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Actin Assembly Factors Regulate the Gelation Kinetics and Architecture
of F-actin Networks
Tobias T. Falzone,†‡ Patrick W. Oakes,‡§ Jennifer Sees,{ David R. Kovar,{k6 and Margaret L. Gardel‡§6*
†Biophysics Graduate Program, ‡Institute for Biophysical Dynamics, §James Franck Institute and Department of Physics, {Department of
Molecular Genetics and Cell Biology, and kDepartment of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
ABSTRACT Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the
assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks
in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics
with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture
and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates
promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network
of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation
ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes
gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints
regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal
architecture and material properties.
INTRODUCTION
The actin cytoskeleton is composed of a diverse assortment
of dynamic filament networks and bundles that play crucial
roles in a myriad of morphogenic cellular processes in-
cluding migration, division, endocytosis, and intracellular
trafficking (1–10). Spatiotemporal regulation of the actin
cytoskeleton occurs through a constant cycle of F-actin poly-
merization and network assembly followed by actin depoly-
merization and network disintegration, resulting in turnover
of F-actin polymers within cells on the timescale of seconds
to minutes. It remains to be determined how actin and actin-
binding proteins conspire to self-organize into functional
dynamic mechanical modules with distinct kinetics and
architectures required for diverse cellular processes.

Actin network architecture can be modulated through
actin-binding proteins that regulate filament assembly,
length, cross-linking, and dynamics. The role of actin
cross-linking proteins in regulating the architecture and
mechanics of actin networks has been well established
(11–13). In recent years, a myriad of proteins that regulate
the rates of actin filament nucleation and elongation have
been identified and characterized. Proteins such as profilin,
which bind actin monomers, collaborate with different for-
min isoforms, a protein that interacts with the barbed end
of F-actin, to control the nucleation and elongation rates
of F-actin assembly (4,14–20). Perturbation of these
proteins in vivo significantly impacts the assembly of
diverse actin architectures ranging from the contractile
ring to stress fibers (7,16,21,22). Previous efforts have
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focused on macroscopic properties of network formation
in the presence of actin-binding proteins, including, but
not limited to, growth rate (23), elastic properties (24),
and network density (25). However, the underlying mecha-
nisms by which these actin regulatory proteins regulate the
local actin network architecture remain poorly understood.
Recent work has also shown that spatial regulation of nucle-
ation factors can direct actin bundling (26), although work
from our lab and others has shown that the architecture of
cross-linked actin networks is regulated by kinetic con-
straints during assembly (27–29). Together, these results
suggest a potentially important role for molecular regulation
of actin polymerization kinetics on the architecture of other-
wise biochemically identical actin networks.

We sought to understand how altered rates of filament
nucleation and elongation driven by physiologically rele-
vant proteins profilin and formin impact the local actin
architecture and gelation kinetics of cross-linked F-actin
networks. We studied the dynamic assembly and gelation
of in vitro actin networks formed in the presence of the
cross-linker a-actinin using high-resolution quantitative
imaging to characterize the network architecture and
changes in thermally driven motions over time. To isolate
the contribution of changes in actin filament nucleation
rates, the concentrations of G-actin and a-actinin remained
fixed, whereas the concentrations of profilin and the formin
isoforms, Cdc12 and mDia1, were varied. Our results show
that changes in the filament nucleation rate have significant
effects on the gelation kinetics and the architecture of the
resultant networks. Low nucleation rates promote the slow
formation of networks with thick bundles and large mesh
sizes, whereas high nucleation rates promote a more rapid
assembly of networks composed of thinner bundles and
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smaller mesh sizes. The filament elongation rate is also
found to play an important role. Below a critical filament
elongation rate, bundles form by diffusion-mediated aggre-
gation to form very rigid, straight bundles that fail to inte-
grate into a mechanically coherent network. As the
elongation rate increases, the network gelation is acceler-
ated and rapid elongation promotes the formation of
space-spanning gels with a minimal concentration of poly-
merized actin. These results establish the important roles
actin assembly factors play in controlling actin cytoskeletal
architecture by altering kinetic constraints during their
assembly. These results have significant implications for
the mechanisms by which actin assembly factors control
cytoskeletal organization in vivo.
MATERIALS AND METHODS

