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Abstract
Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation
and organ development. Interestingly, their homeodomain signature structure is important for both
their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic
distribution of these proteins is essential for their functions. We summarize information on a) the
roles of karyopherins for import and export of homeoproteins, b) the regulation of their nuclear
transport during development, and c) the corresponding complexity of homeoprotein
nucleocytoplasmic transport signals.
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Nucleocytoplasmic transport of macromolecules is essential in eukaryotes to regulate gene
expression, signal transduction and cell cycle progression [1-7]. Nuclear import and export
are signal-dependent. Proteins bearing nuclear localization signals (NLSs) or nuclear export
signals (NESs) are recognized by receptors that relocate them from the cytoplasm into the
nucleus (or vice versa) via nuclear pore complexes (NPCs). The receptors are in both cases
members of the karyopherin β superfamily and are referred to as karyopherins. Nuclear
localization signals are categorized into classical NLSs (cNLS) and nonclassical NLSs
(ncNLS). cNLSs are characterized by either monopartite (e.g. PKKKRRV from SV40 large
T antigen) or bipartite (e.g. KRPAATKKAGQAKKKK from nucleoplasmin) stretches of
basic amino acids [8]. Shared characteristics of ncNLSs have not been identified. The best-
known ncNLSs are the M9 sequence from heterogeneous nuclear ribonucleoprotein
(hnRNP) A1 and the importin-β-binding domain (IBB) of importin α (a protein that is not
related to the karyopherin β superfamily) [9]. The best-characterized NES is the so-called
“leucine-rich” NES (e.g. LxxLxL). Transport cargoes interact with members of karyopherin
β superfamily either directly or as complexes with adaptor proteins such as importin αs.
Ran, a small GTPase of the Ras superfamily controls transport due to its asymmetric
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distribution across the nuclear envelope, with Ran-GTP being concentrated in the nucleus
and Ran-GDP being concentrated in the cytoplasm. RanGTP binds the “Ran-binding
domain” of karyopherin β superfamily members, thereby regulating their conformation –
which governs their affinity for cargo. For nuclear import, RanGTP binding causes
karyopherin βs to release their cargoes in the nucleus. For nuclear export, RanGTP stabilizes
the interaction of exportins with cargo. These complexes are then translocated through the
NPC and the absence of Ran-GTP in the cytoplasm leads to dissociation of the cargo-
exportin complexes.

Machinery of nucleocytoplasmic transport
There are 14 members of karyopherin β superfamily in S. cerevisiae and 20 in man [10, 11].
Although their sequence similarities are quite low, their molecular weights range from
95-115 kD and they share the following structural features: an N-terminal Ran-binding
domain, NPC-binding sites, and 18~21 HEAT repeats. Karyopherin βs can import cargoes
bearing both cNLS and ncNLSs. When cargoes bear a cNLS, the cNLS is recognized by
adaptor importin αs. Importin β1 then interacts with the IBB domain of importin α and
carries the importin α/β-cargo complex through the NPC. Several karyopherin βs import
cargoes by directly recognizing their ncNLSs.

Leucine-rich NESs are recognized by the exportin, Crm1, which is also a member of
karyopherin β superfamily [1]. A recent crystal structure shows that the leucine-rich NES
occupies a hydrophobic groove between the outer helices of Crm1 HEAT repeats 11 and 12
[12]. Crm1, exportin 5 and exportin T (Xpo-t) export microRNAs, tRNA and rRNPs
[13-17]. Although most karyopherin βs appear to function in either import or export,
interestingly, three karyopherin βs (Msn5p [18, 19], importin 13 [20-22] and exportin 4
[23]) can transport cargoes both into and out of the nucleus, suggesting that they have a
flexible structure, and may - in fact - participate in yet-uncharacterized cyclic transport
events.

Importin α (karyopherin α) adaptors contain an N-terminal IBB that binds karyopherin β
and a structure comprising ten tandem armadillo repeats [8]. These repeats include cNLS-
binding sites. There are six importin α’s in man and five α’s in mice [24, 25]. Each importin
α is highly conserved among species [26]. Based on sequence comparisons, importin α’s
can be subdivided into three subtypes, one including importin α1, one including importin α3
and α4, and one including importin α5, α6 and α7 [27, 28].

