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ABSTRACT
The anti-CD20 monoclonal antibody, rituximab, provides a significant therapeutic
benefit for patients with B-cell disorders. However, response to therapy varies and
relapses are common, so an understanding of both inherited and acquired rituximab
resistance is needed. In order to identify mechanisms of inherited resistance,
sensitive versus resistant individuals were selected from a survey of 92 immortalized
lymphoblastoid B-cell lines from normal individuals. Levels of CD20 protein and
surface expression were lower in the resistant group. In contrast, CD20 mRNA levels
were not correlated with susceptibility, suggesting regulation at a post-transcriptional
level. To examine acquired resistance, resistant sublines were selected from both
lymphoblastoid as well as lymphoma cell lines. Confirming previous findings, there
was significant down-regulation of CD20 protein expression in all the resistant
sublines. CD20 mRNA splice variants are reported to be associated with development
of resistance. Three splice variants were observed in our cell lines, each lacking the
binding epitope for rituximab, but none were associated with rituximab resistance.
The second generation anti-CD20 mAb, ofatumumab, was more active compared
with rituximab in vitro in the survey of all B-cell lines, mirroring results that have
been reported previously with malignant B-cells. These studies show that normal
B-lymphoblastoid cell lines can be used to model both innate and acquired mecha-
nisms of resistance. They validate the important role of CD20 expression and enable
future genetic studies to identify additional mediators of anti-CD20 mAb resistance.

Subjects Cell Biology, Molecular Biology, Hematology, Immunology, Oncology
Keywords Rituximab, Ofatumumab, CD20 expression, mRNA splice variants,
Complement-dependent cytotoxicity, Drug resistance, Lymphoblastoid cell line

INTRODUCTION
The therapeutic monoclonal antibody rituximab, directed against the B-cell associated

protein CD20, was the first mAb approved for cancer therapy in the United States

and has become an integral part of the treatment regimens for B-cell malignancies
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(Molina, 2008; van Meerten & Hagenbeek, 2009). Rituximab has also been used to treat

a variety of autoimmune diseases with B-cell involvement, including rheumatoid arthritis,

systemic lupus erythematosus, and multiple sclerosis (Emer & Claire, 2009; Gurcan et al.,

2009; Ibrahim, Dimachkie & Shaibani, 2010). Anti-CD20 mAbs are classified as either

type I or II. Type I antibodies, such as rituximab, are distinguished by their ability to

redistribute CD20 into lipid rafts and induce (CDC) complement-directed cytotoxicity

(Cragg et al., 2003). Type II antibodies have reduced CDC capacity. Both type I and II are

capable of phagocytosis and (ADCC) antibody-dependent cytotoxicity (Beers et al., 2010;

Lim et al., 2010). There is controversy regarding the importance of CDC versus ADCC and

even direct cell killing in mediating the clinical efficacy of rituximab (Beers et al., 2010;

Lim et al., 2010). The discussion is further complicated by the variability of these effector

systems when comparing humans and animal models. However the evidence supporting

CDC as an important effector is strong enough to have influenced development of the next

generations of anti-CD20 mAbs. A number of 2nd/3rd generation anti-CD20 mAbs have

now been developed with either enhanced CDC or ADCC function, with the majority of

anti-CD20 mAbs reaching clinical trials being type I mAbs (Lim et al., 2010; Oflazoglu &

Audoly, 2010).

Despite widespread treatment successes, resistance is an important issue. For instance,

in follicular lymphoma, only ∼50% of patients respond to initial treatment with

single-agent rituximab (McLaughlin et al., 1998). Furthermore, the majority of responders

eventually become refractory to rituximab (Davis et al., 2000). Therefore, there is a need to

understand both the determinants responsible for de novo rituximab sensitivity as well as

the mechanisms leading to acquired resistance.

Previous reports of cell autonomous factors leading to rituximab resistance have

focused on alterations in malignant lymphoma cells, but since anti-CD20 antibodies are

used against normal B-cells as well, comparing mechanisms of resistance in these cells is of

interest. Also, studying rituximab response in normal B-cells allows inherited, rather than

acquired (either during malignant transformation or as a result of therapy) genetic factors

to be identified. In this report, variability in anti-CD20 mAb response was assessed using

Epstein Barr Virus (EBV)-immortalized human lymphoblastoid cell lines (LCLs) from the

Centre d’Etude du Polymorphisme Humain (CEPH). These LCLs from normal individuals

as well as established B-cell lymphoma cell lines were then used in a comparative study

to examine factors influencing both innate as well as acquired rituximab resistance. The

second generation CD20 mAb, ofatumumab, was assayed alongside rituximab to compare

the two agents.