Protein preparation

Ca-ATP-actin was purified from chicken skeletal muscle (4). Gel-filtered

actin was labeled on Cys-374 with pyrenyl iodoacetamide for pyrene assays

(Invitrogen, Carlsbad, CA) (30). Immediately before each polymerization

reaction, Ca-ATP-actin was converted to Mg-ATP-actin by adding 0.5

volumes of 0.6 mM EGTA and 0.15 mM MgCl2 for 3 min at 25�C. Extinc-
tion coefficients were used to determine protein concentrations of actin and

pyrene-actin (4). Chicken smooth muscle a-actinin was purified from

chicken gizzard tissue by the protocol in Feramisco and Burridge (31),

concentrated to 10 mM and stored at 4�C until use. The concentration

of chicken smooth muscle a-actinin was measured using the extinction

coefficient estimated using ProtParam (http://us.expasy.org/tools/) and

the amino acid composition: A280 ¼ 128,500 M�1 cm�1. Fission yeast

and mouse profilin SpPrf and pfn1 were expressed in Escherichia coli

and purified as described (32). pET21-Cdc12(882-1390) (FH1FH2) and

pET21a-mDia1(552-1255) (FH1FH2) formins were expressed and purified

as previously described (4,21).
In vitro network formation

Actin networks were formed by mixing nonactin components first: glucose

oxidase mix (4.5 mg/mL glucose, 0.5% b-mercaptoethanol, 4.3 mg/mL

glucose oxidase, 0.7 mg/mL catalase), F-buffer (10 mM Imidazole pH

7.0, 1 mMMgCl2, 50 mM KCl, 0.2 mM EGTA, 0.5 mMATP), Ca-G-buffer

(2 mM Tris pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 1 mM Sodium Azide,

0.1 mM CaCl2), a-buffer (pH 7.6, 20 mM NaCl, 0.1 mM EDTA, 15 mM

b-mercaptoethanol, 20 mM Tris-HCl, 10% Glycerol), and 5% molar ratio

of Alexa Fluor 488 phalloidin (Invitrogen)/actin, as well as any a-actinin,

profilin, and formin. Monomeric Mg-ATP-actin was then added to start

the network assembly reaction. Each sample was mixed by pipetting up

and down 3 times, loaded into its 5–10 mL sample chamber, sealed with

VALAP (1:1:1 by weight of Vaseline, lanolin, parafin wax) and immedi-

ately transferred onto the confocal microscope for imaging. The time

from the addition of monomeric actin to the start of imaging was between

45 and 85 s. The reaction time was measured relative to the time point when

monomeric actin was added to the sample.
Confocal microscopy and bundle analysis

Sample chambers were constructed to dimensions of ~22 mm (l) � 1 mm

(w)� 100 mm (h). All images were taken 50 mm above the bottom coverslip

to minimize any edge effects that could affect bundle formation. Time-lapse

images were taken with a 20�, 0.75 numerical aperture plan fluor objective
Biophysical Journal 104(8) 1709–1719
(Nikon, Melville, NY). Spinning disk confocal images were collected with

a CoolSNAP HQ2 camera (Photometrics, Tucson, AZ) using a CSU X-1

scanhead from Yokogawa (Sugar Land, TX). We quantified bundle density

in each frame with successive line scans in the x and y directions. 63 mm of

linear density was analyzed in each frame as described in (27); steady state

was determined when the bundle density reached 95% of its final value.
Structure factor calculation

The structure factor (S(q,t)) in Fig. 1 was calculated from the two-dimen-

sional Fourier transform of a 1024�1024 pixel region taken from the center

of each confocal slice in the time-lapse series of images used in the calcu-

lation of Fig. 1. For each transform, a series of 225 radial line scans encom-

passing 360� were drawn out from the center of the transform and averaged

over the radial distance; steady state was determined by when the magni-

tude attained 95% of the final value. The S(q,t) was evaluated for a value

of q ¼ 0.0316 mm�1 as this corresponds to a length scale of ~32 mm, which

is above the mesh size for these networks. As the S(q,t) was calculated

from a pixilated image, the highest frequency it can detect occurs at a length

scale of 2 pixels, whereas the lowest frequency it can detect occurs at N/2

pixels, where N is the number of pixels in a given dimension of the image.

