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Abstract
The dystonias are comprised of a group of disorders that share common neurological
abnormalities of involuntary twisting or repetitive movements and postures. The most common
inherited primary dystonia is DYT1 dystonia, which is due to loss of a GAG codon in the TOR1A
gene that encodes torsinA. Autopsy studies of brains from patients with DYT1 dystonia have
revealed few abnormalities, although recent neuroimaging studies have implied the existence of
microstructural defects that might not be detectable with traditional histopathological methods.
The current studies took advantage of a knock-in mouse model for DYT1 dystonia to search for
subtle anatomical abnormalities in the striatum, a region often implicated in studies of dystonia.
Multiple abnormalities were identified using a combination of quantitative stereological measures
of immunohistochemical stains for specific neuronal populations, morphometric studies of Golgi-
stained neurons, and immuno-electron microscopy of synaptic connectivity. In keeping with other
studies, there was no obvious loss of striatal neurons in the DYT1 mutant mice. However,
interneurons immunoreactive for choline acetyltransferase or parvalbumin were larger in the
mutants than in control mice. In contrast, interneurons immunoreactive for neuronal nitric oxide
synthase were smaller in the mutants than in controls. Golgi histochemical studies of medium
spiny projection neurons in the mutant mice revealed slightly fewer and thinner dendrites, and a
corresponding loss of dendritic spines. Electron microscopic studies showed a reduction in the
ratio of axo-spinous to axo-dendritic synaptic inputs from glutamatergic and dopaminergic sources
in mutant mice compared with controls. These results suggest specific anatomical substrates for
altered signaling in the striatum and potential correlates of the abnormalities implied by human
imaging studies of DYT1 dystonia.
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Introduction
The dystonias are a group of disorders that share the common abnormality of involuntary
twisting or repetitive movements (Fahn, 1988; Tarsy and Simon, 2006). There are many
different clinical manifestations and many different causes. The different types of dystonia
traditionally are classified according to three independent axes that involve the region of the
body affected, age at onset, and etiology. The etiological axis relies on a fundamental
distinction between “primary” and “secondary” dystonias. The primary dystonias are
defined as disorders where dystonia is the chief manifestation, while the secondary dystonias
more often include other neurological features.

Although many investigators have suggested the brain is structurally normal in primary
dystonia (Breakefield et al., 2008; de Carvalho Aguiar and Ozelius, 2002; Nemeth, 2002;
Schwarz and Bressman, 2009; Tanabe et al., 2009), neuroimaging studies repeatedly have
implied the existence of microstructural defects in the basal ganglia, cerebellum, thalamus,
or cerebral cortex (for reviews see: (Neychev et al., 2011; Zoons et al., 2011). However,
imaging studies provide only indirect measures of microstructure, and some of the methods
used may be detecting functional rather than structural changes. Unfortunately, postmortem
studies of brains from patients with dystonia are sparse (Standaert, 2011). The main reason
for the paucity of histopathological data is that the dystonias are rare, making it difficult to
collect the necessary specimens. A second reason is that the methods needed to reveal
potential microstructural defects require special tissue preparation and processing methods
that cannot be applied readily in postmortem studies of human brains. The third reason for
the limited information is that the types of neuropathological changes suspected for primary
dystonias may not involve overt degeneration or emergence of unique pathological
hallmarks, but rather quantitative changes in soma or neurite morphology, complexity or
connectivity. Revealing these types of changes requires precise quantitative morphometric
and ultrastructural comparisons with controls. These three limitations of human autopsy
studies have hampered efforts to delineate potential microstructural defects in the human
DYT1 brain.

In this situation, animal models can provide a valuable resource to reveal abnormalities that
subsequently may be confirmed in more targeted human studies (Jinnah et al., 2005).
Several genetically engineered mouse models have been created for DYT1 dystonia, the
most common inherited primary dystonia that is caused by loss of a GAG codon (ΔE) in the
TOR1A gene that encodes torsinA. Although overt signs of dystonia are lacking in the
mouse models, several studies have shown poor motor skills, abnormalities in the
physiology and neurochemistry of basal ganglia pathways, and subtle changes in the
structure of the membranes surrounding nuclei of neurons of some brain regions (for review
see (Song et al., 2012). Nissl stains have revealed no obvious anatomical brain
abnormalities, but histological methods capable of identifying microstructural defects in the
basal ganglia have not been conducted.

In the current studies, the fine structure of neurons in the striatum and their connectivity was
examined in a knock-in mouse model of DYT1 dystonia using a combination of quantitative
stereological measures of immunohistochemical stains for specific neuronal populations,
morphometric studies of Golgi-stained striatal neurons, and immuno-electron microscopy of
synaptic connectivity.
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Materials & Methods
Animals

Animals used in these studies were heterozygous DYT1(ΔE) mutant knock-in mice
(Goodchild et al., 2005) maintained congenically with C57BL/6J mice from the Jackson
Laboratories (Bar Harbor ME). Animals were housed on a 12 hr light/dark cycle, with ad
libitum access to food and water. Animals were genotyped by DNA obtained from tail clips
using a primer pair for the 34 base pair loxP site in the DYT1 mutant (forward primer,
AGTCTGTGGCTGGCTCTCCC; reverse primer, CCTCAGGCTGCTCACAACCAC). The
studies were approved by the Institutional Animal Care and Use Committee at Emory
University.

Immunohistochemistry
Because anatomical abnormalities may vary according to sex or age, a multivariate
statistical strategy was used that enabled simultaneous exploration of these variables in
mutant and normal mice. Specifically, immunohistochemical stains were conducted in
parallel on a cohort of 24 animals that included 12 mutants and 12 littermate controls. Half
of the mutants were male and half female. Half were 3 months of age and half were 6
months of age. Mice were anesthetized with 2,2,2-tribromoethanol and perfused through the
heart with a rinse solution of 50 mL of 137 mM NaCl, 22.2 mM dextrose, 23.4 mM sucrose,
2 mM CaCl2 and 1.6 mM sodium cacodylate at pH 7.2. They then were perfused with 4%
paraformaldehyde containing 117 mM sucrose and 67 mM sodium cacodylate (pH 7.2) and
immersion post-fixed for 16 hrs.