The nuclear pore complex consists of about 30 different nucleoporins (Nups). Structurally
and functionally, there are three classes of Nups: “structural Nups” which contribute to
overall NPC architecture; “pore membrane proteins“ (Poms), which include a
transmembrane domain and could contribute to anchoring the NPC in the nuclear envelope;
and “FG-Nups”, which include multiple phenylalanine-glycine (FG), GLFG or FxFG repeat
motifs which are interspersed among sequences of varying polarity. The FG-rich domains of
Nups are unstructured and are essential for maintaining the NPC permeability barrier [29].
During translocation, the surfaces of karyopherin βs are thought to engage in multiple low-
affinity interactions with FG-repeats [30, 31].

Homeoproteins
Homeodomain proteins (homeoproteins) are master control transcription factors that are
important for diverse functions in development [32]. Homeoproteins regulate axial
patterning, segment or cell identity and proliferation by modulating expression patterns of
target genes in a temporal, spatial, and tissue-specific manner. Their name derives from the
original identification of proteins that bind Drosophila homeotic loci [33]. The sequence
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similarity of homeodomains is 50-80% for a given sub-type and 20% among all
homeodomain sequences [34]. The homeodomain itself has a 60 residue-long conserved
DNA-binding motif (Figure 1). Activities of homeoproteins are regulated by post-
translational phosphorylation [35-37] and sumoylation [38]. The subcellular distribution of
homeoproteins is critical for their functions. In Drosophila, for example, Extradenticle (Exd)
is necessary for proximal leg development, but is not required for distal leg development
[39-41]. Accordingly, Exd concentrates in the nucleus in cells that will give rise to proximal
leg segments, while it is cytoplasmic in cells with distal leg fates [39-43]. The behavior of
Oct6 also exemplifies the same theme. Oct6 is mainly cytoplasmic in undifferentiated ES
cells, but localizes increasingly to the nucleus during retinoic acid-induced differentiation,
and becomes predominantly nuclear in differentiated neurons, where it is required for
function [44].

The homeodomain
Each homeodomain has an N-terminal flexible arm, a short helix I (a.a.10-22), helix II (a.a.
28-38) linked to helix I by a short loop, and helix III (a.a. 42-59), forming a classical helix-
turn-helix motif along with helix II (Figure 2) [32, 34, 45]. Homeodomain-DNA interactions
have been identified by NMR and by X-ray crystallography [46-48]. The basic residues
preceding the N-terminal arm support contact with the DNA minor groove, and the helix-
turn-helix motif binds to the major groove of DNA. Helix III serves as the major helix for
interaction with DNA and harbors several highly conserved amino acid residues [32, 49]. In
helix III, interactions between the conserved Arg52, Arg53 and DNA have been found in all
homeodomains studied to date [32, 48-53]. Interestingly, Arg52 and Arg53 are also
mutational hot spots in homeoproteins [49, 54]. Most homeoproteins contain not only a
conserved homeodomain but also other functionally-important domains. These domains are
either found alone as a DNA-binding motif or in tandem with another module. For example,
members of the Pax family have both a “paired domain” and a homeodomain. “Paired
domains” contain two DNA binding subdomains named PAI and RED. Both sub-domains
include a helix-turn-helix structure [55-57]. The “POU-domain” is derived from three
mammalian genes, PIT-l, OCT-l, and OCT-2 and the C. elegans gene Unc-86, which share a
region of homology. The POU domain is a bipartite DNA-binding domain, consisting of two
highly conserved regions tethered by a variable linker. The 75-amino acid N-terminal region
is called the POU-specific domain and the carboxy-terminal 60-amino acid region is called
the POU homeodomain [58]. The “Cut domain” contains three highly homologous regions
of −70 amino acids, the Cut repeats. Cut repeats are specific DNA binding domains, and Cut
repeat lll cooperates with the Cut homeodomain to bind DNA with high affinity [59]. The
“LIM domain” is composed of two contiguous zinc finger domains, separated by a two
residue-long hydrophobic linker. It functions as a modular protein-binding interface and is
named after its initial characterization in Lin11, Isl-1 & Mec-3 [60].