For the images presented here, these limits represent 0.645 and 165 mm,

respectively. Thus, the S(q,t) chosen for this work falls well within the

limits of this technique.
Particle image velocimetry analysis

The motions of actin networks were obtained by quantitative analysis of

fiduciary marks within the bundles and analyzed with a previously pub-

lished particle imaging velocimetry technique (33).
Pyrene assay

Actin assembly was measured from the fluorescence of pyrene-actin with

a Safire2 (Tecan, Durham, NC) fluorescent plate reader. Spontaneous

assembly assays were performed on samples of 5 mM actin as used in

in vitro network formation, except with 10% pyrene-labeled Mg-ATP-actin.

A 25 mM mixture of pyrene-labeled and unlabeled Mg-ATP-actin with

100� antifoam 204 (0.005%; Sigma, St. Louis, MO) was added to the upper

row of a 96-well nonbinding black plate (Corning, Corning, NY). All other

components of the assay were added to the lower well: a-actinin, a-buffer,

profilin, formin, glucose oxidase mixture, 10� F-buffer, and Mg-G-buffer.

Reactions were started by mixing lower wells with upper wells.
Barbed end concentration calculation

Normalized pyrene curves with data points every 10 s were fit to a line over

the surrounding 5 data points at the point where 60% of the monomers in

each sample were polymerized. The calculated slope in arbitrary units/s

was converted to [actin]/s by a total amount of monomer in the normalized

curve (5 mM). The equation used is ½barbed ends� ¼ polymerization rate=

ðkbarbed½actin monomers�Þ from (34), where the kbarbed is the elongation

rate of the barbed end in sub/s/mM. Elongation rates were taken from pub-

lished literature (16).
RESULTS

Assembly kinetics of cross-linked F-actin
networks

The polymerization of actin in the presence of actin cross-
linking proteins, such as a-actinin, builds space-spanning

http://us.expasy.org/tools/
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FIGURE 1 Quantification of assembly kinetics of cross-linked profilin-actin networks. (A) Images of bundles formed by 5 mM actin, 1.2 mM a-actinin,

and 15 mM SpPrf. Scale bar ¼ 30 mm. (B) S(q,t) calculated for sample described in (A) for times from 45 to 1245 s. (C) S(q,t) at q ¼ 0.0316 mm�1

and linear bundle density over time. (D) Vector map of bundle displacements obtained in regions identified in (A) at 245 s (top) and 845 s (bottom);

scale bar ¼ 5 mm. (E) The mean speed of bundle mobility is plotted as a function of time. Dynamic arrest is defined when mean speed is reduced to

30 nm/s, near our resolution limit. (F) Time course of the spontaneous assembly of 5 mM Mg-ATP-actin monomers (10% pyrene labeled) in the presence

of 15 mM SpPrf.
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and mechanically coherent networks of cross-linked and
bundled F-actin (12,13). To explore correlations between
the kinetics of actin polymerization and network assembly,
we have developed tools to characterize changes in their
structure and dynamics using high-resolution confocal
microscopy (27). We compared these measurements to
F-actin polymerization dynamics measured by the pyrene
fluorescence of identical samples.