In rituximab-naı̈ve B cells, CD20 surface expression is a proven determinant of innate

rituximab sensitivity (van Meerten et al., 2006). The levels of expression of complement

regulatory proteins, CD55 and CD59, have also been suggested to affect response to

rituximab (Golay et al., 2001; Takei et al., 2006). Acquired rituximab resistance in B-cell

lymphomas following exposure to rituximab has likewise been associated with reduced

Small et al. (2013), PeerJ, DOI 10.7717/peerj.31 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.31


levels of CD20 and increases in CD55/59 expression or activity (Czuczman et al., 2008;

Ge et al., 2011; Golay et al., 2001; Takei et al., 2006). Using lymphoma cell lines to derive

resistant sublines, two recent reports have observed the appearance of a unique protein(s),

immunoreactive with CD20 antibody, and associated with acquired rituximab resistance

(Czuczman et al., 2008; Henry et al., 2010). This band has been identified as an alternative

CD20 mRNA transcript (Henry et al., 2010). Transcription of full-length CD20, encoded

by an 8-exon gene, exists as a ∼35 kDa transmembrane phosphoprotein (Tedder et al.,

1989). Its exact function is unknown, but binding of rituximab results in increased Ca2+

flux, activation of Src family tyrosine kinases, and subsequent reorganization of CD20

into lipid raft domains (Czuczman et al., 2008; Polyak, Tailor & Deans, 1998; Popoff et al.,

1998; Semac et al., 2003). The mRNA splice variant associated with rituximab resistance

(Henry et al., 2010) results in a truncated protein, eliminating the rituximab epitope but

potentially retaining any functions of the inner cytoplasmic tail, which includes potential

phosphorylation sites as well as domains necessary for reorganization into lipid rafts

(Polyak, Tailor & Deans, 1998; Tedder & Schlossman, 1988).

Based on results achieved with rituximab, subsequent generations of anti-CD20

antibodies are under development. Ofatumumab, a fully humanized anti-CD20 antibody,

was recently FDA approved (Lemery et al., 2010). Ofatumumab may have advantages

over rituximab in that it dissociates at a slower rate compared to rituximab, and its

epitope, which is distinct from that of rituximab, includes a membrane proximal region

that may facilitate more potent complement-dependent cytotoxicity (CDC) (Cheson,

2010; Pawluczkowycz et al., 2009; Teeling et al., 2004; Teeling et al., 2006). Here we explore

mechanisms of innate and acquired resistance to anti-CD20 mAbs in nonmalignant cells,

comparing them with known results in malignant B cells, thus establishing similarities that

can be exploited in large-scale screening studies using nonmalignant cells.

MATERIALS AND METHODS
Monoclonal antibodies and human serum
Rituximab (RituxanTM; Genentech, Inc.) and ofatumumab (ArzerraTM; GlaxoSmithKline,

Inc.) were purchased through the North Carolina Cancer Hospital pharmacy. Pooled

human serum was obtained from volunteers and used as a source of complement.

Cell lines, cell culture, and establishment of resistant lines
The CEPH cell lines, EBV-immortalized lymphoblastoid cell lines from normal indi-

viduals, were obtained from the Coriell Institute (Camden, NJ) and lymphoma cell

lines were obtained from the Lineberger Comprehensive Cancer Center (LCCC) Tissue

Culture Facility (Supplementary Table 1). Cell lines were maintained in RPMI media

containing 10% fetal bovine serum (FBS), 100 units/ml penicillin G sodium, and

100 µg/ml streptomycin sulfate except for the Daudi cell lines which were maintained

in media containing 20% FBS. For the establishment of resistant cell lines, parental cells

were exposed to 10 µg/ml rituximab in the presence of 25% human serum for 24 h. Treated
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cells were then returned to normal media and allowed to recover for 4–5 days. This process

was repeated for approximately 10 passages.

Microarray gene expression analysis
Publicly available gene expression data for 57 of the lymphoblastoid CEPH cell lines used

in this study were available in Gene Expression Omnibus (GEO) Dataset GSE12626

(time = 0 samples were used). CEL files were downloaded from the GEO site and

normalized using Robust Multichip Average (RMA) in the Bioconductor package using

R statistical software, version 2.12.1. Expression data from the two probesets (210356 x at,

210356 x at) interrogating MS4A1 (CD20) were averaged. Average expression was plotted

against viability of each cell line in rituximab.

Proliferation assays
Cells were seeded at 5× 104 cells in a 96-well plate in a total volume of 100 µl media

containing 25% pooled human serum with or without 10 mg/ml rituximab overnight.

Proliferation was then measured using Alamar Blue (AbD Serotec Ltd.) according to

manufacturer’s instructions. Dye was added to samples and incubated for approximately

eight hours. Fluorescence was then measured with excitation at 535 nm and emission at

595 nm. Proliferation was expressed relative to samples without antibody (rituximab or

ofatumumab).