Nucleocytoplasmic transport of homeoproteins
Homeodomains include functional NLSs and NESs

Interestingly, many mutations in the homeodomain not only reduce DNA binding but also
impair the nuclear localization of homeoproteins, suggesting that the homeodomain overlaps
with functional transport signals [49]. Moreover, the basic amino-acid clusters (BCs) at both
ends of the homeodomain (Figure 2) structurally resemble classical NLSs and can function
as NLSs when coupled to an irrelevant cytoplasmic protein [61, 62]. For the homeoproteins
Chx10, Nkx2.5, Oct6, and Otx1, the N-terminal basic clusters (BC1) have been shown to
function as a NLS [63-66]. For Pdx1, Pitx2 and Shox2, the C-terminal basic clusters (BC2)
function as a NLS [62, 67, 68]. In Arx, Cart1, HB9, Nanog, Nkx2.2, and Pax6, both clusters
(BC1/BC2) are required for NLS function [22, 61, 69-72]. As shown in Figure 3A, all the
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basic amino-acid residues in BC1 can vary among homeoproteins, while several basic
amino-acid residues in BC2 are highly conserved (Arg52 and Arg53) (Figure 3B). Indeed
these arginine residues are required for both DNA binding and NLS function. Thus,
homeoprotein Pitx2 localizes to the cytoplasm when Arg 53 is mutated to Pro [67]; Arx
localizes to the cytoplasm when Arg 52 or Arg 53 is mutated [22, 73]; and Nkx2.2 localizes
to the cytoplasm upon mutation of Arg 53 when BC1 is absent (unpublished observation)
[69]. Studies of Pdx1 [68, 74], Pax6 [70] and Nanog [71] show that helix III of the
homeodomain is also important for NLS function.

In addition to these basic motifs, some homeoproteins contain at least one additional NLS
[22]. For two homeodomain proteins belonging to the Pax family, Pax5 and Pax8, the
functional NLSs are located outside their homeodomains [75, 76]. In a rare case, import of
homeoprotein Vsx1, a member of Vsx family, was reported to be mediated by its binding
partner (Ubc9) and the Vsx1 homeodomain is dispensable for its nuclear localization [77].
By contrast, a functional NLS is found in the homeodomain of the PLC-HD protein, another
member of the Vsx family [64].

Nuclear export of homeoproteins has been proposed to regulate their functions [78, 79].
Vax2 is a homeoprotein that ventralizes the vertebrate eye field by repressing transcription
of PAX6. Thus, constitutively nuclear Vax2 in the chick optic vesicle results in constitutive
repression of PAX6, resulting in the formation of an eyeless embryo [80]. Cytoplasmic
retention of Exd, a homeoprotein of the PBC family which includes products of vertebrate
PBX1, PBX2, PBX3, Drosophila extradenticle (exd) and C.elegans ceh-20 [81], is critical
for patterning the proximal–distal axes of appendages, and for the development of both the
eye and antennae in D. melanogaster [82, 83].

NESs have been characterized in several homeoproteins. NESs can overlap with their
homeodomains and are either leucine-rich NESs, e.g. in Engrailed and Oct6 [84, 85], or
“divergent” leucine-rich NESs, e.g. in Prospero [86, 87] (Figure 3B). NESs are also found
outside the homeodomain, e.g. in the “octapeptide” domain of CVC paired-like
homeoproteins [64], in the tryptophan-rich region in Nanog [78] and in the PBC-B region of
Exd [43, 88]. As expected, export of most of these homeoproteins is sensitive to leptomycin
B (LMB), the inhibitor of Crm1-mediated export (Table).

Nuclear import of homeoproteins via their homeodomains is mediated by diverse
karyopherin βs

Being transcription factors, homeoproteins must be in the nucleus at the correct time.
Mislocalization can be catastrophic. For example, inhibition of Bcd (bicoid) import can
result from mutation of the Drosophila semushi (semi) gene, which encodes an E2 enzyme
that modifies the NLS of Bcd. Inhibition of Bcd import results in multiple defects in anterior
segmentation of embryos [89].