In the representative sample in Fig. 1, 5 mM actin is
polymerized in the presence of 1.2 mM a-actinin and
15 mM fission yeast profilin (SpPrf). The reaction is initi-
ated at t ¼ 0 s by the addition of salts, and F-actin is
visualized via time-lapse confocal microscopy with a low
concentration of Alexa-488 phalloidin. Filaments or small
bundles first become visible around 125 s and successively
become thicker and more numerous (Fig. 1 A, Movie S1 in
the Supporting Material). Evolution of the network archi-
tecture is assessed by calculation of the static S(q,t).
Because this measurement is made in Fourier-space, it is
sensitive to periodicities in structure, and is particularly
adept at sensing alignment in noncrystalline collections
of objects, such as liquid crystals and the polymer networks
presented here. In this case, the actin bundle is the repeti-
tive structure, and the S(q,t) evaluates its organization in
the network. The measurement of the magnitude of the
S(q,t) is thus proportional to the relative organization of
the bundles over a given length scale in the image. As
the network forms between 45 and 1245 s (Fig. 1 B), the
S(q,t) evolves until reaching steady state once the network
is in place. By examining the magnitude of S(q,t) at a
given value of q ¼ 0.0316 mm�1, we find that the structure
stops changing at a time near 1000 s (Fig. 1 C). The most
prominent feature during this period is the increasing
number of bundles (Fig. 1, A and C). The linear bundle
density, calculated by identification of intensity peaks in
line scans taken from successive confocal images (27),
Biophysical Journal 104(8) 1709–1719
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increases from 3.4 bundles/mm at t ¼ 100 s to 42.6
bundles/mm at t ¼ 800 s, showing a time evolution strik-
ingly similar to S(t) (Fig. 1 C).

A third characterization of gelation is the arrest of
thermally driven movements of actin bundles, which can
be measured by use of image processing algorithms to
track bundle movement (Fig. 1 D) (33). Initially, bundles
are freely mobile with a mean instantaneous speed of
105 nm/s (Fig. 1, D and E). As bundles grow and become
interconnected, the mean speed decreases to <10 nm/s.
We set a threshold of 30 nm/s, which approaches our
measurement resolution, to determine a timescale at which
dynamics are arrested. Dynamic arrest occurs at a time
of ~600 s, indicating that the network organization con-
tinues to evolve after an integrated cross-linked network
is formed.

Networks assembled from actin and a-actinin have been
shown to reach steady-state organization on timescales
much quicker than the rate of actin polymerization (27).
We confirmed that this is still the case in the presence of pro-
filin by a pyrene fluorescence assay containing 5 mM actin
and 15 mM SpPrf (Fig. 1 F). The presence of profilin signif-
icantly increases the lag phase and only ~1.2% of actin was
polymerized by 1000 s, our approximate gelation time.
Actin polymerization was completed by 6745 s. When the
network architecture is determined at 1245 s, remaining
actin accumulates into the background meshwork or
thickens existing bundles. Thus, the kinetics of network
assembly is significantly faster than the actin polymeriza-
tion kinetics.

These tools allow us to assess the role of actin assembly
factors in regulating the kinetics and architecture of actin
network assembly. We used the well-characterized mouse
formin mDia1 and fission yeast formin Cdc12 in various
combinations with mouse profilin pfn1 and fission yeast
profilin SpPrf. Table 1 summarizes known consequences
of these actin assembly factors on the relative filament
concentration at steady state, and the actin filament elonga-
tion rate.
Profilin slows network assembly, forming
a network of sparse, thick bundles

Profilin interacts with actin monomers to inhibit F-actin
nucleation, although not significantly altering the filament
TABLE 1 The relative number of actin filaments and filament elong

various combinations of formin and profilin isoforms used in this w

Actin alone

þ0 mM SpPrf profilin þ100 nM Cdc12 formin

þ3:1 S. pombe profilin: actin þ100 nM Cdc12 formin

þ3:1 mouse profilin: actin þ100 nM mDia1 formin

The data were obtained from literature values, referenced in the table.
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elongation rate (Table 1) (17). As the concentration of
pombe profilin SpPrf is increased from 0 to 25 mM, the
rate of F-actin nucleation decreases and thus increases
the time needed to complete actin polymerization as
assessed by pyrene fluorescence assays (Fig. 2 A) (14).
For saturating levels of profilin, the polymerization profile
of actin has an extended lag phase and an increased time
to steady state (35–37). The time at which 95% of the actin
is polymerized, F-actin polymerization time, increases
from 2000 to 6800 s over a range of profilin concentrations
from 0 to 25 mM (Fig. 2 B).

