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Oxidative stress in chronic obstructive pulmonary 
disease: A lung and systemic process
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There is overwhelming evidence that oxidative stress and oxidative 
damage play a pivotal role in the pathogenesis of chronic obstruct-

ive pulmonary disease (COPD) (1-3). The sources of the increased 
oxidative stress in the respiratory compartment of COPD patients 
derive from the increased burden of oxidants from environmental 
exposures, such as cigarette smoke (CS) and air pollutants, and from 
the increased amounts of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) released from leukocytes and macrophages 
involved in the inflammatory process in the lungs of COPD subjects 
(1-5). These ROS and RNS are capable of causing oxidative damage 
to DNA, lipids, carbohydrates and proteins, and thereby mediate an 
array of downstream processes that contribute to the development and 
progression of COPD. They also activate resident cells in the lung, 
particularly epithelial cells and alveolar macrophages, to generate 
chemotactic molecules that recruit additional inflammatory cells 
(neutrophils, monocytes and lymphocytes) into the lung (5-7), which 
in turn perpetuates oxidative stress in the lung. Collectively, these 
events lead to a vicious cycle of persistent inflammation, accompanied 
by chronic oxidative stress, which lead to disturbances in the protease-
antiprotease balance, defects in tissue repair mechanisms, accelerated 
apoptosis and enhanced autophagy in lung cells, which have all been 
linked to the severity and progression of COPD (8-11).

CS is, by far, the most important source of environmentally derived 
ROS in COPD (12). CS contains more than 4000 different chemicals 
and generates more than 1015 oxidants per puff, directly or indirectly, 
through various processes such as the Haber-Weiss reaction (13). 
ROS, in turn, can induce lipid peroxidation and yield products such as 
malondialdehyde (MDA), which have the ability to stimulate pul-
monary inflammation (5). COPD patients have increased MDA levels 
in the peripheral circulation, which increase further with progression 
of disease (14,15). Furthermore, the levels of lipid peroxidation prod-
ucts are also increased in the breath condensate and plasma of smokers 
and patients with stable COPD, with concentrations correlating 
inversely with lung function. ROS/RNS can initiate and propagate 
inflammatory responses by upregulating redox-sensitive transcription 
factors and activating their downstream signalling pathways (1,5) 
predominantly in epithelial cells and inflammatory cells (macrophages 
and neutrophils) in the lung. They also target signalling molecules, 
such as small G proteins and numerous proinflammatory transcription 
factors (eg, NF-κB) (7), to induce and sustain a proinflammatory state 
that enhances the production of cell-derived ROS. The principal 
ROS-generating enzyme system in inflammatory cells is NADPH oxi-
dase; however, other enzyme systems are also activated, such as the 
xanthine/xanthine and the heme peroxidases system, which have all 
been shown to be upregulated in COPD patients (1,16). Similarly, 
RNS in the form of nitric oxide production is generated by inducible 
nitric oxide synthase (iNOS), which in the presence of superoxide 
anion forms a powerful and damaging ROS, peroxynitrite anion (17). 
Upregulation of the iNOS system (and its downstream oxidative path-
ways) is believed to be one of the earliest (and pivotal) molecular 
events that trigger emphysema and pulmonary hypertension related to 
cigarette smoking (18). In addition, CS also compromises the 

antioxidant defenses of the lung by irreversibly modifying glutathione 
(GSH) and various redox-sensitive signalling proteins and transcrip-
tion factors, such as the nuclear factor-erythroid 2-related factor 2 
(Nrf2), a transcription factor expressed predominantly in epithelium 
and alveolar macrophages, which has an essential protective role in 
the lungs through the activation of an antioxidant response element 
that regulates antioxidant and cytoprotective genes (19,20). COPD 
patients may also exhibit decreased expression of heme oxygenase 1 
and catalase, components of the Nrf2 response pathway, and decreases 
in catalase and cytochrome C oxidase subunits, components of the 
mitochondrial antioxidant pathway (19-21). This imbalance between 
oxidative stress and antioxidant defenses in the lung are believed to be 
a key step in the pathogenesis of the development and progression of 
COPD.