NLSs within homeodomains can be recognized either by importin αs with importin β1 or
directly by karyopherin βs. Import of Brn2, Oct3/4 and Oct6 in mouse ES cells provides
examples of import via the classical import pathway [90]. Moreover, in fission yeast,
homeoprotein Yox1p, which regulates transcription during G1/S [91], relocates to the
cytoplasm when importin α/Srp1p is mutated [92], suggesting that the classical importin α/β
pathway is involved. Additionally, several homeoproteins (e.g. Arx, Pax6) are recognized
directly by karyopherin βs and cannot be imported by any importin α. Given the
approximate constancy of structure of the homeodomain itself, the diversity of import
pathways suggests that the structures of NLSs of homeodomains could be modulated by
flanking sequences or post-translational modifications. The following is a summary of
nuclear import of several key homeoproteins and their transport receptors (Table 1):
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Arx—The aristaless-related homeobox protein (Arx) is a paired-like homeoprotein that is
predominantly expressed in the brain [93]. It is important for the development of the
forebrain, testis and pancreas [94]. Both basic amino-acid clusters (BC1, BC2) cooperate to
form a functional NLS which is targeted by importin β1, importin 9 and importin 13, but not
by importin αs [22, 73, 95]. Interestingly, importin β1 mainly interacts with BC2 but
importin 13 prefers binding to BC1. Using in vitro nuclear import analysis, GST-pull downs
and interfering small RNAs, importin β1 was found to play a major role in import of Arx.
Arg53 (R382) in its homeodomain is a core amino acid for recognition by importin β1 [22].
Curiously, our unpublished observations show that in vitro expressed homeodomains from
Arx can interact with importin αs. Thus, import of β-galactosidase-EGFP tagged with either
BC1 or BC2 of the Arx homeodomain is inhibited by Bimax, a specific inhibitor of the
importin α/β pathway [96]. Nevertheless, the subcellular distribution of wild type Arx is not
affected by Bimax, showing that the classical import pathway is not the principal pathway
for Arx import.

Caudal—Caudal regulates the anteroposterior body axis of Drosophila [97, 98]. The
moleskin protein DIM7 (Drosophila homologue of importin-7) binds BC2. Moreover, RNA
interference of moleskin inhibits Caudal nuclear localization, suggesting that moleskin
mediates its import [99].

Nkx2.2—Nkx2.2 regulates development of multiple tissues [100, 101]. Both basic clusters
of its homeodomain are functional NLSs, but each is inefficient for nuclear localization of
Nkx2.2 [69]. We observe that, although intact Nkx2.2 binds importin α1, α3 and α5 in
GST-pull down assays, nuclear import of wildtype Nkx2.2 is not affected by Bimax,
suggesting that its import is normally mediated by nonclassical pathways. Multiple
karyopherin βs such as importin β1, importin 4 and importin 13 interact with the
homeodomain of Nkx2.2 and can import Nkx2.2 in in vitro nuclear import assays
(unpublished observation).

Pax6—Pax6, encoded by PAIRED BOX gene 6, was the first paired-type homeoprotein to
be identified [102, 103]. This highly-conserved vertebrate transcription factor is important
for development of multiple tissues including the CNS, eyes and pancreas [104-109]. The
NLS of the Pax6 homeodomain includes both BC1 and BC2 and is recognized by importin
13 [70]. Deletion of either cluster dramatically reduces the interaction between Pax6 and
importin 13 as well as nuclear localization of Pax6 in in vitro nuclear import assays.
Interestingly, neither importin α/β nor importin β1 imports Pax6 efficiently. Two other
members of the Pax family, Pax3 and Crx, are also imported by importin 13 [70]. In in vitro
assays, importin αs can directly interact with basic amino-acid clusters of exogenously
expressed homeodomains of Pax proteins [75]. There is, however, no direct evidence that
nuclear import of Pax proteins is mediated by importin α/β [75].