To investigate the effect of profilin on steady-state
network structure we spontaneously assembled networks
of 5 mM actin, 1.2 mM a-actinin, and varying concentrations
of SpPrf. At 0 mM SpPrf, individual filaments and bundles
appear within 100 s of initiating polymerization. Dynamic
arrest occurs at 200 s, and the steady-state structure is
formed by 311 s (Fig. 2, C and D, Movie S1). The steady-
state architecture contains a network of bundles with
a high density (70 mm�1, Fig. 2 E), and low bundle intensity
(350 units, Fig. 2 F). As the concentration of profilin
increases, the time of structure formation and gelation
increases concomitantly (Fig. 2, C–F). These changes in
network assembly kinetics correlate with changes in the
steady-state architecture, with the higher concentrations of
profilin forming fewer, but thicker bundles. We observed
qualitatively similar changes to network assembly kinetics
and structure with mouse profilin pfn1 (Fig. S1, Movie
S2). Thus, inhibiting filament nucleation with profilin has
significant consequences on the network structure and
assembly kinetics.

At all profilin concentrations, the actin assembly time
was at least fivefold longer than network formation
(Fig. 2, B and D). For samples containing 7.5 mM SpPrf,
the steady-state bundle density is established at 800 s, but
it takes >5000 s for 95% of the actin in the sample to poly-
merize. During this period of ~4000 s, bundles are locked
in place relative to one another and de novo bundle
assembly is prohibited. As polymerization continues, the
thickness of existing bundles increases (Fig. S2), presum-
ably by recruiting new filaments or by the elongation of ex-
isting filaments. Thus, limiting the F-actin nucleation rate
promotes the formation of a smaller number of thicker
bundles and increases the amount of time required to reach
a steady state.
ation rate of actin filaments in the absence or presence of

ork

Rel. # of filaments Elongation rate

100% (42) 11.3 sub/(mM∙s) (16)

~4000% (42) 0.1 sub/(mM∙s) (16)
~200% (42) 13.3 sub/(mM∙s) (16)
~20% (43) 48 sub/(mM∙s) (16)
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Formin Cdc12 accelerates dynamics and
increases bundle density of cross-linked actin
networks in the presence of profilin

In the presence of saturating SpPrf concentrations, the
fission yeast formin Cdc12 accelerates filament nucleation
but does not significantly affect filament elongation rates
(Table 1) (16). As Cdc12 is added to profilin-actin samples,
the nucleation rate has been shown to increase proportion-
ally with Cdc12 concentration (20,38). To assess this effect
on actin assembly dynamics, we first examined actin
assembly via pyrene fluorescence by spontaneously assem-
bling samples of 5 mM G-actin, 15 mM SpPrf, and varying

concentrations of Cdc12. Increasing the concentration of

Cdc12 from 1 to 250 nM dramatically accelerates actin

polymerization (Fig. 3 A), decreasing the time to 95% F-

actin assembly from 5655 s to 975 s, with the effect of

Cdc12 saturating at around 100 nM (Fig. 3 B).
These changes in actin assembly have pronounced effects

