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Determining cantilever stiffness from thermal noise
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Abstract
We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency fn, quality factor Qn and specifically

the stiffness kn of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displace-

ment fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for

several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral

analysis, we introduce a new method to determine kn from a spectral analysis of the demodulated oscillation signal of the excited

cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We

demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required

simple instrumentation for spectral analysis is available in most experimental systems.
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Introduction
Noise as a result of thermal fluctuations is a ubiquitous

phenomenon present in any physical system kept at a finite

temperature. The seminal work of Nyquist established the

simple framework of thermodynamic considerations for a quan-

titative description of such noise for a resistor kept at a tempera-

ture T and connected to an electrical network, as an example of

a dynamic system in equilibrium with a thermal bath [1]. At the

same time, it was pointed out by Johnson that such under-

standing is of great practical relevance as it allows for an opti-

misation of critical electronic devices with respect to their noise

figures [2]. The main conclusion from this work is that a

thermal bath provides a source of excitation with a strength that

is constant over the entire frequency range, while the strength

and spectral characteristics of the system response depends
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solely on the system transfer function. According to the

equipartition theorem, the energy transferred from the thermal

bath to a dynamic system equals (1/2)kBT for each degree of

freedom, where kB is the Boltzmann constant.

A cantilever is a mechanical dynamic system that is often

described as a simple harmonic oscillator with a response func-

tion dominated by resonances at the eigenfrequencies fn of the

flexural cantilever oscillation modes. Each of these modes

represents a mechanical degree of freedom extracting (1/2)kBT

of energy if connected to a thermal bath. The corresponding

response to thermal excitation, namely the resulting noise

power spectral density of the cantilever displacement , is

the superposition of contributions from all modes and can be

derived within the framework of the Nyquist theory [3].

Provided the simple harmonic oscillator model is valid, i.e., the

internal damping of the cantilever is small,  is given by

(1)

where kn and Qn are the modal stiffness [4] and Q-factor of the

nth cantilever eigenmode [5], respectively. The relation is of

relevance for any practical application involving microcan-

tilevers and specifically important for high-resolution noncon-

tact atomic force microscopy (NC-AFM) based on cantilever or

tuning fork force sensors. We recently demonstrated how

Equation 1 defines the ultimate limit of signal detection for an

NC-AFM measurement performed under ultrahigh vacuum

(UHV) conditions [6]. Although most NC-AFM systems are

operated with cantilevers excited near their fundamental eigen-

frequency f0, higher eigenmodes [7] have been investigated in

the context of noise analysis [8], and it has been debated

whether the thermal noise limitations in NC-AFM measure-

ments could be reduced by operating cantilevers at higher

eigenmodes [9]. It has further been realised that the cantilever

properties fn, kn and Qn appear as linearly independent parame-

ters in Equation 1. This allows their independent determination

from a single measurement of the displacement noise spectral

density  over a limited spectral range around the resonance

for a cantilever kept at a known temperature [10]. A practical

implementation of this notion, focused on the determination of

cantilever stiffness from thermal noise, demonstrated the

validity of the approach by a critical comparison of the results

against corresponding results from other methods [11].

While the properties fn and Qn can quite easily be determined

with high precision by a cantilever excitation experiment [12],

the thermal method discussed here is hitherto the only one to

yield valid results for the modal stiffness kn. The strength of the

thermal method is that it is solely based on the equipartition

theorem, establishing the simple energy balance [6]

(2)

with k being the static stiffness of the cantilever.

This implies that a precise measurement of the mean square dis-

placement  or the corresponding power spectral density

( (f))2 in a region around a specific resonance n allows the

determination of the modal stiffness kn without the knowledge

of any other cantilever parameters such as dimensions, shape,

mass or mass distribution.

Here, we critically discuss the extraction of intrinsic cantilever

properties from measurements of thermal noise and focus on the

precise determination of the modal stiffness kn as this quantity

is a prerequisite for the quantitative interpretation of force

imaging and spectroscopy results [13-15]. Most examples are

given for the fundamental mode of the cantilever oscillation, but

we also demonstrate that the method is universal and can

equally well be applied to higher oscillation modes. The acqui-

sition of noise spectra is, however, not trivial in this context as

intrinsic Q-factors of the fundamental mode of high-Q

cantilevers may be as high as 200,000. Thus, the accurate spec-

tral analysis of the extremely narrow resonance peak requires

expensive test equipment. Therefore, we introduce an alter-

native method of determining the modal stiffness by using the

demodulator of an NC-AFM system to project the noise power

of an excited cantilever around its resonance into the frequency

range of 10 Hz to 1 kHz. Processing the resulting frequency

shift signal Δf(t) to obtain the modal stiffness in this frequency

range is straightforward as a spectral analysis can be performed

with simple equipment available in most NC-AFM control

systems.