Pdx1—Pdx1 (Pancreatic duodenal homeobox-1) is essential for pancreatic development
[110-112]. It rapidly accumulates in the nucleoplasm when cells are stimulated with glucose,
insulin or sodium arsenite [113]. Importin β1 itself binds strongly to the Pdx1 homeodomain
and microinjection of MIN6 cells with an antibody to importin β1 maintains Pdx1 in the
cytoplasm [114], suggesting that nuclear import of Pdx1 is mediated mainly by importin β1.

PRH/Hex—PRH/Hex (proline-rich homeobox/hematopoietically expressed homeobox)
plays an important role in early embryonic patterning and hematopoiesis and has been
reported to act as both a tumor suppressor and as an oncoprotein [115]. Aberrant exclusion
of PRH/Hex from the nucleus has been associated with thyroid and breast cancers and a
subset of myeloid leukemia. Interestingly, nuclear localization of PRH is necessary for the
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inhibition of eIF4E-dependent transformation [116]. Importin 7 (imp7) is a direct binding
partner for PRH/Hex and the imp7-PRH complex dissociates in the presence of RanGTP, as
expected for a nuclear import complex. Imp7 mediates the import of PRH/Hex in digitonin-
permeabilized cells and in vivo depletion of imp7 dramatically reduces the accumulation of
PRH/Hex in the nucleus [117].

Regulation of nuclear transport of homeoproteins by multiple mechanisms
Nucleocytoplasmic transport of homeoproteins such as Exd, Otx1 and Pdx1 is regulated in
development and this regulation is essential for their functions [82, 113, 118, 119]. The
subcellular localization of homeoproteins depends on expression of specific karyopherins,
on post-translational modifications of homeoproteins, and on interactions of homeoproteins
with additional proteins (and perhaps DNA-binding sites).

Expression of importin αs/karyopherin βs [7, 10, 120-123]
Metazoans express multiple karyopherin αs that control cell differentiation [5] and
development [5, 26, 90, 124-126]. Good examples are found during mammalian
spermatogenesis [127] and in mouse ES cell differentiation into neurons, which is controlled
by Brn2, Oct3/4, Oct6 and Sox2 [90]. Brn2, Oct6 and Sox2 are imported only by importin
α3 and/or α5, not by importin α1. By contrast, import of Oct3/4 is mediated by importin
α1. A switch in expression of importin α subtype in ES cells thus determines neuronal
differentiation [90]: only importin α1 is expressed in undifferentiated ES cells, so Brn2,
Oct6 and Sox2 remain in the cytoplasm, while Oct3/4 is in the nucleus. When cells start to
differentiate, importin α1 is down-regulated and importin α3 and α5 are upregulated.
Therefore, nuclear import of Oct3/4 is blocked but Brn2, Oct6, and Sox2 are imported.
Nuclear Oct3/4 prevents differentiation, while nuclear Brn2, Oct6 and Sox2 promote
neuronal differentiation.

Expression of karyopherin βs is also regulated [10, 122, 128] and is crucial for regulation of
nucleocytoplasmic transport [7, 10, 121]. Although there is no direct evidence that they
regulate the subcellular distribution of Arx, we observe that importin β1 and importin 13
import Arx through different mechanisms, suggesting that expression of different
karyopherin βs could regulate Arx import and its functions in different contexts [22].

Phosphorylation
Phosphorylation regulates the subcellular localization of homeoproteins [80, 113, 129, 130].
One example is that of Vax2, a homeoprotein that as mentioned, ventralizes the vertebrate
eye field by repressing transcription of PAX6. The subcellular localization of Vax2 is
controlled by phosphorylation of serine 170. Wildtype Vax2 is in the nucleus but
phosphorylation of S170 results in the exclusion of Vax2 from the nucleus. Exclusion likely
reflects inactivation of its NLS – since expression of a nonphosphorylatable, constitutively
nuclear Vax2 protein in the chick optic vesicle results in constitutive repression of PAX6,
and leads to the formation of an eyeless embryo [80].