RNA isolation and PCR
Total cellular RNA was extracted using TRIzol (Invitrogen) and RNA (1 µg) reverse-

transcribed into cDNA using Transcriptor First Strand cDNA Synthesis kit (Roche)

according to manufacturer instructions. Conventional PCR was performed using

Taq PCR Master Mix (Qiagen Inc.) and quantitative PCR (qPCR) was performed

using SsoFastTM EvaGreen R© (Bio-Rad) master mix. Reactions used 400 nM each of

forward and reverse primers prepared by the Nucleic Acids Core Facility (Univer-

sity of North Carolina at Chapel Hill). The annealing temperature was 59 ◦C. The

primers used were: 1-CD20F (5’-GAGCCAATGAAAGGCCCTATT-3’) and CD20R

(5’-TGCTGCCAGGAGTGATCCGGAA-3’) for analysis of CD20 mRNA; 1-CD20F and

350-CD20R (5’-AGCTATACAAGTTCCAGTG-3’) for specific analysis of the 350 bp splice

variant; 1-CD20F and 650-CD20R1 (5’-CACTGACAAAATGCCCAAACACTTC-3’) or

650-CD20R2 (5’-GCTATTACAAGTTCCAAACACTTCC-3’) for specific analysis of the

650 bp splice variants. To obtain sequence data, PCR products were extracted from gel

slices using a QIAquick Gel Extraction kit (Qiagen) and sequenced using the PCR primers

(Genomic Analysis Core Facility, University of North Carolina).

Western blotting
2× 106 cells were lysed in RIPA buffer (Dulbecco’s PBS, 0.1% Sodium Dodecyl Sulfate,

0.5% Sodium Deoxycholate, and 1% Igepal NP-40 supplemented with 1 mM PMSF,

1x cOmplete protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN), and

1x Phosphatase Inhibitor Cocktail 2 (Sigma, St. Louis, MO). An aliquot was used for
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protein determination using the BCA protein assay kit (Pierce Technology, Inc., St. Louis,

MO). The remaining sample was mixed with 0.5 vol. of 3x SDS sample buffer (1x equals

31.25 mM Tris-HCl (pH 6.8), 2% SDS, 5% 2-mercaptoethanol, 10% sucrose, and 0.005%

bromophenol blue) and heated for 5 min at 95 ◦C. Equivalent protein amounts were run

on SDS-PAGE in Tris/glycine/SDS buffer using 10% acrylamide gels. Resolved proteins

were then transferred to PVDF membranes. Blots were blocked using a 5% solution of

nonfat dry milk in 20mM Tris-HCl, pH7.4, 140 mM NaCl, 0.1% Tween 20 and exposed

to antibodies in the same buffer. A rabbit anti-CD20 antibody (Thermo Scientific, Cat. #

RB-9013) was used. Anti-LMP-1 was a kind gift from Dr. Blossom Damania (Lineberger

Comprehensive Cancer Center, University of North Carolina). Anti-β-actin (Sigma)

was used as a load control. Horseradish peroxidase-conjugated secondary antibodies

were used with ECL detection reagent (GE Healthcare Bio-Sciences Corp.) to visualize

immunoreactive bands. Protein levels were quantified with an Agfa Duoscan T2500

scanner (Agfa Corp.) followed by densitometry using NIH Image 1.61.

Flow cytometry
1.0× 106 cells were centrifuged, then resuspended in 100 µl cold Dulbecco’s PBS buffer

containing 0.1% sodium azide, 1.0% FBS, and 1% pooled human serum and kept on ice

for 30 min. For analysis of CD20 expression, 10 µl of FITC-αCD20 (BD Biosciences) was

added and samples incubated for an additional 45 min before adding an equal volume

of buffer. Samples were centrifuged and pellets resuspended in 0.5 ml of the same buffer

containing 5 nM TOPRO-3 (Invitrogen), which was used to distinguish viable cells. For

analysis of CD55 and CD59, 10 µl of premixed R-PE-αCD55/FITC-αCD59 (Invitrogen)

antibodies were used per sample. Phenotyping was performed on a Beckman-Coulter

(Dako) CyAn flow cytometer. Data analysis was performed with FlowJo software (Tree

Star, Inc.).

Statistical analyses
Unpaired, two-tailed t tests were done using Prism software (version 2.0; GraphPad

Software). Correlation coefficients were calculated with Stata (version 10.1) or Microsoft

Excel.