on the kinetics and steady-state architectures of networks

formed with 1.2 mM a-actinin (Fig. 3 C, Movie S3). As

the concentration of Cdc12 increases, the time at which fila-

ments and bundles first appear decreases, from 245 s for
Biophysical Journal 104(8) 1709–1719
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0 nM to <85 s (the first image acquired) for R100 nM.
Increasing the concentration of Cdc12 from 0 to 100 nM
dramatically reduces the time to form the steady-state archi-
tecture, assessed both by S(t) and the bundle density, as well
as the dynamic arrest time (Fig. 3 D). The reduced network
assembly time correlates with increased bundle density
(Fig. 3 E) and reduced bundle thickness (Fig. 3 F). Effects
saturate at Cdc12 concentrations higher than 100 nM
(Fig. 3, C–F).
Biophysical Journal 104(8) 1709–1719
The results described in Figs. 2 and 3 indicate that the rate
of filament nucleation plays a crucial role in the kinetics and
steady-state architecture of actin networks. Cdc12 increases
filament nucleation by a sufficient amount to recover the
steady-state architecture formed by spontaneous assembly
of actin and a-actinin alone, in the absence of SpPrf and
Cdc12. A high filament nucleation rate promotes the forma-
tion of bundles at early times and the rapid integration of
these bundles into a mechanically coherent network of
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thin actin bundles with high density. A low filament nucle-
ation rate reduces the number of bundles, as well as the rate
at which these bundles become arrested into networks.
A critical filament elongation rate is necessary for
network gelation

To investigate the effect of filament elongation rates on
network formation, we examined the assembly of F-actin
and a-actinin structures in the presence of a saturating
Cdc12 concentration (500 nM) and varying concentrations
of SpPrf from 0 to 15 mM. Bulk assembly assays reflect
a rapid assembly of F-actin over this concentration range,
with 95% of F-actin being assembled within 200–600 s
(Fig. 4 A). The elongation rate of Cdc12 bound filaments
has been shown to increase 100-fold from 0.1 to 13.3 sub/
(mM∙s) from 0 to 5 mM SpPrf (16); these results are illus-
trated in Fig. 4 B. Because this increase in elongation rate
incorporates more actin monomer per filament, the number
of filaments nucleated over the course of a reaction
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decreases by 100-fold (Fig. 4 B) to yield the pyrene
assembly curves in Fig. 4 A. Thus, by titrating SpPrf in
the presence of saturating Cdc12, the elongation rate is
dramatically altered.

The assembly of these networks in the presence of 1.2 mM
a-actinin was examined by confocal microscopy. In all
samples dense F-actin puncta were observed at 85 s after
initiation of polymerization, consistent with rapid F-actin
assembly (Fig. 4 C, Movie S4). Additionally, the bundle
density reached saturating values within the first 200 s of
each reaction (Fig. 4 D). Samples with elongation rates
of %2.7 subunit/(mM$s) (%3.3 mM SpPrf) continued to
maintain high filament mobility well beyond the timescale
of actin polymerization (Fig. 4 E). In these samples, bundles
appeared to form by the annealing of shorter bundles
(Fig. S3, Movie S5). During this extended period of high
mobility, the bundles that form remained isolated from
one another and were very straight. Very few branching
points were observed. By contrast, in samples with elonga-
tion rates >4 subunit/(mM$s) (R5 mM SpPrf), the arrest of
045s
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E
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FIGURE 4 Network gelation is inhibited at low

filament elongation rates. (A) Time course of the

spontaneous assembly of 5 mM Mg-ATP-actin

monomers (10% pyrene labeled) in the presence

of 500 nM Cdc12 and the indicated concentrations

of SpPrf. (B) Calculated barbed end concentration

from (A) and elongation rate per formin-bound fila-

ment as a function of SpPrf concentration. (C)

Representative images of fluorescent (Alexa 488)

phalloidin labeling of F-actin in networks forming

via a spontaneous assembling of 5 mM Mg-ATP-

actin, 1.2 mM a-actinin, and 500 nM Cdc12 in

the presence of varying concentrations of SpPrf.