In the current issue of the Canadian Respiratory Journal, Zeng et al 
(22) (pages 35-41) showed that COPD patients have increased expres-
sion of MDA in induced sputum, which increases further during acute 
exacerbation, suggesting increased oxidative stress in the airways. 
Zeng et al also showed that the antioxidative markers (GSH and 
superoxide dismutase) in induced sputum were significantly down-
regulated, resulting in an imbalance between oxidative stressors and 
antioxidants in the airways, especially during acute exacerbations. 
Although not evaluated in the study by Zeng et al, these perturbations 
in the oxidative balance could perpetuate (or amplify) the inflamma-
tory responses in the lung and possibly contribute to disease progres-
sion and poor health outcomes during acute exacerbations.  

More interestingly, Zeng et al also measured the same pro- and 
antioxidants in the plasma of their study subjects, showing a surprising 
similar imbalance of oxidative stress versus antioxidant capacity in the 
systemic circulation. COPD is now widely recognized as not simply 
an inflammatory lung disease, but also a chronic systemic disease (23) 
with diverse extrapulmonary manifestations, especially in the cardio-
vascular system (24). Translocation of proinflammatory mediators 
from the lung into the circulation has been proposed as a potential 
mechanism of how COPD impacts cardiovascular disease (23,24). 
Consistent with this theory, recent animal studies have shown trans-
location of interleukin (IL)-6 from the lung into the bloodstream 
after endotoxin- or air pollution-induced lung inflammation (25,26). 
IL-6 translocation has been associated with vascular dysfunction and 
thrombosis (25-27), suggesting that lung inflammation is one of the 
driving forces of vascular disease. Systemic oxidative stress has also 
been shown to play a vital role the pathogenesis of vascular disease, 
such as atherosclerosis, and in triggering acute coronary events (28). 
Although translocation of oxidants and/or antioxidants from the 
lung into the circulation has not been previously documented, the 
close relationship of the oxidant/antioxidant balance in the lung 
with that in the systemic circulation, as reported by Zeng et al, sug-
gests that these oxidative molecules generated in the lung may ‘spill 
over’ into the circulation (Figure 1). However, this hypothesis needs 
to be directly tested to determine whether oxidative stress from lung 
sources significantly contributes to the downstream cardiovascular 
disease associated with COPD. This mechanism could be even more 
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relevant during an acute exacerbation of COPD in which the burden 
of oxidative stress in the lung is increased exponentially. There is 
good epidemiological evidence that acute lung infections trigger acute 

vascular events such as acute coronary syndrome (29,30) but the 
precise molecular pathways by which this occurs are largely unknown. 
Previous research has implicated lung inflammation driven by alveolar 
macrophages and molecules such as IL-6 (25,26); however, there may 
be other more salient molecules and pathways, such as downstream 
effects of oxidative stress, involved in this process.  

The findings of Zeng et al have therapeutic implications. Oxidative 
stress inhibits the expression of glucocorticoid receptors, which are 
required for corticosteroid binding and translocation to target genes. 
Thus, in a pro-oxidant milieu, corticosteroids are relatively ineffective, 
which may explain the poor therapeutic performance of inhaled corti-
costeroids in COPD. Because an oxidant/antioxidant imbalance is 
implicated in the pathogenesis of COPD, therapeutic intervention to 
correct the imbalance could be effective in the treatment of COPD 
and may boost the therapeutic potential of corticosteroids, specifically 
during acute exacerbation. Therefore, targeting oxidative stress with 
antioxidants or boosting the endogenous levels of antioxidants is 
likely to have a beneficial outcome in the treatment of COPD. 
Antioxidants, such as glutathione, N-acetyl-L-cysteine, Nrf2 activa-
tors and dietary polyphenols (resveratrol, and green tea catechins/
quercetin), have all been reported to increase intracellular thiol status 
and GSH biosynthesis, leading to detoxification of free radicals and 
oxidants, with attenuation of the resulting inflammatory responses in 
the lung (31). Because a variety of oxidants, free radicals and alde-
hydes are implicated in the pathogenesis of COPD, it is reasonable 
that therapeutic administration of multiple antioxidants will be 
needed to effectively correct the oxidant/antioxidant imbalance in the 
lung and dampen the inflammatory response associated with COPD, 
particularly during acute exacerbations of COPD. This therapeutic 
intervention may also correct the systemic oxidant/antioxidant imbal-
ance and the downstream systemic comorbidities caused by COPD and 
during acute COPD exacerbation.
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