To ensure uniformity of tissue sections, all 24 brains were embedded in a block of gelatin
and cut simultaneously in the coronal plane at 40 μm from the frontal pole through the
caudal brainstem and cerebellum (Neuroscience Associates, Knoxville TN). To ensure
uniformity of staining, each stain was conducted in parallel with an entire series of sections
spaced at 240 μm intervals. One series of sections was thionin stained to demonstrate Nissl
substance, and the remaining 5 series were used for immunohistochemical stains of specific
neuronal populations. Immunostains targeted choline acetyltransferase (ChAT; Milipore,
Billerica MA), calbindin (Swant, Bellinzona, Switzerland), parvalbumin (PV; Swant,
Bellinzona, Switzerland), neuronal nitric oxide synthase (nNOS; Immunostar, Hudson WI),
or tyrosine hydroxylase (TH; Pelfreez, Rogers AR).

Stereological quantifications
For stereological analyses, sections were examined under an Olympus BX51 light
microscope (Melville NY), with a motorized stage (MAC5000, Ludl Electronic Products,
Hawthorne NY) controlled by a computer with StereoInvestigator software
(MicroBrightField, Williston VT). In the rodent basal ganglia, the caudate nucleus and
putamen are combined as the caudoputamen, here referred to as the dorsal striatum
(excluding the accumbens and olfactory tubercle). To determine the volume of the dorsal
striatum using the Cavalieri method (Oorschot, 1996), the entire region was outlined at 4X
objective in every 6th Nissl-stained section extending approximately from +1.7 to −2.2 mm
from bregma in the anterior-posterior (AP) direction according to the mouse brain atlas
(Paxinos and Franklin, 2004).

The total numbers of neurons were counted at 100X in Nissl-stained material or at 60X in
immunostained material using the optical fractionator with a 12 μm depth and 1 μm top
guard zone, as previously described (Egami et al., 2007). Because the numbers of target
neurons for counting varied according to the stain applied, stereological counting frames and
grid sizes were adjusted to achieve a Gunderson coefficient of error below 0.10 for each
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stain. For Nissl-stained neurons, the counting frame was 20 × 20 μm in a sampling grid of
600 × 600 μm. For ChAT and PV+ cells, the frame was 100 × 100 μm in a grid of 250 ×
250 μm. For nNOS+ cells, the frame was 120 × 120 μm in a grid of 330 × 330 μm. Cell
volumes were determined using the optical rotator with a 3 μm focal plane separation and a
4 grid line separation of 4 μm for ChAT+ cells, or with a 2 μm focal plane separation and a
3 grid line separation of 4 μm for PV+ and nNOS+ cells.

The statistical approach for stereological measures involved Analysis of Variance
(ANOVA) with genotype, sex, and age as potential explanatory variables. Since identifying
abnormalities related to the mutant Tor1A gene was the primary focus, results were
combined across ages and sex for final graphic summary of the data. For all analyses,
statistical significance was defined as p<0.05. Because this study was exploratory and effect
sizes sometimes were small, any result with 0.05<p<0.10 was noted as being a trend of
borderline statistical significance, to acknowledge places where Type II errors could occur.

Spatial distribution of immunostained neurons
To explore potential differences in the spatial distributions in the numbers or sizes of
immunostained neurons, stained neurons also were examined according to rostro-caudal,
dorso-ventral, and medio-lateral orientations. Because stereological methods are not suitable
for delineating 3-dimensional distributions, differences in the rostro-caudal orientation were
explored by subdividing results from total stereological counts into 4 rostro-caudal
subgroups to provide sufficient power for statistical analyses. For these analyses,
stereological counts were grouped from the first 3 sections for AP +1.5~+0.9 mm, second 3
sections for AP +0.7~+0.1 mm, third 3 sections for AP −0.1~−0.7 mm and remaining 6
sections for AP −0.9~−2.0 mm. For dorso-ventral and medio-lateral gradients, total cell
counts were taken at the level of the anterior commissure (AP +0.14 mm) and subdivided
into four quadrants as previously described (Luk and Sadikot, 2001). For this analysis, all
available neurons were re-counted, since stereological sampling yielded insufficient data for
statistical analyses. Data regarding neuronal distributions were examined by ANOVA with
genotype and subregion as explanatory variables.

Golgi histochemistry
Golgi stains were conducted simultaneously in 6 controls and 6 mutants of both sexes at 3
months of age using the FD Rapid Golgi Stain Kit (FD NeuroTechnologies, Baltimore MD).
Briefly, mice were decapitated and the brain was removed immediately. The unfixed brain
was immersed in solution A containing potassium dichromate and mercuric chloride and
solution B containing potassium chromate for 2 weeks in the dark at room temperature. The
brains then were placed in sucrose for 48 hrs at 4°C, and sectioned frozen in the coronal
plane at 100 μm using a Microm HM440E sliding microtome (Microm, Waldorf, Germany).
Cut sections were stained with a mixture consisting of solutions D and E in distilled water
for 15 minutes, and rinsed with distilled water 3 times. Sections were then mounted on glass
slides, dehydrated through graded alcohols, and cover-slipped with Permount.

Two medium spiny neurons were chosen from each hemisphere of each mouse (total of 4
neurons per mouse, or 24 neurons per genotype) by a microscopist blinded to genotype at
the level of anterior commissure. The selection of neurons was based on previous guidelines
for analyzing Golgi-stained material, with the soma in the middle third of the section and
complete staining of all dendrites (Mikolaenko et al., 2005). Each neuron was traced with
NeuroLucida software (MicroBrightField, Williston VT) and a Wacom Intuos 2 digitizing
tablet in conjunction with an Olympus BX51 microscope and a 60X objective. Soma sizes
and perimeters were determined by NeuroExplorer software version 10.21 as previously
described (Mikolaenko et al., 2005). Spines were defined as any discrete visible protrusion
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emanating from a dendrite. Because spine counts depend on the total numbers and lengths of
dendrites measured, spine density also was calculated as the number of spines per μm of
total dendritic lengths.