RESULTS
Anti-CD20 antibodies induce cell death in lymphoblastoid and
lymphoma cells in the presence of complement

The suitability of an in vitro assay for high throughput screening of cell lines for anti-CD20

monoclonal antibody (mAb) sensitivity was first tested using CD20-positive lymphoma

(Raji) and lymphoblastoid (GM 11828) cell lines as well as a CD20-negative (Jurkat) T-cell

line. The response of these cells following treatment for 18 h with antibody alone or in the

presence of either human serum, heat-inactivated human serum, or F(ab’)2 fragments was

quantitated using AlamarBlue as an indicator for metabolic activity of the remaining viable

cells. Rituximab alone had no observable effect under these conditions (Fig. 1A). A small
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Figure 1 Variable cell responses in anti-CD20 mediated CDC assays. (A) Cells were treated with
10 µg/ml of rituximab or ofatumumab under various conditions: in normal media, in the presence of:
−F(ab’)2,−25% human serum (hu serum), (continued on next page...)
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Figure 1 (...continued)

or -heat-inactivated serum (1serum) overnight. Cell viability was then quantitated using Alamar Blue.
Results are represented as a ratio of viability under each condition: with/without antibody. Results
are expressed as an average of a single experiment with duplicates ±SEM and are representative of
three such experiments. (B) To establish dose response curves, cells were treated with serially diluted
concentrations of antibody in the presence of 25% human serum. Results are expressed as indicated above
and representative of at least three experiments. (C) Survey of CEPH LCLs sensitivity toward rituximab
and ofatumumab. A panel of CEPH cell lines (n = 92) were assayed for their relative sensitivity toward
anti-CD20 antibodies using CDC assays containing 10 µg/ml of either rituximab or ofatumumab in the
presence of 25% human serum. The results are plotted as a frequency histogram showing the distribution
of responses to either antibody. Data used are the average of at least 5 individual experiments performed
in duplicate.

decrease in viability could be noted if the treatment time was extended to 48–72 h (data

not shown). A minimal response was observed with ofatumumab in both CD20+ cell lines

with a decline in viability of only∼10% in Raji cells (Fig. 1A). Since anti-CD20 antibody

alone had only a minimal effect on cell viability, we tested several previously published

methods to increase cell killing in vitro after rituximab treatment. Cross-linking of CD20

through antibody binding is reported to induce apoptosis (Cardarelli et al., 2002; Ghetie,

Bright & Vitetta, 2001; Shan, Ledbetter & Press, 1998), and indeed, cells were more sensitive

when treated with rituximab in the presence of anti-human F(ab’)2 fragments. However,

inclusion of human serum as a complement source resulted in the greatest declines in

CD20+ cell viability, which was reduced by∼85% in Raji cells treated with either antibody

(Fig. 1A). This decline was observed only in CD20-positive cells; the CD20-negative Jurkat

cell line was unaffected. Heat inactivation effectively prevented cell death from occurring,

consistent with complement dependent activity.

The effectiveness of rituximab and ofatumumab were compared in dose response assays.

Ofatumumab was approximately four-fold more potent at cell killing, comparing the IC50

between the two antibodies in sensitive cell lines (Fig. 1B). In more resistant cell lines, a

dose effect and increased activity at a lower concentration could frequently be observed for

ofatumumab when none was apparent for rituximab (Figs. 1B and 1C). The lymphoma

lines, Daudi and Raji were quite sensitive to both anti-CD20 antibodies relative to the

lymphoblastoid lines, with maximal cell death occurring at 2.5 µg/ml, the lowest antibody

concentration tested (Fig. 1B).

Response to anti-CD20 antibodies is variable among normal LCLs,
but degree of rituximab and ofatumumab response is correlated

Ninety-two CEPH LCLs as well as eight lymphoma cell lines were then surveyed in vitro to

assess relative sensitivity to rituximab and ofatumumab. Ten µg/ml of anti-CD20 mAb

was chosen since this concentration is commonly used for in vitro rituximab assays

(Czuczman et al., 2008; Di Gaetano et al., 2003; Golay et al., 2001), and approximates

the IC50 for rituximab in sensitive LCLs (Fig. 1B). Results were averaged from at least five

separate experiments. LCLs yielded a broad spectrum of response to rituximab with a more

negatively skewed distribution for ofatumumab in comparison to rituximab, reflecting

its greater potency (Fig. 1C). LCLs typically showed more sensitivity to ofatumumab,
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Table 1 Comparison of rituximab sensitivity with CD20,−55,−59 surface expression in lymphoblastoid
and lymphoma cell lines.

