
versus measurement (Z) is a good predictor of bias in the health risk estimate, such that m is
approximately equal to the attenuation in risk ratio per unit where the fractional attenuation
is defined as one minus the ratio of the health risk estimate based on measured exposure to
the health risk estimate based on true exposure (Goldman et al., 2011). Therefore, we
calculate a population-weighted value of m for each exposure metric and each pollutant
(Figure 5). Risk ratio bias is predicted to be higher for primary pollutants (CO, SO2, NO2,
NOx, and EC) than for secondary pollutants (O3, NO3

−, SO4
2−, and NH4

+). Use of the
population-weighted average yields the least predicted bias (i.e., m nearest zero). Predicted
bias-to-null is greatest when central monitor data are used as the exposure metric (i.e.,
largest m), whereas a bias away from the null (i.e., negative m) is predicted for use of the
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area-weighted average. The low variance of ambient pollution in less densely populated
regions of the study area results in the low variation of the area-weighted average as
compared to that of the true population-weighted average; thus, an observed association
(i.e., observed change in health outcomes for a population per change in average exposure)
will be greater (bias away from null) if the area-weighted average is used due to the
underestimated change in exposure. In Figure 6, predicted bias, m, is shown across all
pollutants and exposure metrics to be approximated as one minus the ratio of the true
population-weighted average standard deviation to the measured exposure time-series
standard deviation. These findings rely on the assumption that the appropriate ambient
concentration to assign to each individual within the study population is the true
concentration at their place of residence. To the extent that individuals move about the urban
area throughout the day this assumption will be violated, and hence even perfect
measurement of outdoor concentrations throughout the urban area could lead to bias.

As evident from the lack of correlation between the true ambient concentration fields and
the true population-weighted average concentration (Figure 4), the amount of exposure
measurement error in this time-series study of acute health effects and ambient air pollution
is largely the result of spatial variability. While error due to spatial variability alone is not
expected to bias the health risk estimate as it is of the Berkson type (Table 2), it will result in
loss of statistical power for assessing health risks. Monitor-based exposure metrics, which
are used in health studies because the true population-weighted average is unknown, also
contain error associated with instrument imprecision; moreover, the limited number and
placement of monitors affects error type which can result in substantial bias in risk ratio
estimates. Therefore, measurement error impacts need to be assessed in total.

In this study of the Atlanta metropolitan area, health risks per unit increase in pollutant
concentration associated with primary air pollutants are predicted to be attenuated by up to
80% when central monitor data are used, and up to 50% when an unweighted average across
monitors is used. For secondary pollutants, attenuation is less than 30% if central monitor
data are used, and less than 10% if an unweighted average across monitors is used. Use of an
area-weighted average, on the other hand, results in bias away from the null. Use of a
population-weighted average of monitor data is predicted to result in the least bias because it
provides the best estimate of the true average exposure variance.

The ambient concentration variability modeled here is representative of ‘regulatory ambient
concentration’ variability, that is, the variability expected of outdoor monitors sited to
capture ambient pollutant levels used for regulatory purposes. Microscale variability in
space and time, such as that which occurs near roadways or near point sources, was not
modeled; however, the method presented here could be adapted for such analyses. A second
limitation of the current work is that a stationary isotropic semivariance model was assumed
here. While this simplification is reasonable for many applications, true variance of pollutant
concentrations over space and time is likely to have a more complex spatial and temporal
variance structure.

This work demonstrates a method for simulating ambient air pollutant concentrations over
space and time which allows for assessment of the amount and type of error present in time-
series health studies. Attenuation in risk ratio estimates is predicted for use of different
monitor-based exposure metrics. In ongoing work, the simulations are being coupled with
health outcome simulations for use in an epidemiologic model to assess the impact of
measurement error on risk estimates and significance levels and evaluate the predictions
presented here.
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5. Conclusion
Geostatistical modeling of ambient air pollutant concentrations over space and time can
provide valuable insights on the amount and type of measurement error present in time-
series epidemiologic studies that use monitor-based exposure metrics. The amount and type
of measurement error are assessed through a geostatistical simulation approach rather than
predicting ambient pollutant fields directly, using methods such as emissions-based
modeling (e.g., CMAQ) or receptor-based interpolation, because the latter produce ambient
pollutant fields with too much spatial autocorrelation. Reduced statistical power in
assessments of health risks is expected due to spatial variability, which affects the amount of
error. Bias in health risk estimates is expected due to the limited number and placement of
monitors, which affects the type of error. Results suggest large differences in error amount
and type across pollutants and across pollutant metrics.
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Highlights

• Geostatistical modeling of air pollution can inform measurement error
assessment.

• Error amount and type present in time-series epidemiologic studies was
assessed.

• Reduced statistical power in health risk estimates is expected due to spatial
variability.

• Bias in risk estimates is expected due to limited number and placement of
monitors.

• Results suggest large differences across pollutants and across pollutant metrics.
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Figure 1.
Map of the 20-county metropolitan Atlanta study area. Census tracts, expressways, and
ambient air pollutant monitoring sites are shown. The urban center was defined at the
intersection of expressways near the monitor labeled S, and the central monitor was defined
as monitor A, the EPA supersite location.
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Figure 2.
Short term temporal autocorrelation of measurements (black) and of the simulated time-
series (gray) at the central monitoring site.
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Figure 3.
Spatial correlogram from monitoring site data (black line represents regression model result)
and from simulated time-series results (gray points).
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Figure 4.
Population-weighted R2 values between the true ambient concentration field and different
exposure metrics, R2(Z,Z*), where the exposure metrics are the monitor-based metrics of
central monitor (CM), unweighted average (UA), population-weighted average (PWA) and
area-weighted average (AWA), as well as the true population-weighted average (TPWA).
Standard deviations of 10 sets of CO simulations are shown.
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Figure 5.
Population-weighted slope of error versus measurement, m, for four exposure metrics:
central monitor (CM), unweighted average (UA), population-weighted average (PWA), and
area-weighted average (AWA). Error bars denote standard deviations from 10 sets of CO
simulations.
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Figure 6.
Predicted health estimate bias, m, as a function of the ratio of the standard deviation of the
true population-weighted average to that of the exposure metric, σTPWA/σ, for four metrics:
central monitor (CM), unweighted average (UA), population-weighted average (PWA), and
area-weighted average (AWA). For each, points correspond to 12 pollutants studied. Error
bars denote standard deviations from 10 sets of CO simulations. A one-to-one line is shown
as reference.
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