The approach for statistical examination of Golgi-stained neurons involved two
complementary methods to digitally reconstructed neurons available within NeuroExplorer
as previously described (Mikolaenko et al., 2005). The first method involved using branch
order, where dendrites arising directly from the soma are defined as the first branch order
(Figure 1A). Each point where the dendrite branches marks a successively higher branch
order. Target variables of interest (dendrite numbers, dendrite thicknesses, dendrite lengths,
and spine numbers) are expressed according to branch order. The second method involved
using a modified Sholl approach (Sholl, 1953). Here, concentric circles are drawn with an
incremental radius of 10 μm around the geometric center of the soma (Figure 1B). Each
variable is expressed according to radius level, rather than branch order. Results were
examined by ANOVA with genotype and sex as explanatory variables. Branch order or
radius from soma center was treated as repeated measures.

Electron microscopy
Three littermate control mice and four mutants of both sexes at 3 months of age were used
for quantitative electron microscopic (EM) studies of the striatal neuropil. Mice were
anesthetized with 2,2,2-tribromoethanol and perfused with paraformaldehyde (4%) and
glutaraldehyde (0.1%) in 0.1 M phosphate buffer. Sections were cut at 60 μm with a
vibrating microtome, and processed to localize TH (Millipore, Temecula CA) and vesicular
glutamate transporters 1 and 2 (vGluT1 and vGluT2, Mab Technologies, Atlanta GA) in the
striatum using specific antibodies and the immunoperoxidase avidin-biotin complex method
(Raju et al., 2008; Villalba and Smith, 2011). Next, the tissue was dehydrated, post-fixed in
1% osmium and embedded in resin on microscope slides. After resin polymerization, 1–2
blocks of striatal tissue from each animal were cut in ultrathin sections and collected on
single slot copper grids. After lead citrate staining, sections from the surface of the blocks
were scanned at 30,000X with a JEOL electron microscope (Jeol USA, Peabody MA).

Immunoreactive terminals forming synaptic contacts were randomly collected from the
blocks of striatal tissue immunostained for TH, vGluT1 or vGluT2. The postsynaptic targets
in contact with each labeled terminal were identified based on ultrastructural features (Peters
et al., 1991). The percent of labeled boutons in contact with specific postsynaptic targets was
then calculated for each terminal population, and statistically compared between normal and
DYT1 mice via independent t-test.

Results
Nissl stains

No obvious structural abnormalities were evident in Nissl stains of the striatum in the DYT1
mutant mice (Figure 2A–D). The total volumes of striatal parenchyma and total numbers of
striatal neurons were measured stereologically, and the data were analyzed by ANOVA with
genotype, sex and age as explanatory variables. For striatal volumes, there were no main
effects for genotype (F=0.9; p>0.10), sex (F=0.03; p>0.10), or age (F=1.2; p>0.10). There
were no interactions between genotype and sex (F=0.9; p>0.10), or genotype and age
(F=1.7; p>0.10). Combining results across sex and age, the total striatal volumes were 9.17
± 0.08 mm3 in controls and 9.29 ± 0.10 mm3 in mutants.

For the number of total Nissl-stained neurons, there again were no main effects for genotype
(F=2.0; p>0.10), sex (F=3.7; p=0.07), or age (F=1.3; p>0.10). There were no interactions
between genotype and sex (F=0.3; p>0.10), or genotype and age (F=0.5; p>0.10).
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Combining results across sex and age, there were 1,261,309 ± 28,219 total striatal neurons
in controls and 1,221,049 ± 18,877 in mutants. The lack of any obvious changes in Nissl-
stained sections of the striatum is consistent with prior studies of these DYT1 mutant mice
(Song et al., 2012).

Striatal total neurons consist of 90–95% of medium spiny projection neurons and a small
population of interneurons that include large aspiny cholinergic neurons, and smaller
GABAergic neurons that express PV, nNOS or calretinin (Kawaguchi et al., 1995; Tepper
and Bolam, 2004). Because it is not possible to discriminate among these neuronal subtypes
in Nissl stains, immunostains were used to explore potential changes among the sub-
populations.

Cholinergic interneurons
The large aspiny cholinergic interneurons identifiable with immunostains for ChAT were
examined, because of prior evidence linking human dystonia with dysfunction of striatal
cholinergic pathways (Pisani et al., 2007), and animal studies showing abnormal
electrophysiological properties of these neurons (Martella et al., 2009; Pisani et al., 2006;
Sciamanna et al., 2012b; Sciamanna et al., 2011).

The ChAT+ neurons exhibited a characteristic morphology with a few aspiny dendrites
emanating from a soma that was rounded, oval or fusiform (Figure 3A–D). For total
numbers of ChAT+ neurons, ANOVA revealed no main effects for genotype (F=0.1;
p>0.10). However, there were significant effects for sex with 9% more neurons in females
compared to males (F=4.7; p<0.05). The effect of age showed a borderline trend, with 9%
more neurons in 6 month old animals compared to those aged 3 months (F=4.4; p=0.05).
There were no interactions between genotype and sex (F=0.07; p>0.10), or genotype and age
(F=1.5; p>0.10). Combining results across sex and age, control mice had a total of 5,081 ±
159 ChAT+ neurons while mutants had 5,200 ± 214 (Table 1).

Although there was no obvious change in ChAT+ neuron numbers, stereological
measurements of cell sizes suggested that the somata of these neurons were ~17% larger in
the mutant mice (Table 1). ANOVA revealed a significant main effect of cell size for
genotype (F=25.6; p<0.01), but no significant effect for sex (F=1.0; p>0.10), while the effect
of age showed only a borderline trend (F=3.4; p=0.09). There were no interactions between
genotype and sex (F=0.5; p>0.10) or genotype and age (F=0.3; p>0.10). A frequency
histogram of cell volumes suggested enlargement of the entire population of ChAT+ cells
rather than a smaller subpopulation of particularly large neurons (Figure 3E).