Cell line Viabilitya CD20b CD55b CD59b

rituximab, (n = 10) LCLs (n = 4) (n = 1) (n = 1)

Lymphomas (n = 2)

12622 0.28± 0.028 53± 8.4 205 134

11828 0.31± 0.004 28± 3.7 130 221

12621 0.32± 0.004 41± 9.8 254 185

12828 0.37± 0.031 22± 3.0 232 229

12754 0.64± 0.064 34± 4.5 48 273

12803 0.88± 0.009 20± 2.6 210 189

12698 0.93± 0.019 8± 0.1 104 170

11988 0.90± 0.036 13± 3.2 167 244

11989 1.00± 0.012 24± 5.1 114 119

10839 1.03± 0.013 19± 2.6 217 207

Daudi 0.17± 0.028 85± 15.0 57 175

Raji 0.24± 0.052 50± 5.0 38 61

BJAB 0.49± 0.089 77± 1.8 19 8

SUDHL4 0.28± 0.023 67± 50 29 16

HT 0.57± 0.045 81± 1.0 198 382

Farage 0.74± 0.039 131± 78 21 69

DB 0.77± 0.021 118± 10 29 44

SUDHL10 0.83± 0.036 62± 53 19 7

Notes.a Viability is represented as a ratio of growth with/without 10 µg/ml of rituximab in the presence of 25% human serum
and expressed as an average±SEM. Cell lines are grouped as: CEPH lines or lymphoma lines and listed from most sensitive
to most resistant based on results from viability assays conducted in the presence of rituximab and human serum. Median
viability of LCLs was 0.77 and the bold line separates “sensitive” (above) and “resistant” (below) LCLs.

b CD−20,−55, and−59 surface expression is represented as relative median fluorescence.

but the correlation between the two anti-CD20 mAbs was relatively strong (Pearson’s

r = 0.795, Spearman’s ρ = 0.770, Supplementary Fig. 1A). To rule out the possibility that

variability in EBV levels was affecting rituximab response, LMP protein expression was

examined and did not vary significantly between resistant and sensitive cell lines

(Supplementary Fig. 2). The lymphoma cell lines were generally more sensitive to

anti-CD20 mAbs, but they likewise displayed a range of response with Daudi and Raji

being the most sensitive and DB and SUDHL-10 most resistant (Table 1).

CD20 surface expression, but not mRNA expression, predicts
rituximab sensitivity in LCLs

Of the LCLs surveyed, five inherently sensitive and five inherently resistant lines (i.e. cell

lines below and above the median viability of LCLs in rituximab, respectively) were

selected for further characterization. Relative levels of CD20 surface expression were

examined by flow cytometry (Table 1). A plot of CD20 surface expression versus viability

among the LCLs demonstrated a moderately strong correlation between CD20 surface

expression and sensitivity to rituximab (R2
= 0.52). The lymphoma lines generally
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exhibited higher levels of CD20 surface expression and greater rituximab sensitivity

than the lymphoblastoid lines. However, some lymphoma lines had even higher CD20

expression than Raji and Daudi cells, yet were less sensitive to rituximab (Table 1,

Fig. 3A), suggesting that there are other contributing factors in addition to CD20 levels.

The complement inhibitors, CD55 and CD59 have been suggested to regulate

susceptibility to rituximab and complement (Golay et al., 2001; Takei et al., 2006). Surface

expression by flow cytometry (Table 1) showed no correlation between sensitivity and

CD55 or CD59 expression in either LCLs (R2
= 0.054,R2

= 0.013 respectively) or in

the lymphoma cell lines (R2
= 0.032,R2

= 0.014). It remains possible that changes in

the distribution of CD55/59 relative to CD20 rather than total protein amount could

impact rituximab sensitivity. However, the only association observed in this experiment

was between the expression of CD55 versus CD59 in the lymphoma cells lines, perhaps

reflecting their coordinated activity in complement inhibition (Table 1, R2
= 0.94).

CD20 surface expression corresponded to CD20 total protein expression detected

by Western blot analysis (Table 1, Fig. 2A). The average protein level of four of the

sensitive LCL cell lines, 0.83± 0.070, was significantly higher than in resistant lines,

0.34± 0.094 (p< 0.006, Fig. 2A). In contrast, no significant difference in CD20 (MS4A1)

mRNA levels was observed. Sensitive lines averaged 0.37± 0.140 relative to resistant lines

that averaged 0.54± 0.098 (n = 10,p < 0.34) (Fig. 2B). This observation was consistent

with results from gene expression array analysis. Publicly available gene expression data for

57 of the lymphoblastoid CEPH cell lines (Gene Expression Omnibus Dataset GSE12626)

was used to compare CD20 (MS4A1) mRNA expression to viability in rituximab. There

was no correlation between CD20 mRNA levels and viability in rituximab (R2
= 0.01,

Supplementary Fig. 1B).