Exposure/concealment of transport motifs
The indirect masking of NLS/NES sequences of homeoproteins by association with other
proteins can regulate their nucleocytoplasmic distribution [123, 131]. A good example is
provided by Drosophila Exd, that is critical for embryogenesis [82, 83]. Exd localization
correlates perfectly with the expression of a second homeoprotein, Homothorax (Hth) [42,
132, 133]. Both Hth and Exd are necessary for proximal leg development but are not
required for distal leg development [39-41]. In the absence of Hth, Exd is cytoplasmic, but
the co-expression of Hth causes it to localize to the nucleus. Exd has two NLSs in its
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homeodomain and one NES in its PBC-B domain, a region of ~90 amino acids located
between the PBC-A domain and the homeodomain. Hth binds Exd through its PBC-A
domain. When Hth is present, the NES of Exd is masked and Exd is nuclear. When Hth is
absent, the NES is bound by Crm1 and Exd is cytoplasmic [43, 79, 88, 133, 134]. Although
Hth regulates the nuclear localization of Exd, the nuclear export of its mammalian homolog,
Pbx, appears to be regulated by a fragment of murine nonmuscle myosin II heavy chain B,
which conceals its NLSs [135]. Moreover, the N-terminal fragment of Pbx appears to
interact with its homeodomain and mask its NLS. Thus, when Hth binds Pbx to release this
interaction, the NLS of Pbx is exposed and Pbx is imported [136].

Conclusion
Given the diversity of structure and DNA-binding specificity of homeoproteins, it is not
surprising that their nucleocytoplasmic transport is crucial in many biological contexts
including cell differentiation, proliferation and tissue development. It is especially striking
that their nuclear import is primarily mediated by NLSs that overlap the two basic clusters at
the margins of homeodomains that bind DNA. Presumably, when they do bind DNA, these
homeoproteins – like most import cargoes – will already have been efficiently released from
their corresponding karyopherins. This functional overlap nevertheless could restrict
sequence options at these sites. These options in turn could dictate the identity of the
karyopherins that can be used.

A further possible spatial restriction that may limit interaction with transport factors is the
tendency of homeoproteins to form homo- or heterodimers, as well as their interactions with
additional proteins that modulate their transcriptional potency. An area for continued cell
biological interest will be clarification of whether such protein-protein interactions occur
prior to import. Especially when the cargo as well as the transport factors can be subject to
post-translational modifications, the interplay between DNA-binding and nucleocytoplasmic
transport – in light of the importance of proper nucleocytoplasmic distribution of
homeoproteins for development – poses an intriguing challenge for coordinated evolution.

According to the homeoproteins under consideration, functional NLSs can be either in the
N-terminal basic cluster (BC1/NLS1), in the C-terminal basic cluster (BC2/NLS2), or
require both BC1 and BC2 (NLS3). Both BC1 and BC2 can be targeted by either importin
αs or karyopherin βs, and both the classical and nonclassical pathways can mediate nuclear
import of homeoproteins. When import of homeoproteins requires both BC1 and BC2, direct
interaction with karyopherin βs is involved (Figure 4). Although it is too soon for conclusive
comment, it is already seems surprising that one of the few “bidirectional” karyopherins,
importin 13, imports several homeoproteins. At present, there is no evidence that importin
13 also participates in their export. For those homeoproteins that have been studied, export
is mediated by leucine-rich NESs (that are recognized by Crm1), some of which also overlap
with homeodomains.

The entire issue of whether homeoproteins can and do shuttle rapidly in and out of the
nucleus is largely untouched. Closely linked to this uncertainty is the question of their
stability. Some transcription factors turn over quickly within the nucleus; however, this
possibility has not been addressed systematically for homeoproteins.