As previously described (Graybiel et al., 1986; Kreitzer, 2009), the ChAT+ interneurons
were sparsely distributed throughout the striatum, with a subtle density gradient that
increased in the ventral to dorsal, medial to lateral, and caudal to rostral directions. There
was a subjective impression that ChAT+ neurons seemed to be anatomically redistributed in
the DYT1 mutants, with more neurons in the dorso-lateral regions (Figure 3A–B). To
address this possibility, striatal neurons were subgrouped according to quadrants at the level
of the anterior commissure, and evaluated by ANOVA with genotype and quadrant as
explanatory variables. This analysis showed significant main effects for genotype (F=4.7;
p<0.05) and quadrant (F=63.2; p<0.01), as well as a significant interaction between
genotype and quadrant (F=3.0; p<0.05). Post-hoc analyses revealed a 22% higher density of
ChAT+ neurons in the dorso-lateral striatum of mutants compared to normal mice (p<0.01)
(Figure 3F). In the rostro-caudal dimension, ChAT+ neurons appeared distributed similarly
in mutants and controls (Figure 3G). Although the effect of rostro-caudal distribution was
statistically significant by ANOVA (F=13.1; p<0.01), there were no main effects for
genotype (F=0.1; p>0.10), and there was no interaction between genotype and rostro-caudal
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level (F=0.2; p>0.10). These regional analyses suggest variations in ChAT+ neuron densities
of both normal and mutant mice, with slightly higher densities in the dorso-lateral regions of
the DYT1 mutant mice.

PV+ interneurons
In the striatum, PV+ neurons represent the so-called “fast spiking” subtype of striatal
GABAergic interneurons (Kawaguchi et al., 1995). They were examined because of
evidence that striatal injections of GABAergic drugs can induce dystonia in animals
(Marrone et al., 2006; Yamada et al., 1995; Yoshida et al., 1991), and because of prior
reports showing that these neurons are abnormal in a hamster model of paroxysmal dystonia
(Gernert et al., 2000). PV+ neurons had characteristic rounded or oval soma, with a few
proximal dendrites without spines in both normal and DYT1 mutant mice (Figure 4A–D).
For total numbers of striatal PV+ neurons, ANOVA revealed a borderline statistical trend
for genotype (F=3.3; p=0.09) with a 7% increase in mutants. There were no effects for sex
(F=0.3; p>0.10) or age (F=2.3; p>0.10), and no interactions between genotype and sex
(F=0.2; p>0.10) or genotype and age (F=1.5; p>0.10).

For PV+ neuron sizes, stereological measures revealed these neurons to be ~11% larger in
the mutants (Table 1), with ANOVA confirming a significant main effect for genotype
(F=12.8; p<0.01). There were no significant effects for sex (F=0.8; p>0.10) or age (F=1.3;
p>1.0), and no interactions between genotype and sex (F=0.08; p>0.10) or genotype and age
(F=0.7; p>0.10). A frequency histogram of cell volumes again suggested enlargement of the
entire population of PV+ cells rather than an abnormally large subpopulation of cells (Figure
4E).

The PV+ cells were sparsely distributed throughout the striatum in both normal and mutant
mice, with density gradients that were enriched in the dorso-lateral and caudal striatum
(Figure 4A–B). ANOVA revealed significant differences according to quadrant at the
anterior commissure (F=173.1; p<0.01). However, there were no differences between
normal and mutant mice (F=1.3; p>0.10), and there was no interaction between genotype
and the region (F=1.7; p>0.10) (Figure 4F). ANOVA also revealed a significant main effect
for rostro-caudal level (F=23.5; p<0.01), but not for genotype (F=1.3; p>0.10) or interaction
between genotype and rostro-caudal level (F=0.5; p>0.10) (Figure 4G). These results
suggest that PV+ neurons are distributed similarly in normal and mutant mice.

nNOS+ interneurons
The nNOS+ neurons correspond to the “low threshold spike” subtype of striatal GABAergic
interneurons (Kawaguchi et al., 1995), and are another subtype of GABAergic interneuron
that have been reported to be abnormal in a hamster model of paroxysmal dystonia (Sander
et al., 2006). In both normal and DYT1 mutant animals, nNOS+ neurons had a characteristic
fusiform shape, with 2–3 proximal aspiny dendrites (Figure 5A–D). For total numbers of
nNOS+ striatal neurons, stereological measures revealed a statistically borderline trend of
9% reduction in the mutant mice (F=4.3; p=0.06). The effect of sex was significant (F=13.9;
p<0.01), with 16% fewer neurons in females compared to males. The effect of age was not
significant (F=2.3; p>0.10). There were no interactions between genotype and sex (F=2.7;
p>0.10) or genotype and age (F=2.0; p>0.10).

Unlike ChAT+ and PV+ neurons that were larger in the mutant mice, the somata of nNOS+
neurons were smaller in the mutants. Stereological measures revealed a 9% reduction in cell
body volume (Table 1), an effect that was statistically significant by ANOVA (F=7.1;
p<0.05). The effect of sex showed a borderline trend (F=3.9; p=0.07), while the effect of age
was not significant (F=0.8; p>0.10). There were no interactions between genotype and sex
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(F=0.02; p>0.10) or genotype and age (F=0.7; p>0.10). A frequency histogram showed the
whole cell population to be shifted towards smaller cells in the mutants, rather than a sub-
population of particularly small cells (Figure 5E).

The nNOS+ neurons were sparsely distributed throughout the striatum in both normal and
mutant animals, with higher densities in the medial and ventral striatum (Figure 5A–B).
ANOVA revealed significant effects for quadrant at the level of the anterior commissure
(F=29.5; p<0.01), but not for genotype (F=0.1; p>0.10) or interaction between genotype and
the region (F=1.9; p>0.10) (Figure 5F). When density was examined in the rostro-caudal
dimension (Figure 5G), ANOVA showed significant effects of genotype (F=5.2; p<0.05)
and rostro-caudal level (F=4.0; p<0.05), but no interaction between genotype and rostro-
caudal level (F=0.6; p>0.10). These results suggest that nNOS+ neurons are distributed
normally in mutant mice compared to controls.