Acquired rituximab resistance is also associated with reduced
CD20 levels
Periodic exposure of cell lines to rituximab followed by recovery led to the development

of resistant sublines (Supplementary Fig. 3A). Four out of four lymphoma lines and three

out of four lymphoblastoid lines yielded resistant sublines. All of the rituximab resistant

lines were also resistant to ofatumumab (data not shown). In order to examine the stability

of the resistant phenotype among the different cell lines, a separate culture of each of

the resistant sublines was grown in the absence of selection. In contrast to other reports

(Czuczman et al., 2008), the resistant phenotype appeared to be at least partly reversible

under our conditions. At two months, there was partial loss of the resistant phenotype in

the LCLs. Resistance was retained in three of the four lymphoma sublines at two months,

but by six months, three of the four lymphoma sublines had regained some sensitivity

to rituximab (Supplementary Fig. 3B). It has been proposed that acquired rituximab

resistance may occur through epigenetic modification (Sugimoto et al., 2009). However,

attempts to hasten re-expression using epigenetic modifiers (trichostatin A as a histone

deacetylase inhibitor and 5-azacytidine as a DNA methyltransferase inhibitor) were not

successful (data not shown).
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Figure 2 CD20 protein and mRNA levels in sensitive or resistant lymphoblastoid cell lines. A) Western
blotting was performed on cellular extracts from lymphoblastoid cell lines previously identified in
surveys of cell lines as either sensitive (lanes 1–4) or resistant (lanes 5–8) toward rituximab. Following
densitometry, relative CD20 protein levels are expressed by normalizing to the leftmost sample (12622)
after correction for equal protein loading using β-actin as a load control. B) CD20 mRNA transcript
levels were measured by qPCR. GAPDH was used as a load control and data is expressed by normalizing
to the leftmost sample (12622). Results are the average of duplicates (±SEM) and representative of three
experiments.

Acquired resistance was accompanied by down-regulation of CD20 expression in all

the sublines relative to their respective parental lines as evidenced by decreased surface

expression (Fig. 3A). Decreases in surface expression corresponded to lower total protein

levels as determined by Western blot (Fig. 3B). Likewise, reductions in CD20 mRNA levels

were consistently seen in all sublines as well, indicating regulation of CD20 expression at

the transcriptional level in the case of acquired rituximab resistance (Fig. 3C). These results
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Figure 3 CD20 surface expression as well as protein and mRNA levels in parental and resistant sub-
lines. A) Histogram of CD20 surface expression following flow cytometric analysis of parental cell lines
(right trace, each panel) and resistant sublines (left trace). B) Western blot of CD20 protein expression
(upper band). CD20 protein levels are expressed by normalizing to the corresponding parental line after
correction for equal protein loading using β-actin as a load control. C) Relative CD20 mRNA levels were
estimated using qPCR. GAPDH was used as a load control and data are normalized to the parental line.
Results are the average of duplicates (±SEM) and representative of three experiments.

were distinct from earlier results obtained using LCLs with an innate rituximab resistance,

where mRNA levels were not correlated with resistance (Fig. 2).
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Figure 4 CD20 mRNA splice variants. A) Agarose gel electrophoresis of PCR products from parental
and resistant sublines following amplification of CD20 mRNA transcripts. Primers near the start and end
of CD20 were used in order to look for potential splice variants. B) Schematic diagram of the CD20 gene.
Exons are represented by rectangles. Brackets indicate regions removed in the splice variants. The shaded
region in exons 3 and 7 shows the location of non-standard splice sites. The relative size and positions of
the rituximab and ofatumumab epitopes are represented by the solid rectangles below.

Alternative splicing of CD20 mRNA is not associated with
rituximab resistance in LCLs
Alternative splicing of the CD20 gene (MS4A1) results in three mRNA transcript isoforms

which encode the same full-length protein (Tedder et al., 1989), and recent studies show

evidence of truncated variants associated with rituximab resistance (Czuczman et al., 2008;

Henry et al., 2010; Terui et al., 2009). To explore the possibility that acquisition of rituximab

resistance may be accompanied by the induction of alternate CD20 mRNA splice variants,

cDNA from both parental and resistant sublines was amplified. In addition to the primary

full-length transcript of approximately 900 bp (Fig. 4A), a minor ∼350 bp product was

seen all cell lines. Sequence analysis confirmed that this band was the previously described

1CD20 splice variant lacking an internal 501 bp fragment spanning from mid-exon 3 to

mid-exon 7 (Henry et al., 2010). The resultant protein has a predicted size of 15kD and

lacks the 4 transmembrane domains as well as the extracellular loops serving as antigenic

sites.