Experimental
Measurements are performed in two UHV systems with

NC-AFM instruments based on the optical beam deflection con-

figuration. These have been described in our previous work as

system B (UHV VT AFM/STM, Omicron NanoTechnology

GmbH, Taunusstein, Germany) and as system C (UHV 750

variable temperature STM/AFM, RHK Technology, Inc., Troy,

MI, USA) [6]. Temperatures used for data analysis are

measured directly at the NC-AFM stage of a thermally equili-

brated experimental system. It is, therefore, expected that the

measured temperature is identical to the cantilever temperature.

As test objects, we use a selection of four cantilever types with

commercial names FM, NCH, Arrow™ and NCVH (Nanoworld
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Table 1: Synopsis of cantilever properties. Cantilever dimensions are the length l (±2.5 µm), mean width (±1.5 µm) and thickness t (±0.2 µm) as
provided by the manufacturer. The stiffness kdim is calculated from the cantilever dimensions, while kstat is determined by a precision measurement of
the static stiffness [16]. Eigenfrequency  (standard deviation below 1 ppm) and quality factor  (standard deviation below 1%) are obtained
from a fit of the simple harmonic oscillator transfer function to the measured resonance curve of the excited cantilever [12].  and  are the prop-
erties yielded when fitting Equation 3 to the displacement noise spectral density  of a thermally excited cantilever. The value  is extracted from
the frequency shift noise  from Equation 6 by using  and  as known parameters.

cant. l (µm)  (µm) t (µm)  (Hz) kdim (N/m) kstat (N/m)  (N/m)  (N/m)

P 5 224 30 3.0 68,319 97,500 105,300 3.0 ± 0.9 2.73 ± 0.14 2.9 3.4
D 5 229 30 2.9 68,353 118,000 123,000 2.5 ± 0.8 2.50 ± 0.13 2.7 2.9
V 4 125 26 3.8 283,620 28,600 28,400 31 ± 6 25.2 ± 1.3 22 21
V 15 125 26 3.7 279,451 47,200 46,300 29 ± 6 — 24.3 22
AF 11 125 34 4.1 311,476 37,700 — 50 ± 13 44.6 ± 2.3 — 61
AL 3 — — — 1,316,757 16,600 — 9 ± 3a — — 8.7
AP 5 40 24 2.0 1,996,199 32,400 — 130 ± 50 — — 125

aValue provided by the manufacturer.

AG, Neuchâtel, Switzerland). These cantilevers are chosen to

cover a broad range of eigenfrequencies f0 ranging from 50 kHz

to 2 MHz, static stiffness k [16] ranging from 3 to 120 N/m, and

Q-factors Q0 [12] covering the range of 20,000 to 120,000;

details are provided in Table 1. Measurements of the total dis-

placement noise spectral density (f) are performed by using

a spectrum analyser connected to the output of the preamplifier

of the position-sensitive detector of the NC-AFM instrument.

The cantilever displacement is measured as a calibrated elec-

trical signal Vz(t) and processed by the spectrum analyser [6].

For measurements of the total noise spectral density (fm) in

the frequency shift signal Δf(t), the spectrum analyser is

connected to the phase-locked-loop (PLL) demodulator output

of the respective NC-AFM system. In all of these experiments,

utmost care has to be taken to shield the NC-AFM system from

mechanical and, specifically, from electric noise in spectral

regions encompassing the cantilever eigenfrequencies. Other-

wise measurements may be severely false due to nonthermal

noise contributions. Furthermore, valid results using this

methodology can only be expected for thermal noise-limited

measurements performed with a system for which the PLL

transfer function is known. The former condition requires the

detection system noise floor  to be so low that, at least over

a significant fraction of the PLL demodulator bandwidth, the

frequency shift noise spectral density (fm) of the detection

system is negligible compared to the thermal frequency-shift

noise spectral density (fm) [6].

Results and Discussion
Stiffness from displacement thermal noise
In a displacement noise measurement of a cantilever with a high

Q-factor, the spectrum analyser measures the total displace-

ment noise spectral density (f) for the nth cantilever oscil-

lation mode, which can be represented as [6]

(3)

An exemplary spectrum of cantilever V 4 (see Table 1)

covering the frequency region around the fundamental reso-

nance at f0 ≈ 284 kHz is shown in Figure 1. The cantilever prop-

erties are extracted from the displacement noise spectrum by

applying Equation 3. In the first step, the essentially white

detection-system noise floor  of the nth mode is deter-

mined by averaging the spectral density off resonance (see

Figure 1a). In the second step, Equation 3 is fitted to the data

with the cantilever properties f0,  and  as fitting parame-

ters and  as determined in the first step (see Figure 1b).