Medium spiny neurons
Medium spiny neurons are the major output neurons of the striatum, comprising 90–95% of
all striatal neurons. The fine structure of these neurons was evaluated via quantitative
analysis of Golgi-stained sections rather than immunohistochemistry for two reasons. First,
these neurons can be unequivocally identified without immunostains because of their highly
characteristic morphology (McNeill et al., 1990; Mikolaenko et al., 2005). Second, Golgi
histochemistry provides an opportunity for more detailed assessment of microstructural
changes than immunostains (Figure 6). A total of 24 control and 24 mutant digitally
reconstructed neurons were examined from the brains of 6 control and 6 mutant mice of both
sexes at 3 months of age.

Morphometric analyses of Golgi-stained neurons revealed the soma sizes of medium spiny
neurons to be normal in the mutant animals. ANOVA focusing on soma cross-sectional
areas with genotype and sex as explanatory variables revealed no significant effects of
genotype (F=0.2; p>0.10) or sex (F=3.1; p>0.10), and no interaction between genotype and
sex (F=0.1; p>0.10). Average soma cross-sectional area was 146.5 ± 10.8 μm2 for controls
and 144.4 ± 5.6 μm2 for mutants. Similar analyses focusing on soma perimeter provided
results consistent with soma cross-sectional area. Average soma perimeters were 46.8 ± 1.8
μm for controls and 46.2 ± 1.1 μm for mutants.

Although soma sizes were normal, dendrites appeared thinner with fewer branches (Figure
6D–E). Dendrite thickness at each branch order was examined by ANOVA with genotype
and sex as explanatory variables, and branch order as a repeated measure. There were
significant effects for both genotype (F=5.8; p<0.05) and branch order (F=131.5; p<0.01),
but no effect for sex (F=0.3; p>0.10). The interaction between branch order and genotype
was not significant (F=1.3; p>0.10). These results imply thinner dendrites in mutant animals
at all branch levels (Figure 7A).

The number of dendritic segments also was evaluated according to branch order. ANOVA
revealed a borderline main effect for genotype (F=4.7; p=0.06), and no effect of sex (F=0.1;
p>0.10). There was also a significant effect for branch order (F=157.7; p<0.01) and a
significant interaction between genotype and branch order (F=5.1; p<0.01). Post-hoc t-tests
revealed reduced numbers of dendrite segments at branch orders 3 and 4 in the DYT1
mutants (p<0.05) (Figure 7B).

A second method that involved a modified Sholl analysis also was used to quantify numbers
of dendrites, total dendritic lengths, and spine densities. In this analysis, each of these
parameters was quantified according to a specific radius from the soma center rather than
branching order. For dendrite numbers, there were significant main effects for both genotype
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(F=7.7; p<0.05) and radius from cell body (F=190.0; p<0.01), as well as an interaction
between the genotype and radius (F=5.3; p<0.05). Post-hoc t-tests revealed reduced numbers
of dendrites in mutant animals at distances of 50–120 μm from the soma center (p<0.05,
Figure 7C). For total dendrite lengths, there were significant main effects again for genotype
(F=8.6; p<0.05) and radius (F=178.3; p<0.01), as well as a significant interaction between
the genotype and radius (F=4.7; p<0.05). Post-hoc tests revealed reduced dendritic lengths
in the DYT1 mutants with a 50–130 μm radius from the soma center (p<0.05, Figure 7D).
However, ANOVA addressing the percentage of neurons with at least one dendrite reaching
each radius revealed no significant effect for genotype (F=1.3; p>0.10; data not shown),
suggesting that dendrites were fewer, but not generally shorter.

Dendritic spines were readily visualized in both normal and DYT1 mutant mice (Figure 6B–
C). In vivo, spines have dynamically changing morphologies that may appear short and
stubby, long and thin, or with distal swellings or bifurcations (Bonhoeffer and Yuste, 2002;
Fiala et al., 2002; Harris and Kater, 1994). In the DYT1 mutants, spines appeared relatively
shorter and less complex in the DYT1 mutants (Figure 6B, C). For spine numbers, there
were significant main effects for genotype (F=6.0; p<0.05) and radius (F=123.2; p<0.01),
with a borderline trend for significant interaction between the radius and genotype (F=3.4;
p=0.06). Post-hoc tests revealed reduced spine numbers in the DYT1 mutants at distances of
70–130 μm from soma center (Figure 7E). The reduction in spine numbers paralleled the
reduction in dendrite segments and lengths, and calculating spine density (spines/dendrite
length) on remaining dendrites revealed no significant differences between normal and
DYT1 mutants (Figure 7F).

Electron microscopy
The multiple subtle microstructural changes at the light microscopic level suggest the
possibility of associated abnormalities in synaptic connectivity. Specifically, the reduction in
the number of dendrites and spines seen in Golgi-stained sections may be associated with
changes in afferent connections from other regions. In order to further address this issue,
immuno-electron microscopy was used to characterize the synaptic connections of
dopaminergic and glutamatergic terminals in normal and DYT1 mice. Medium spiny
neurons receive glutamatergic inputs from the cerebral cortex or thalamus predominantly on
spines (Kemp and Powell, 1971; Raju et al., 2008), and dopaminergic inputs from the
substantia nigra on dendrites and spine necks (Bolam and Smith, 1990; Smith et al., 1994).
Corticostriatal and thalamostriatal synapses onto medium spiny neurons were identified with
antibodies to the vesicular glutamate transporters, vGluT1 and vGluT2, respectively (Raju et
al., 2008), while nigrostriatal dopaminergic synapses were identified with an antibody to TH
(Figure 8A, C, E).