In addition to these products, a third ∼650 bp PCR band could be observed, more

prominent in the lymphoma lines than in the LCLs (Fig. 4A). The ∼650 bp product

from r-Daudi was subcloned into a sequencing vector and analyses were performed on

individual colonies. Sequencing revealed two species of a previously unidentified splice
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variant with alternative 3’ acceptor sites. The alternate splice junction of species 1 joins

exon 5 to exon 7 forming an in-frame mRNA transcript of 660 bp (Fig. 4B). The alternate

splice junction of species 2 likewise occurs at the 3’ end of exon 5 but is instead spliced

at the alternative splice site 39 bp downstream from the 5’ end of exon 7 resulting in

a 621-bp in-frame transcript (Fig. 4B). The resulting proteins have a predicted size of

24 kD, retaining 3 transmembrane domains but lacking the external antigenic sites and one

transmembrane domain.

Western blots probed with an antibody directed against the carboxy terminus of CD20,

common to all transcripts, showed global down-regulation of all species of the CD20

protein in the resistant sublines (Fig. 3B). The primary, immunoreactive band migrated as

a doublet at∼33/35 kD, presumably including the phosphorylated form(s) of full-length

CD20. Increased exposure of the western blot also revealed a doublet at∼17/19 kD which

could be assigned to the 350 bp splice variant seen in agarose gels (Fig. 4A). It likewise

decreased with the acquisition of a resistant phenotype making it an unlikely effector

of rituximab resistance, in contrast to a previous report (Henry et al., 2010). A third,

intermediate band could be observed at approximately 27 kD and was attributed to the

650 bp splice variant (Fig. 4B). However, the 27 kD band likewise decreased with the

acquisition of resistance.

Global down-regulation of CD20 mRNA species with acquisition of
resistance
A potential increase in the 650 bp variants in the resistant sublines seen by standard PCR

(Fig. 4A) was not confirmed by qPCR. There was no statistically significant difference

in the mRNA levels of the ∼650 bp splice variant species when comparing innately

resistant to sensitive LCLs (Supplementary Fig. 4A). The two CD20 mRNA ∼650 bp

splice variant species were roughly in proportion to each other (data not shown). The

350 bp splice variant was increased in the innately resistant lines in comparison to the

sensitive cell lines (Fig. 5A , p < 0.005). However, the levels of the 350 bp splice variant

were approximately 350× less than levels of full length CD20 mRNA, making its ability to

contribute to a resistant phenotype uncertain. Comparing sensitive parental cell lines with

resistant sublines, both the ∼650 bp and 350 bp variants paralleled levels of full-length

CD20 mRNA, decreasing with the acquisition of a resistant phenotype (Figs. 3C, 5B,

Supplementary Fig. 4B). Also, the lymphoma lines also appear to generally express more

of the splice variant mRNAs relative to the LCLs (Fig. 5B), consistent with previous reports

(Grosso, Martins & Carmo-Fonseca, 2008). In summary, although splice variants could be

detected, they did not appear to be associated with acquired resistance.

DISCUSSION
The outstanding clinical success of rituximab has provoked a search for even more effective

anti-CD20 antibodies, as well as a better understanding of resistance mechanisms to guide

development and optimize the use of these agents clinically. Anti-CD20 antibodies are used

clinically to eradicate both malignant and nonmalignant B-cells (e.g. in the treatment of

autoimmune diseases), so understanding inherited factors that affect both malignant and

Small et al. (2013), PeerJ, DOI 10.7717/peerj.31 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.31
http://dx.doi.org/10.7717/peerj.31
http://dx.doi.org/10.7717/peerj.31


Figure 5 CD20 mRNA levels of the 350 bp splice variant. Levels of the 350 bp CD20 mRNAs isoform are
shown in (A) lymphoblastoid lines that are relatively sensitive or resistant to rituximab, and (B) parental
and resistant sublines. Relative CD20 mRNA levels were estimated by qPCR. GAPDH was used as a load
control and data are normalized to the level of full-length CD20 of the corresponding parental line,
(Fig. 2B). Results are the average of duplicates (±SEM).

nonmalignant B-cells is an important component of this work. For both malignant and

nonmalignant B-cell disorders, understanding both inherited (germline) and acquired

(somatic) resistance mechanisms is essential. This report explores for the first time a large

number of nonmalignant lymphoblastoid B-cell cell lines to explore innate variability in

sensitivity to anti-CD20 antibodies. We have confirmed that LCLs can be killed by CDC

in vitro, and furthermore discovered that there is a significant amount of reproducible

variability among individual cell lines, implying that innate mechanisms of resistance

may play a role in B-cell sensitivity to anti-CD20 antibodies clinically. The variability

in response between individuals enables the future search for genetic components of
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anti-CD20 antibody sensitivity with the use of high-throughput in vitro screens in large

numbers of individuals, which is currently ongoing in our laboratory (Peters et al., 2011).

