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Abstract
Most patients with hematologic malignancies have received extensive chemotherapy before
hematopoietic cell transplantation (HCT), resulting in neutropenia, lymphocytopenia, and use of
antibiotics. Accordingly, patients have a wide range of neutrophil counts, lymphocyte counts, and
prior antibiotic use. The minimal toxicity of the current conditioning regimen allowed asking
whether peritransplant neutrophil or lymphocyte levels influenced the risks of acute graft-versus-
host disease (GVHD) or relapse. We analyzed outcomes in 459 patients aged 7 to 75 (median 57)
years who were conditioned with fludarabine and low-dose total body irradiation for HLA-
matched HCT. We made two key findings. First, low neutrophil nadirs within the first 3 weeks
after HCT had significant associations with increased risks of acute GVHD and 5-year non-relapse
mortality (NRM), but showed no associations with the risk of relapse. Second, high lymphocyte
counts immediately before transplantation had significant associations with reduced risks of
relapse and overall mortality but showed no associations with the risks of GVHD or NRM. The
findings suggested that the immunological mechanisms involved in acute GVHD might differ
from those initiating graft-versus-tumor effects.
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INTRODUCTION
Graft-vs.-host reactions occur after allogeneic hematopoietic cell transplantation (HCT)
despite advances both in human leukocyte antigen (HLA) matching of the donor and the
recipient and in immunosuppressive agents. Graft-vs.-host reactions can affect the recipient
hematopoietic system, which may translate into graft-vs.-tumor (GVT) effects among
patients with hematologic malignancies. These reactions can also affect the skin, gut and
liver and the resulting graft-vs.-host disease (GVHD) can increase the risk of mortality.
Among patients treated with conventional HCT, acute GVHD is initiated by the effects of
high-intensity conditioning regimens, which cause tissue damage and subsequent production
of inflammatory cytokines, translocation of bacterial products into the circulation, and
heightened donor T-cell recognition of host antigens (reviewed in [1]). In a second phase
donor T-cells are stimulated by minor histocompatibility antigens presented directly by host
antigen-presenting cells [2,3] and indirectly by donor cells. In the third step, activated
effector T-cells cause tissue injury that is recognized clinically as GVHD.

We developed a mild HCT-conditioning regimen that minimized tissue damage and could
be tolerated by patients who were older or had serious comorbidities [4–7]. This regimen
made it feasible to assess GVHD and GVT effects apart from the effects of the conditioning.
In these patients, GVHD involvement of the liver has become very infrequent, especially
after the introduction of prophylactic ursodiol [8,9]. Consequently, acute GVHD is now
largely confined to skin and gut, both of which interface with the environment and possess
characteristic microbiomes consisting of symbiotic, commensal bacteria [10,11]. The likely
disturbance of microbiomes by neutropenia and antibiotics in patients undergoing
chemotherapy before HCT, and the suspected roles of altered microbiomes in the
development of autoimmune diseases (reviewed in [10,11]) raise the possibility that changes
in commensal flora may modulate GVHD. In fact, a study in mice showed that pre-
transplant treatment with the antibiotic ampicillin resulted in a loss of lactobacilli and
aggravation of GVHD, whereas re-introduction of lactobacilli protected against GVHD [12].
Simultaneous studies in human patients identified increased microbial disturbances early
after allogeneic HCT as a potential risk factor for GVHD [12].

Most patients with hematological malignancies have received extensive chemotherapy
resulting in pancytopenia and use of broad-spectrum antibiotics. Accordingly, at arrival at
our transplant center, patients have a wide range of neutrophil counts, lymphocyte counts,
and prior antibiotic use. The widely ranging blood counts and the minimal toxicity of the
conditioning regimen, allowed us to ask whether peri-transplant neutrophil or lymphocyte
levels influenced the risks of acute GVHD or relapse (GVT effect) after HLA-matched,
related and unrelated HCT.

METHODS
Patients

Between September 1, 2002 and December 31, 2010, 459 consecutive patients with
hematologic malignancies were entered on prospective, minimal-intensity conditioning trials
at the Fred Hutchinson Cancer Research Center (FHCRC) that were registered with
ClinicalTrials.gov. All patients signed consent forms that were approved by the institutional
review board of the FHCRC. Median follow-up of patients was 5 (range 1.5 to 9.9) years.