Respective measurements have been performed for many

cantilevers with some results compiled in Table 1, together with

information on cantilever dimensions and properties measured

by other techniques. Thermal noise analysis of cantilever V 4,

for instance, yields  = 283,616 Hz,  = 28,400 and  =

22 N/m. As a consistency check, we measure the cantilever

response to excitation in the vicinity of the resonance, where the

corresponding results for the amplitude and phase response are

shown in Figure 2. A fit of the simple harmonic oscillator

model to the amplitude response (Equation 3 in [12]) yields

 = 283,620 Hz and  = 28,600 in excellent agreement

with the thermal noise analysis. Generally, the fit of the thermal

noise model from Equation 3 to the measured thermal excita-

tion displacement data is excellent. In terms of experimental

uncertainties, the highest precision is obtained in determining

the eigenfrequency. State-of-the-art test equipment provides an

accuracy of absolute frequency measurements below 1 ppm.

However, practically the reproducibility is limited by thermal

drift of the cantilever resonance between repeated measure-
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Figure 1: Displacement noise spectral density  measured for the
fundamental mode of cantilever V 4. Measurements represent the
average of 50,000 spectra. (a) Measurement yielding the detection-
system noise floor  (dotted line). (b) Determination of ,  and

 by a fit of Equation 3 to the measured spectrum (dash-dotted line).

ments. This explains, for instance, the 4 Hz difference in the

results for  and  for cantilever V 4 as these measure-

ments were performed with a time difference of several hours.

The reproducibility in determining the Q-factor is determined

by statistical errors and can be reduced to a standard deviation

of 10% for  by appropriate averaging. Great care has to be

taken, however, in mounting the cantilever to ensure that the

measured Q-factor is the intrinsic Q-factor of the cantilever

rather than an effective Q-factor caused by improper mounting

of the cantilever [12]. Determining the cantilever stiffness 

relies on an absolute measurement of the cantilever displace-

ment. The main limitations of precision here are the uncertainty

in the calibration of the cantilever oscillation amplitude

[6,17,18] and of the electronic test equipment involved. The

reproducibility for the measurement of  is typically 5%

(standard deviation), while a comparison of  to values kstat

from reference measurements [16] yields an error of about 10%

for the determination of stiffness from thermal noise. Note,

however, that the modal stiffness k0 is related to the static stiff-

ness k by k0 = 1.03k for a tipless cantilever while, for instance, a

tip mass of 10% of the cantilever beam mass yields a relation of

k0 = 1.01k instead [19].

Figure 2: (a) Measured resonance curve (solid line) of the excited
cantilever V 4 with a fit (dotted line) of Equation 3 from [12] to experi-
mental data yielding  and . (b) Phase response of the excited
cantilever V 4.

In summary, the analysis of the displacement-noise spectral

density around resonances of a thermally excited cantilever in a

UHV environment allows the extraction of intrinsic cantilever

properties with high accuracy and is specifically useful for

determining modal stiffness. However, such measurements

require a spectral analysis with high frequency resolution.

Stiffness from frequency shift thermal noise
To circumvent the use of a high-resolution spectrum analyser

and to facilitate measurements with the test equipment that is

often integrated in NC-AFM control systems, we introduce an

alternative method of extracting the cantilever modal stiffness

from thermal noise. To apply this method, the eigenfrequency fn

and the quality factor Qn of the nth oscillation mode have to be

measured from an excited resonance curve as shown in

Figure 2. To determine kn, the cantilever is excited to oscilla-
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tion in the nth mode at a well stabilised amplitude An. Thermal

fluctuations described by the power spectral density given by

Equation 1 are now superimposed to the deliberate oscillation.

These fluctuations are detected by the PLL demodulator tuned

to the cantilever eigenfrequency. Effectively, the PLL projects

the displacement noise power spectral density in the sidebands

of the mode resonance into a range of frequencies fm starting at

0 Hz. Considering the transfer function of the demodulation and

the transfer function of the PLL output or loop filter Gfilter, the

frequency shift noise spectral density at the PLL output can be

represented as [6]

(4)

This allows us to obtain the modal stiffness from a measure-

ment of  if all other parameters are known:

(5)