Compared to control mice, the DYT1 mutant mice had significantly more axo-dendritic
synapses for vGluT1-positive and TH-positive terminals, and significantly fewer axo-
spinous synapses (p<0.05; Figure 8B, D, F). Additionally, the pattern of synaptic
connectivity of each terminal subtype showed decreases in the ratio of axo-spinous over
axo-dendritic synapses in mutants compared with controls (TH: F=18.1; p<0.05; vGluT1:
F=12.2; p<0.05; vGluT2: F=13.8; p<0.05). The ratios of axo-spinous to axo-dendritic
synapses were 23.0 ± 0.2 for mutants vs. 10.9 ± 0.2 for controls for vGluT1, 6.1 ± 1.1 vs.
3.1 ± 0.6 for vGluT2, and 1.6 ± 0.2 vs. 0.7 ± 0.2 for TH. The changes in ratios of these types
of synapses labeled for TH were notably for inversion of the usual predominance of axo-
spinous synapses over axo-dendritic synapses.
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Discussion
These studies reveal multiple microstructural alterations in the dorsal striatum of DYT1
mutant mice. Although there was no obvious neuronal loss in the mutant mice, there were
alterations in neuronal sizes, including a 17% increase in the size of ChAT+ interneurons, an
11% increase in the size of PV+ interneurons, and a 9% decrease in the size of nNOS+
interneurons. There also appeared to be a spatial redistribution of ChAT+ neurons, with
slightly higher densities in the dosolateral regions. In addition, medium spiny projection
neurons had fewer and thinner dendrites in the DYT1 mutant mice, with associated
reduction in spines. The mutant mice also had a reduction in the ratio of axo-spinous to axo-
dendritic synaptic inputs from both glutamatergic and dopaminergic sources. These findings
suggest specific anatomical substrates for altered signaling in the basal ganglia and potential
correlates of the abnormalities implied by human imaging studies in patients with DYT1
dystonia.

Comparison with studies of other DYT1 mouse models
We chose to focus on the striatum of a knock-in mouse model of DYT1 dystonia, because of
converging evidence from previous studies that the basal ganglia are involved in different
types of dystonia (Wichmann, 2008; Wichmann and Dostrovsky, 2011). Although our study
is the most comprehensive evaluation of microstructural abnormalities in this region, several
prior studies have revealed subtle anatomical defects in other brain regions of DYT1 mutant
mice. For example, some studies have shown DYT1 mouse models to have ubiquitin-
positive peri-nuclear inclusions in the pedunculopontine nucleus, pons, and peri-aqueductal
gray (Dang et al., 2005; Grundmann et al., 2007; Shashidharan et al., 2005). These
inclusions are not seen in all DYT1 mouse models (Sharma et al., 2005; Zhao et al., 2008),
and their relevance to dystonia is unclear because they occur in regions not typically
considered in the pathogenesis of dystonia. However, these inclusions reveal the existence
of another type of microstructural abnormality in the DYT1 brain.

Several other studies also have pointed towards abnormal electrophysiological signaling in
the basal ganglia of DYT1 mouse models. Our studies showing enlarged ChAT+ neurons
are consistent with electrophysiological data that have implied excessive cholinergic tone in
these mutants (Martella et al., 2009; Pisani et al., 2007; Pisani et al., 2006; Sciamanna et al.,
2012b; Sciamanna et al., 2011). In contrast to our results, a prior study of a mouse model
with selective knock-out of the Tor1A gene in cholinergic neurons showed no structural
abnormalities among striatal cholinergic neurons (Sciamanna et al., 2012a). Possible reasons
for the differences include the use of a different mouse model, and limited statistical power
to detect small differences because of the very small number of animals evaluated (only 3
mutants and 3 controls total). In any event, it is possible that the structural and functional
studies observed in the mouse model are relevant to human studies indicating that anti-
cholinergic medications have partial therapeutic effects (Pisani et al., 2007).

Another significant structural change seen in the striatum of the DYT1 mutant mice was a
decreased number of dendrites and spines on medium spiny striatal projection neurons,
accompanied by a decreased ratio of axo-spinous to axo-dendritic synapses from terminals
immunoreactive for vGluT1, vGluT2 and TH. The Golgi stains suggested spines were
smaller and less complex in the mutant mice, although three-dimensional reconstructions
from serialized EM sections would be needed to verify this observation. Although the
functional significance of changes in spine morphology and synaptic connectivity remains
unknown, these data suggest alterations in the transmission, integration and processing of
cortical, thalamic and nigral inputs to the striatum of DYT1 mice. This suggestion is
supported by several in vitro slice electrophysiology studies in other DYT1 mice models of
dystonia (Dang et al., 2012; Martella et al., 2009; Sciamanna et al., 2011).
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We previously conducted a stereological study of DYT1 knock-in mice showing that
substantia nigra neurons immunopositive for TH are slightly reduced in number and have a
larger soma (Song et al., 2012). Finally, there is one prior study showing abnormal dendrites
among cerebellar Purkinje neurons in Golgi stains for a different line of DYT1 knock-in
mice (Zhang et al., 2011). This study focused only on proximal dendrites of Purkinje
neurons, so it remains possible that additional microstructural defects may exist in cerebellar
volumes or laminar structure, cerebellar Purkinje neuron numbers or sizes, or other neuronal
populations. Indeed, a recent imaging study of DYT1 knock-in mice implied microstructural
defects in cerebello-thalamic connectivity (Ulug et al., 2011), although histological studies
delineating the nature of these defects have not yet been reported. Together, these studies
suggest a variety of microstructural changes that are not limited to the basal ganglia in
mouse models of DYT1 dystonia. Further studies of these and other regions are warranted to
determine the anatomical specificity and physiological relevance of the microstructural
changes.

Relevance to human DYT1 dystonia
Comprehensive autopsy studies involving a relatively small numbers of DYT1 brains have
revealed few obvious defects (Standaert, 2011). The only abnormalities reported have so far
been subtle and subjective. One autopsy study of 3 DYT1 brains revealed substantia nigra
neurons to be enlarged (Rostasy et al., 2003), while another study of 4 DYT1 brains showed
peri-nuclear inclusions in the brainstem (McNaught et al., 2004). Neither study has been
independently confirmed. These limited findings have contributed to the belief that the brain
is structurally normal in DYT1 dystonia. In fact, some investigators have suggested that
distinctions between primary and secondary dystonias should include the absence of
structural abnormalities (Breakefield et al., 2008; de Carvalho Aguiar and Ozelius, 2002;
Nemeth, 2002; Schwarz and Bressman, 2009; Tanabe et al., 2009). However, imaging
studies repeatedly have implied that structural abnormalities may exist in certain regions.
For example, a voxel based morphometry study revealed a reduced volume of the putamen
(Draganski et al., 2009), and diffusion-tensor imaging studies have revealed abnormal
connectivity of cerebello-thalamo-cortical pathways (Argyelan et al., 2009; Carbon et al.,
2010a; Carbon et al., 2010b). These imaging studies suggest that more detailed studies of
histopathology of the human DYT1 brain are needed.