Table 1 shows patient and disease characteristics. The median patient age was 57 (range 7–
75) years. Unmodified grafts consisted of granulocyte colony stimulating factor (G-CSF)-
mobilized blood mononuclear cells (G-PBMC) and contained medians of 8.6 (range 0.2–
29.9) × 106 CD34+ cells/kg and 3.0 (range 0.1–10.8) × 108 CD3+ cells/kg. Patients had
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received a median of 3 (range 0–23) chemotherapy regimens before HCT. HCT
Comorbidity Index (HCT-CI) scores were assigned as described [13]. Fifty-one percent of
patients had serious comorbidities with scores of 3 and higher. The designation of low,
standard or high risk of relapse or progression for each disease and disease stage followed a
previously described algorithm [14].

Conditioning and postgrafting immunosuppression
Four hundred thirty patients received 2 Gy TBI with (n=343) or without (n=87) fludarabine,
30 mg/m2/day, on days 4, 3, and 2 before HCT (Table 1). Twenty-four patients received 3
Gy and five patients received 4 Gy TBI. Immunosuppression after HCT included MMF (28
days for related [4] and at least 96 days for unrelated [5,6] recipients) and a calcineurin
inhibitor (up to 180 days; either cyclosporine [CSP; n=270] or tacrolimus [TAC; n=189]).
Thirty-seven unrelated recipients also received sirolimus as part of a randomized trial [15].
All patients received prophylactic ursodiol from approximately 14 days before
transplantation until at least day 180 after transplantation. Infection prophylaxis and
treatment followed FHCRC standard practice guidelines including acyclovir for herpes
simplex and varicella zoster virus prophylaxis, fluconazole for yeast prophylaxis,
trimethoprim-sulfamethoxazole for Pneumocystis jirovecii prophylaxis, and monitoring for
cytomegalovirus reactivation. Antibacterial prophylaxis with levofloxacin was started when
neutrophil counts declined below 500 cells/μL and was continued until neutrophil counts
recovered to above 500 cells/μL for 2 consecutive days in the absence of infection.
Transplantations were planned as outpatient procedures.

Monitoring after transplantation
As a rule, patients had marrow aspirations to assess disease status on days 28, 84, 180, 365,
and then as indicated. Donor chimerism was evaluated on days 28, 84, and 365 after HCT.
Acute and chronic GVHD were graded as described [16–20]. The diagnoses of relapse,
defined as recurrence of malignancy, or of progression, were based on previously published
criteria [14].

Causes of death
Relapse mortality included deaths after relapse or progression of pre-transplant disease,
regardless of other events. Non-relapse mortality (NRM) included all deaths without relapse
or progression. GVHD mortality included all deaths in patients with a history of GVHD who
died during immunosuppressive therapy. Infection was listed as a cause of death in patients
without relapse, progression, or a history of GVHD.

Statistical analysis
Overall survival was estimated by the Kaplan-Meier method [21]. Cumulative incidence
rates of acute and chronic GVHD, NRM, and relapse mortality were estimated by methods
previously described [22]. Death was a competing risk for all other endpoints. Relapse was a
competing risk for NRM, and NRM was a competing risk for relapse and relapse-related
mortality. Since some time-to-event endpoints also occurred during this time period,
progressive neutrophil nadir was treated as a time-dependent covariate when analyzed as a
risk factor. Cox regression was used for risk factor analysis for all time-to-event endpoints.
Logistic regression was used to analyze risk factors for neutropenia nadir <500 cells/μL. For
this analysis pre-transplant neutropenia was defined as the lowest value from day −15
through day −1 before starting the conditioning regimen. For purposes of display and
characterization, neutrophil nadirs during days 1 through 20 after transplant were divided in
four ranges.
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All statistical analyses were adjusted to account for possible uneven distribution of the
following variables: related/unrelated donor; HLA allele-level mismatch; patient age in
years (<50; ≥ 50); donor/patient gender (F→M, other); fludarabine use (no, yes); calcineurin
inhibitor (CSP, TAC); diagnosis (multiple myeloma, lymphoma, other); preceding high-
intensity transplant (yes, no). Statistical analyses involving neutrophil nadir as a risk factor
for acute and chronic GVHD, relapse, NRM, and overall mortality were also adjusted for
pre-transplant lymphocyte counts. In separate analyses pre-transplant lymphocyte counts
were analyzed as a risk factor for the same outcomes with adjustments both for post-
transplant neutrophil counts and the other variables. Pre-transplant lymphocyte levels were
determined by the minimum value between day −15 to day −1 before start of the
conditioning regimen.