Given initial indications that the subcellular localization of homeoproteins can be regulated
by phosphorylation, it will be of great interest to identify signals that adjust expression of
karyopherins, covalently modify homeoproteins and coordinate the interactions of
homeoproteins with additional proteins during development.
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Figure 1. Cartoon of the DNA binding architecture of homeodomains
Helix III of the homeodomain binds the major groove of DNA, with helix I and II lying
outside the double helix. Helix III, as a recognition helix, contains the C-terminal basic
cluster that contacts both the phosphate backbone and specific bases. The N-terminal arm
containing the N-terminal basic cluster lies in the minor groove and makes additional
contacts.
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Figure 2. Sequences of homeodomains
Selected homeoproteins were aligned by the Clustal W program [137] embedded in
MegAlign (DNASTAR, Inc). The colors of the top panel represent the frequency of given
residues among sequences shown. The red column represents perfectly conserved residues
for which there are no exceptions. The yellow and green columns indicate conserved
residues with exceptions (frequency around 70%-90%). The grey and blue columns indicate
residues that are much less well conserved among the homeoproteins (from high to low:
red>yellow>green>grey>blue). Four amino acid residues in helix III and two amino acid
residues in helix I indicated by ‘*’ are conserved among all homeoproteins [32, 34, 49]. Note
that two basic clusters are located at both ends of the homeodomain. The shaded region
between helix II and helix III can form an extended loop for specific types of
homeodomains.
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Figure 3A. Sequences of the N-terminal basic clusters
Selected homeoproteins were aligned by the Clustal W program. Note that amino acid R5 in
this cluster is highly conserved. Mutation of this amino acid in HNF1α causes it to be
sequestered in the cytoplasm [49].
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Figure 3B. Sequences of the C-terminal basic cluster
Selected homeoproteins were aligned by the Clustal W program. Note that the shaded region
represents identified core residues for NLS function. The boxed region indicates a
hydrophobic group of amino acids in the Prospro homeodomain which functions as a NES.
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Figure 4. Model of nuclear import of homeoproteins mediated by the homeodomain
There are two basic amino-acid clusters (BC1 and BC2) at the ends of the homeodomain of
homeoproteins. There are three forms of NLS found in the homeodomains: both BC1 and
BC2 can function as an NLS independently (NLS1 or NLS2). BC1 can function as an NLS
(NLS3) in conjunction with BC2. NLS1 and NLS2 can be recognized by either importin αs
or karyopherin βs directly but NLS3 is only targeted by karyopherin βs. Therefore, nuclear
import of homeoproteins can be mediated by both the classical and the nonclassical
pathways. The homeodomain could use only a single NLS in certain conditions. As shown
in the top left panel, if BC2 is structurally concealed, BC1/NLS1 could be functional.
Alternatively as shown in the top right panel, if BC1 is structurally concealed, its BC2/NLS2
could function. When the homeodomain shows the NLS3 conformation (lower panel), only
importin βs interact with NLS3 and nuclear import is mediated by a nonclassical pathway.
The causes of possible interconversions among the three different NLS conformations are
largely unknown (indicated by question marks).
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Table 1

Summary of importin αs and karyopherin βs known to be responsible for nuclear transport of homeoproteins

Homeoprotein Homeoprotein functions
Karyopherins/importins with a transport

role Sensitivity to LMB

Arx early development of multiple tissues [94, 138, 139]
importin β1, 9, 13 [22, 73, 95]

importin α3, α5 (unpublished observation)

Brn2 differentiation of Schwann cells [140] importin α5 [90]

Caudal anteroposterior body axis of Drosophila [97, 98] Dim7 (importin 7) [99]

Cdx2 pattern formation in the developing embryo [141] Yes [130]

Exd (Pbx) embryogenesis [41, 43, 82, 83] Yes [134]

Hex embryonic patterning [115] importin 7 [117]

Nkx 2.2 early development of multiple tissues [100, 101]
importin β1, 4, 7, 9, 13 (unpublished

observation)

Oct 3/4 differentiation of neuronal cells [142] importin α1, α3, α5 [90]

Oct6 differentiation of neuronal cells [143] importin α3, α5 [90] Yes [85, 90]

Pax6 development of CNS system and pancreas [104-109] importin 13 [70]

Pdx1 pancreatic cell-type maintaining [110-112] importin β1 [114]

PLC-HDP ocular development [144, 145] Yes [64]

prospero regulation of cell fate [146] Yes [86, 87]

Yox1p regulating G1/S transition [91, 92] importin α [92]
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