The current results provide some potential histological correlates of the microstructural
abnormalities implied by human imaging studies. The types of defects uncovered in the
mouse model, such as changes in the size or distribution of neurons or the numbers and
thicknesses of dendrites, would not be detectable with the histological methods previously
applied to human DYT1 brains.

The current results therefore may provide a useful guide for the types of methods that may
need to be considered in future autopsy studies of human DYT1 brains. The current results
also suggest specific anatomical mechanisms that may alter signaling in the basal ganglia. A
reduction in dendrites and spines among medium spiny neurons implies reduced capacity for
synaptic inputs to the basal ganglia. It also is tempting to speculate that the enlarged ChAT+
neurons reflect an anatomical correlate of excess cholinergic tone implied by prior human
and animal studies (Pisani et al., 2006). Changes in the size of PV+ and nNOS+ neurons
similarly may reflect changes in GABAergic inhibitory tone in the basal ganglia implied by
prior studies (Gernert et al., 2000; Sander et al., 2006; Sciamanna et al., 2011). However, the
functional significance of the microstructural abnormalities found in the current studies
remains to be established. Since torsinA is ubiquitously expressed in the brain, mutations
may disrupt the cellular processes of many different types of neurons in different ways,
leading to many subtle changes in neuronal morphology. It is difficult to know which of
these morphological changes might be involved in the pathogenesis of dystonia, which may
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reflect compensations from defects arising elsewhere, and which are functionally
unimportant.

Relevance for classification of the dystonias
The current results also have implications for using histopathological features in the
classification of the dystonias. Although autopsy studies of primary dystonia have shown no
obvious degenerative changes, the number of brains examined and the techniques of
evaluation have not been adequate to detect subtle changes in neuron numbers, neuron sizes
or morphology, or regional distributions. The methods used also have been inadequate to
evaluate changes in numbers or sizes of axons, dendrites and spines, and in their synaptic
relationships with major striatal afferents. While histopathological abnormalities in primary
dystonia may not involve overt degeneration, they may involve dystrophic cells, axon or
dendrite loss or reconfiguration, synaptic abnormalities, pathological inclusions, or other
subtle changes that may have profound functional consequences. Indeed, a recent study of
primary cervical dystonia revealed such subtle quantitative changes in the cerebellar
Purkinje neurons (Prudente et al., 2012).

Studies of other disorders have made it clear that subtle microstructural defects may be
indicative of significant functional abnormalities. For example, it is widely believed that the
loss of synapses and axonal arborizations are among the earliest degenerative changes in
Parkinson’s disease or Alzheimer’s disease (Luo and O’Leary, 2005). Simplification of
dendrite and spine structure is a pathological feature commonly found in numerous
neurological and psychiatric diseases (Fiala et al., 2002), and is believed to underlie
profound intellectual disability in fragile-X syndrome and other mental retardation
syndromes where overt degeneration is lacking (Irwin et al., 2000; von Bohlen Und
Halbach, 2010). These observations raise obvious questions regarding the definition of
criteria used to define specific histopathological features as “degenerative” or
“developmental” and they highlight the arbitrary nature of using histopathological features
to classify different types of dystonia. In view of these issues, classifying the different types
of dystonia according to strict histopathological criteria should be discouraged.
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Abbreviations

ΔE deletion of a single GAG codon in Tor1A gene

ChAT choline acetyltransferase

PV parvalbumin

nNOS neuronal nitric oxide synthase

TH tyrosine hydroxylase

AP region from bregma in the anterior-posterior direction

EM electron microscopic

vGluT vesicular glutamate transporters

ANOVA analysis of variance
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DL dorso-lateral

DM dorso-medial

VL ventro-lateral

VM ventro-medial

RC rostro-caudal distributions

SP axo-spinous

Den axo-dendritic
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Highlights

• Striatal cholinergic neurons were enlarged in a mouse model of DYT1 dystonia.

• Striatal parvalbumin+ neurons were enlarged in the mutant mice.

• Striatal nNOS+ neurons were smaller in the mutant mice.

• Striatal medium spiny neurons had fewer dendrites and smaller spines in the
mutants.

• The ratio of axo-spinous to axo-dendritic synapses was reduced in the mutant
mice.