Practically, the spectral analysis can be restricted to the

frequency range of 10 Hz to 1 kHz. The resulting spectra are

depicted in Figure 3 for different cantilevers (namely V 4 and

AL 3 as described in Table 1) excited at their fundamental reso-

nance mode at f0. The typical shape common to all such spectra

has been explained in detail elsewhere [6]. The dotted and dash-

dotted lines shown in Figure 3 represent the contributions from

thermal noise and detection system frequency shift noise 

and , respectively. Here, the model curve for  is not

based on an independent measurement of , but determined

from the measured  curve assuming that the plateau

indeed represents purely thermal noise. We focus on the plateau

in  found in the 10 to 50 Hz region. In the plateau

region labelled by a representative modulation frequency ,

the frequency shift noise is dominated by thermal noise

(fm) (dash-dotted line), while the noise contribution from

the detection system (fm) (dotted line) is negligible. Within

this approximation, Equation 5 can be simplified to the

following expression for the modal stiffness:

(6)

Prerequisite for a reliable determination of the modal stiffness is

a knowledge of the cantilever properties fn and Qn and the PLL

Figure 3: Frequency shift noise spectral density  measured for
cantilever V 4 (A0 = 16.8 nm, demodulator bandwidth B−3dB = 415 Hz)
and cantilever AL 3 (A0 = 16.5 nm, demodulator bandwidth B−3dB =
258 Hz). Spectra are recorded with at least 1000 averages. Dotted
lines show the contribution  of the detection system noise floor;
dash-dotted lines represent the contribution  of the thermal noise
to the total frequency shift noise . The analysis of the noise spec-
tral density at the plateau frequency  yields the cantilever stiffness

 according to Equation 6.

filter function Gfilter. While the former parameters can precisely

be determined from an in situ cantilever excitation experiment

[12], the latter function can be assumed to be 1 if the filter

transfer function is reasonably well-behaved as a function of

frequency and a sufficiently large PLL bandwidth is chosen [6].

Results shown in Figure 3 demonstrate that the signal quality

obtained under typical experimental conditions is high enough

to extract a well-defined value for ( ) from the noise

data. The modal stiffness values  obtained for seven

cantilevers for fundamental mode excitation according to

Equation 6 are displayed in Table 1 and compared to the stiff-

ness results obtained by using different methods for the same

cantilevers. From these and further measurements (not shown

here), we find an experimental uncertainty of about 20% for the

modal stiffness obtained from the frequency shift noise. We

attribute the decreased accuracy to noise and uncertainty in the

calibration of the additional equipment involved. Note,

however, that any noise source besides the thermal excitation
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yields a reduction in the measured modal stiffness and cannot

explain values that are too high.

The determination of the effective cantilever stiffness from

frequency shift noise is most interesting for cantilever excita-

tion at higher oscillation modes where the projection of the dis-

placement noise into the low frequency region by the PLL

demodulator is especially convenient. Respective results

obtained for cantilevers P 5 and AF 11 are shown in Table 2.

For cantilever P 5 we obtain k1 = 154 N/m and k2 = 1330 N/m.

As there is no reference for a cross-check of these values, we

check for plausibility within the framework of the cantilever

oscillation theory. Equation 5 given in [4] allows us to calcu-

late the modal stiffness for a given ratio of tip mass to beam

mass. Assuming the tip mass being 2% of the cantilever beam

mass yields k1/k0 = 45.0 and k2/k0 = 397. These numbers fit

well to the measured values for cantilever P 5 (see Table 2).

The result for AF 11 can be explained by a tip mass of 5% of

the cantilever beam mass.

Table 2: Cantilever eigenfrequencies  and quality factors  of
the nth oscillating mode for cantilevers P 5 and AF 11. The modal stiff-
ness  is obtained from the frequency shift noise spectral density

 through Equation 6. /  is the ratio of the modal stiffness of
the nth oscillation mode to the stiffness of the fundamental mode.

cantilever n  (Hz)  (N/m)

P 5 1 436,711 44,900 154 45.3
P 5 2 1,234,277 5841 1330 391
AF 11 1 1,934,677 9000 3420 56

Conclusion
In conclusion, we introduce a method for determining the modal

stiffness kn of a cantilever from frequency shift noise comple-

mented by an independent measurement of the modal eigenfre-

quency and Q-factor. Our strategy yields valid results with an

uncertainty of about 20%; however, the accuracy is expected to

be increased by an improvement of the experimental setup. This

method is particularly convenient as measurements can be

performed with simple test equipment implemented in many

NC-AFM control systems. Additionally, the involved spectral

analysis is simple and can be performed over a bandwidth of

only 1 kHz at maximum, irrespective of the cantilever eigenfre-

quency. We apply the thermal noise method to various

cantilever types and find a good agreement of these cantilever

parameters with those determined by using alternative methods.

The strength of the methods presented here is that they directly

yield the modal stiffness derived from a thermal measurement

and do not require any modelling to relate geometric cantilever

properties to oscillation properties.
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