Our results confirm that CD20 expression level is an important component of response

to anti-CD20 agents. This has been shown repeatedly with malignant B-cells (Bellosillo

et al., 2001; Czuczman et al., 2008; Golay et al., 2001), but is less well established with

nonmalignant B-cells. Furthermore, we found that control of CD20 expression occurs at a

post-transcriptional level in the case of innate resistance of LCLs, in contrast with acquired

resistance, which is correlated with CD20 mRNA levels, suggesting transcriptional-level

control. Another difference between innate and acquired resistance is that the acquired

resistance is not stable in the absence of selection, whereas the innate sensitivity to

rituximab is stable over time. This implies that acquired and innate resistance mechanisms

are not identical, and warrant separate consideration. Antigenic modulation following

exposure to antibody has been suggested to contribute to rituximab resistance. It has

been proposed that in the presence of THP-1 monocytes, rituximab/CD20 complexes are

shaved from target B cells in a reaction mediated by FCγR with no evidence of CD20

internalization taking place in the target cells (Beum et al., 2006). In contrast, others have

reported that CD20 internalization can indeed play a significant role while shaving does

not (Beers et al., 2010). Our system, without effector cells, cannot settle this controversy,

but experiments are in progress to look at CD20 internalization in our rituixmab resistant

cells in vitro. In addition, since CD20 levels do not fully account for differences in

rituximab resistance, discovery of other novel genes involved in this process is possible.

Our results also reveal the presence of a novel CD20 splice variant (27 kD), as well

as a previously reported variant (15–17 kD). The shorter splice variant was noted in

transformed LCLs, and was previously reported to be increased, both in vitro and in

vivo, in rituximab-resistant lymphoma cells (Henry et al., 2010). We did not observe the

same increase in either lymphoma cell lines or LCLs with acquired resistance, and the

ratio of the shorter splice variants to the total amount of CD20 (both mRNA and protein)

remained constant or decreased. Furthermore, the splice variants accounted for no more

than 5% of the CD20 transcripts in each of the resistant lines. CD20 does form homo-

or hetero-oligomeric complexes (Polyak et al., 2008). Therefore, it remains possible that

a minor population of 1CD20 splice variants could still affect the function of CD20

oligomeric complexes or susceptibility to CDC, leaving the role of either splice variant in

rituximab resistance to be established.

Although many comparisons in malignant cells have been reported, few reports have

compared the efficacy of rituximab and ofatumumab in normal LCLs (Li et al., 2008;

Pawluczkowycz et al., 2009). We found no major distinctions, other than the previously

reported increased potency of ofatumumab for CDC-mediated cell death. In both innate

and acquired resistance, ofatumumab sensitivity closely paralleled rituximab sensitivity,

suggesting shared mechanisms in vitro. In no case did we find a cell line with discordance

between rituximab and ofatumumab sensitivity (either acquired or innate). Still, since the

correlation between the two phenotypes was not perfect (R2
= 0.63), there may be more
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subtle differences between the two antibodies, or differences that are more apparent in vivo,

with a full immune system in play.

We note several limitations to our in vitro system. First, in the absence of effector cells, at

least one component of in vivo cell killing, antibody-dependent cell mediated cytotoxicity

(ADCC), is not measured. This simplifies our system, allowing high throughput assays to

be easily performed, but results must be validated in future clinical studies to calibrate

the significance in patients. The contributions of CDC and ADCC remain a debated

topic. It is likely that both activities are occurring to some degree, perhaps varying over

time. These effector systems may of course also vary within the different environments

in vivo (i.e. peripheral blood versus tissue or interstitial spaces). Furthermore, there

have been recent reports that allelic variants of both Fc gamma IIIa receptor and of

C1q impact anti-CD20 therapy (Racila et al., 2008; Weng & Levy, 2003). Given these

considerations, the array of anti-CD20 mAbs now available with enhanced CDC or ADCC

function may offer an expanded potential for personalized as well as sequentially-based

therapies.

The LCLs used in our experiments are immortalized with EBV, which could confound

assumptions about “innate” sensitivity if EBV immortalization somehow affects rituximab

sensitivity. However, our unpublished results indicate heritability of rituximab sensitivity

segregating in families (h2
= 0.294), and EBV LMP levels are equivalent in sensitive and

resistant lines (Supplementary Fig. 2), so we find this unlikely to be a hindrance. Still,

future validation of our findings in non-EBV immortalized cells will be essential. These

potential limitations are likely to be outweighed by the capacity now, with the findings

from this work, for the high-throughput study of a large number of nonmalignant B-cells

for large-scale studies as has been done with other cytotoxic agents (Hartford et al., 2009;

Huang et al., 2011; Peters et al., 2011; Watson et al., 2011). The ability to detect and compare

both innate and acquired resistance to anti-CD20 antibodies in vitro in nonmalignant

immortalized B-cells now provides a powerful new reagent for high-throughput genetic

studies to further define and delineate the factors underlying both rituximab and

ofatumumab resistance.
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