Song et al. Page 16

Neurobiol Dis. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Schematic for analysis of Golgi-stained materials. Dendritic analyses based on branching
order (A) are based on consecutive numbering of dendrites determined by each branch point,
beginning with the first dendrite coming directly from the soma. Results are presented at
each branch level for total dendrite numbers, total dendrite lengths, and total spines.
Dendritic analyses based on the Sholl method (B) are based on drawing virtual concentric
rings around the geometric center of the soma. Results are presented at each radius (r) for
total dendrite numbers, total dendrite lengths, and total spines.
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Figure 2.
Nissl stains of striatum. There were no obvious abnormalities in structure of the striatum
between control (A) and DYT1 mutant mice (B). Similarly, there were no obvious
abnormalities in the morphology of neurons between control (C) and DYT1 mutant mice
(D).
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Figure 3.
Striatal interneurons expressing choline acetyltransferase (ChAT). There were only subtle
differences in the distribution of ChAT+ neurons between normal controls (A) and DYT1
mutant mice (B). There were no obvious differences in the morphology of these neurons
between control (C) and mutant mice (D), although those of mutants were slightly larger.
Stereological measures for the cell size (E) and regional distribution (F–G) represent
average values ± SEM in controls (black bar) and mutants (white bar). A histogram showing
the size distributions in bins of 250 μm3 as percent of total cells suggests a shift of the entire
mutant cell population to larger sizes compared to controls, rather than a small
subpopulation of very large cells. For the dorso-ventral and medio-lateral distributions, all
neurons were counted at the level of the anterior commissure split into 4 quadrants: dorso-
lateral (DL), dorso-medial (DM), ventro-lateral (VL) and ventro-medial (VM). ChAT+
neuron densities were 22% higher in the DM of mutants compared to normal mice (F). For
rostro-caudal distributions (RC), stereological counts were analyzed according to anterior-
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posterior levels from bregma at +1.5~+0.9 mm (RC1), +0.7~+0.1 mm (RC2), −0.1~−0.7
mm (RC3) and −0.9~−2.0 mm (RC4). The distribution of ChAT+ neurons was normal in
mutants (G). Asterisks denote statistical significance at p<0.05.
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Figure 4.
Striatal interneurons expressing parvalbumin (PV). There were no obvious differences in the
distribution of PV+ neurons between normal controls (A) and DYT1 mutant mice (B). There
were no obvious differences in the morphology of these neurons between control (C) and
mutant mice (D), although those of mutants were slightly larger. Stereological measures for
the cell size (E) and regional distribution (F–G) represent average values ± SEM in controls
(black bar) and mutants (white bar). A histogram showing the size distributions in bins of
100 μm3 as percent of total cells suggests a shift of the entire mutant cell population to
larger sizes compared to controls, rather than a small subpopulation of very large cells. For
the dorso-ventral and medio-lateral distributions, all neurons were counted at the level of the
anterior commissure split into 4 quadrants: dorso-lateral (DL), dorso-medial (DM), ventro-
lateral (VL) and ventro-medial (VM). For rostro-caudal distributions (RC), stereological
counts were analyzed according to anterior-posterior levels from bregma at +1.5~+0.9 mm
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(RC1), +0.7~+0.1 mm (RC2), −0.1~−0.7 mm (RC3) and −0.9~−2.0 mm (RC4). The
regional densities of PV+ neurons appeared normal in mutants (F–G).
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Figure 5.
Striatal interneurons expressing neuronal nitric oxide synthase (nNOS). There were no
obvious differences in the distribution of nNOS+ neurons between normal controls (A) and
DYT1 mutant mice (B). There were no obvious differences in the morphology of these
neurons between control (C) and mutant mice (D), although those of mutants were slightly
smaller. Stereological measures for the cell size (E) and regional distribution (F–G)
represent average values ± SEM in controls (black bar) and mutants (white bar). A
histogram showing the size distributions in bins of 100 μm3 as percent of total cells suggests
a shift of the entire mutant cell population to smaller sizes compared to controls, rather than
a small subpopulation of very smaller cells. For the dorso-ventral and medio-lateral
distributions, all neurons were counted at the level of the anterior commissure split into 4
quadrants: dorso-lateral (DL), dorso-medial (DM), ventro-lateral (VL) and ventro-medial
(VM). For rostro-caudal distributions (RC), stereological counts were analyzed according to
anterior-posterior levels from bregma at +1.5~+0.9 mm (RC1), +0.7~+0.1 mm (RC2), −0.1~
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−0.7 mm (RC3) and −0.9~−2.0 mm (RC4). The regional densities of nNOS+ neurons
appeared normal in mutants (F–G).
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Figure 6.
Striatal medium spiny neurons. Panel (A) shows a representative Golgi-stained medium
spiny neuron. Spines appeared longer and more complex in controls (B) compared to
mutants (C). Representative digital reconstructions of typical medium spiny neurons are
shown for a control (D) and mutant mice (E).
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Figure 7.
Quantitative morphologic features of striatal medium spiny neurons. Results depict average
values ± SEM for a total of 24 control neurons and 24 mutant neurons from the brains of 6
control mice and 6 DYT1 mutants. Dendrite thickness (A) and number of dendrite segments
(B) at each branch order were higher in normal (black bar) than mutant (white bar) neurons
at some levels. A modified Sholl analysis was used to quantify numbers of dendrites (C),
dendrite lengths (D), spine numbers (E) and spine densities (F) according to incremental
radii of 10 μm from the soma center in controls (filled circles) and mutants (open circles).
The results from branch order and Sholl analyses were concordant, suggesting fewer
dendrites with less total dendritic length at certain levels. The reduction in total spines in
mutants (E) may reflect dendrite loss, since spine density (spines/μm dendrite) was normal
(F).
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Figure 8.
Electron microscopy for synapses of medium spiny neurons with glutamatergic or
dopaminergic inputs. Cortical glutamatergic synapses were labeled by immunostains for
vGluT1 (A) while thalamic glutamatergic synapses were labeled by immunostains vGluT2
(C). Dopaminergic synapses were observed by immunostains for TH (E). The electron
micrographs depict examples of axo-spinous (Sp) and axo-dendritic (Den) synapses of
medium spiny neurons with the glutamatergic and dopaminergic terminals (arrows).
Terminals labeled by vGluT1 and vGluT2 immunostains formed asymmetric synapses with
unlabeled spines or dendrites, while terminals labeled by TH formed dual symmetric
synapses with a small spine and a dendrite. Corresponding quantifications for axo-dendritic
(black bars) and axo-spinous synapses (white bars) as percent of total synapses are shown in
panels B, D, and F. The numbers above each bar indicate the total numbers of synapses
evaluated. All data represent average values ± SEM, and asterisks denote statistical
significance at p<0.05.
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Table 1

Numbers and sizes of striatal interneurons.

Control Mutant % control

ChAT+ cells

 number 5081 ± 159 5200 ± 214 102

 size (μm3) 1695 ± 39 1977 ± 48 117**

PV+ cells

 number 5609 ± 157 6013 ± 191 107

 size (μm3) 496 ± 9 552 ± 13 111**

nNOS+ cells

 number 7384 ± 363 6785 ± 237 92

 size (μm3) 649 ± 17 589 ± 17 91*

Data are average numbers or volumes ± SEM of ChAT+, PV+ and nNOS+ cells in the caudoputamen of 12 mutant and 12 control mice with equal
numbers of mice from both sexes and two age groups (3 and 6 months of age). Abbreviations; ChAT (cholinergic acetyltransferase), PV
(parvalbumin) and nNOS (neuronal nitric oxide synthase). Single asterisks indicate statistical significance at p<0.05, while double asterisks
indicate p<0.01.
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