Polymerization is initiated at 0 s; scale bar ¼ 30

mm. (D) The time to steady-state bundle density

(open squares), structure factor S(q,t) (solid

circles), and dynamic arrest (solid diamonds) for

the samples described above as a function of SpPrf

concentration. (E) The mean instantaneous speed

as a function of time for bundles formed with 0.5

mM Cdc12 (black square), 3.3 mM Cdc12 (open

circles, 5 mM Cdc12 (solid triangles), and 15 mM

Cdc12 (solid circles). Only samples with 5 and

15 mM Cdc12 reached the threshold for dynamic

arrest (horizontal dashed line). (F) Steady-state

linear bundle density for samples with 500 nM

Cdc12 as a function of SpPrf concentration.
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dynamics occurred within 200 s, well before 95% actin
polymerization. These networks were significantly branched
and contained a higher density of bundles (Fig. 4, C and F).
As such, there appears to be a critical elongation rate of
~2.7 subunit/(mM∙s), or 5 mM SpPrf, that is necessary to
form a coherent, space-spanning network. As the overall
filament length C is expected to scale with the elongation
rate, these results may reflect a critical filament length and
filament bending required for high angle cross-linking in
network formation. Elongated structures that emerge from
short filaments necessitate bundling, which increases the
bending rigidity and reduces bending fluctuations that appear
to prohibit high angle cross-linking.
Rapid filament elongation by mDia1 promotes
network assembly at low F-actin concentrations

The mouse formin mDia1 promotes actin assembly in the
presence of mouse profilin Pfn1 by increasing both filament
nucleation and elongation rates (Table 1). At the ratios of
profilin and actin used here, the elongation rate of mDia1
associated filaments increases to 48 sub/(mM∙s) (16), result-
ing in dramatically enhanced actin assembly dynamics as
the concentration of mDia1 is increased from 0 to 100 nM
in samples containing 5 mM actin and 15 mM Pfn1 (Fig. 5
A). The time to assemble 95% of actin polymer is reduced
from 8370 s to 1570 s as the concentration of mDia1 is
increased from 0 to 100 nM (Fig. 5 B). Increased filament
nucleation also corresponds to a fivefold increase in density
of filament ends (Fig. 5 B).

Visualizing the network assembly revealed an accelerated
filament and bundle appearance with increasing mDia1
concentrations (Fig. 5 C, Movie S6). Increasing the concen-
tration of mDia1 from 0 to 100 nM reduced the time at
which the structure factor and bundle density steady state
was reached from ~3000 to ~200 s, and reduced the dynamic
arrest time from 1215 to 115 s (Fig. 5 D). The linear bundle
density increases and average bundle thickness decreases as
the network assembles over a shorter period (Fig. 5, C–E),
consistent with our results from Figs. 2 and 3.

As the concentration of mDia1 increases to 100 nM,
a dynamically arrested network is formed in ~100 s. We
compared how much actin polymer is used to form networks
at varying concentrations of mDia1 (Fig. 5 F). At 0 nM
mDia1, ~1 mM F-actin was required to form a mechanically
coherent network. This amount increases to nearly 3 mM as
mDia1 is increased to 25 nM. As mDia1 is increased further,
the gelation time decreases faster than the actin polymeriza-
tion rate increases, resulting in a steep reduction in the
amount of F-actin present at the time of gelation. 100 nM
mDia1 generates an integrated network with only 0.2 mM
F-actin, or 4% of the monomeric pool available. This repre-
sents a very efficient network formation by mDia1, not only
forming quicker than any other sample, but also using only
a minimal amount of polymer.
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DISCUSSION

Formins have emerged as prominent regulators of actin fila-
ment assembly and are crucial for building diverse networks
and bundles used in cell migration, division, and intracel-
lular transport (4,7,39,40). Formin isoforms vary widely in
their nucleation efficiency and elongation rates, and may
therefore play important roles in forming distinct cytoskel-
etal structures in vivo. Here, we show that the F-actin nucle-
ation and elongation rates regulated by formin and profilin
play a crucial role in the kinetics and steady-state architec-
ture of networks formed from identical concentrations of
actin and the cross-linking protein a-actinin.

We found that nucleation potency plays an important role
in controlling the network architecture and assembly
kinetics (Fig. 6 A). At low filament nucleation rates, sparse
filaments are freely mobile for long periods of time that
permit their alignment into bundles. Gelation occurs once
sufficient elongation of filaments/bundles results in inter-
connection by cross-linking and/or steric entanglements.
As the nucleation rate increases, the average distance
between filaments/bundles is reduced and, for a constant
elongation rate, reduces the time for dynamic arrest to occur
(Figs. 2 and 3, Fig. 6 A). As the F-actin nucleation rate
changes, the amount of actin polymer needed to form
a dynamically arrested network changes (see Fig. 6 C). In
cases where polymerization proceeds past gelation, actin
filaments continue to elongate and likely track along
bundles to thicken the dynamically arrested bundles, but
do not significantly alter the overall network architecture.

Our results also identify an important role for filament
elongation rates (Fig. 6 B). For very slow elongation rates
(<3 subunits/(mM∙s), a high density of very short filaments
is formed. We speculate that a short filament length permits
filaments and bundles to remain highly mobile for long
periods. Local mobility promotes aggregation into thick
and long bundles over long time periods and results in
a very slow rate of bundle elongation, as compared to that
facilitated by F-actin elongation. The increased bending
rigidity of these bundles appears to diminish cross-linking
into a space-spanning network. As filament elongation rates
increase, the tendency to form entangled and cross-linked
networks of bundles increases (Fig. 4 and Fig. 6 B). Longer
filaments appear to permit high angle cross-linking, perhaps
due to large bending fluctuations of individual filaments. As
filament elongation increases, the time permissive to bundle
formation decreases and the tendency to form dense
networks of thin bundles is amplified. Moreover, we find
that rapid elongation is able to speed up the gelation time
and form networks at vanishingly low polymer densities
(Fig. 6 C). Thus, nucleators such as formin mDia1 rapidly
elongate filaments and still promote fast gelation, even if
their nucleation potency is poor.

Our results shed light into the role of actin assembly
factors in forming distinct actin architectures, ranging
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from isolated bundles to dense meshworks. The formation
of rigid, isolated bundles is promoted by the rapid nucle-
ation of very short and slowly elongating filaments that
associate into bundles. Space-spanning networks require
a critical elongation rate to filaments that are sufficiently
long to become interconnected through steric entanglements
or cross-links. Enhancing the rate of nucleation reduces the
gelation time by speeding up filament assembly (Fig. 6 C).
Despite its reduced nucleation potency, mDia1 permits
the rapid gelation of networks with a minimal amount
(0.5%) of actin polymer used (Fig. 6 C). We speculate that
this enhanced gelation efficiency is due to its rapid elonga-
tion rate.

The implications for our results on the regulation of
in vivo cytoskeletal architecture should be made carefully,
as significant differences exist. Our in vitro studies are
limited to concentrations of actin (5 mM) that are signifi-
cantly lower than those found in the cytoplasm (~50 mM).
A lower filament density facilitates quantitative analysis
of network architecture with light microscopy and increases
Biophysical Journal 104(8) 1709–1719
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the timescale of network formation. The higher concentra-
tions of actin found in the cytoplasm will accelerate filament
elongation and network gelation times as well as decrease
Biophysical Journal 104(8) 1709–1719
the average distance between filaments. Although quantita-
tive differences in the gelation time and network architec-
tures surely exist when comparing the results presented
here to in vivo systems, we expect the qualitative results
to hold. Namely, relative changes in filament elongation
rate and density mediated by changes in formin isoform or
concentration will drive changes in the gelation rate and
extent of bundling in actin networks. It will be interesting
to see if such phenomena can be explored in the assembly
of cytoskeletal structures in vivo. Additionally, nucleation
in our in vitro assay occurred by freely diffusing formins
and actin monomers, whereas some nucleation factors
localize to membranes or discrete puncta in vivo (41).
Such spatial constraints will qualitatively alter the physics
controlling network and bundle architecture. Finally, further
research is required to connect how changes in the local
architecture of bundles are connected to the macroscopic
rheological properties of these types of networks. It will
be especially interesting to investigate how these structural
changes impact the mechanical behavior of cross-linked
actin networks and influence the nature of their force trans-
mission, as this could reveal new mechanisms for the regu-
lation of various cellular processes.
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