RESULTS
Post-transplantation neutrophil nadir

Neutrophil counts declined exponentially after HCT reaching nadirs between days 10–15,
followed by exponential recoveries to the normal range by day 30. This is shown in Figure
1A, where the neutrophil nadirs were divided in four ranges for purposes of illustration.

The strongest predictors for a neutrophil nadir of <500/μL after HCT were low neutrophil
counts before HCT (Table 2). Compared to patients with pre-transplant neutrophil counts
>2000/μL, those with counts between 500 and 1999/μL had an overall risk (O.R.) of 3.55
(95% C.I. 2.0–6.2; p<0.0001) and those with counts <500/μL an O.R. of 5.94 (95% C.I.
2.1–17; p=0.0009). Another risk factor for low neutrophil nadirs after HCT was having
transplantation from an unrelated donor (O.R. 3.62; 95% C.I. 1.9–6.8; p<0.0001). Patients
with MM (O.R. 0.24; 95% C.I. 0.1–0.6; p=0.002) and those with prior high-intensity
transplantation (O.R. 0.46; 95% C.I. 0.2–0.9; p=0.03) were significantly less likely to have a
nadir of <500 neutrophils/μL after HCT. No significant associations with neutrophil nadir
were seen with donor age, patient age, CD34 cell dose, number of preceding chemotherapy
regimens and HCT-CI scores. In order to estimate the effect size associated with these risk
factors, the post-transplantation neutrophil nadir was analyzed as a continuous outcome on a
log scale and the results were expressed as nadir multipliers (Table 2). For example, a pre-
transplant neutrophil count <500/μL reduced the post-transplantation neutrophil nadir by
82%, and a diagnosis of multiple myeloma increased the nadir by 54%.

GVHD—Two hundred sixty-four patients developed grade II-IV acute GVHD, of whom
101 had isolated gut GVHD, 60 had isolated skin GVHD, 102 had both skin and gut GVHD,
and one had isolated, stage 1 liver GVHD. Eight patients had liver GVHD in addition to gut
involvement. Among the 203 patients with gut GVHD, 159 (78%) had upper gut
involvement. The distributions of organ involvement in patients were comparable over the
range of neutrophil nadirs. The overall cumulative incidence rates of grades II–IV and III-IV
acute GVHD were 56% and 8%, respectively.

Table 3A shows post-transplantation neutrophil nadirs, per log decrease in neutrophil
counts, as risk factors for GVHD. Significantly increased hazard ratios were seen for the
association of neutrophil nadirs with grades II-IV and III-IV acute GVHD and de novo
chronic GVHD.

In Table 4, cumulative incidence estimates of grades II-IV and III-IV acute GVHD were
analyzed within four subgroups of patients according to their neutrophil nadir. The results
suggested that the neutrophil nadir represented a continuous predictor of the risk for acute
GVHD. For example, the overall risk of grade II-IV acute GVHD rose from 36% in the
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highest nadir group to 69% in the lowest nadir group, and the risk of grade III-IV acute
GVHD tripled from 3.5% to 11%.

Relapse or progression, NRM and overall survival at 5 years—Table 3A also
examined the neutrophil nadir as a time-dependent risk factor for relapse or progression,
NRM and overall mortality. No statistically significant association between neutrophil nadir
and relapse or progression was seen (HR 1.11; p=0.39) while associations with increased
NRM and overall mortality were statistically significant (HRs 1.54 and 1.46, respectively;
p=0.001 and <0.0001, respectively). Table 4 shows comparable 5-year relapse mortality in
the four nadir groups ranging from 32–39% (see also Figure 2A). In contrast, 5-year NRM
steadily increased from 3% in the highest nadir range to 25% in the lowest nadir range (see
also Figure 2B). Five-year overall survival, affected both by relapse mortality and NRM,
ranged from 58% in the highest nadir range to 40% in the lowest nadir range.

Causes of NRM
Eighty-seven patients died of nonrelapse causes. Of these, 78 (90%) died from
complications related to GVHD and its treatment. Among the 78, 59 died from bacterial,
fungal, or viral infections and 19 died from organ failure including bronchiolitis obliterans
organizing pneumona. Among the nine patients without GVHD, two experienced late graft
failure and died of infections after receiving pentostatin and donor lymphocyte infusions
(days 158 and 344, respectively). Four patients died of solid tumors (in two cases recurrent)
2.9, 5.0, 5.1, and 5.5 years after HCT, and two died in car accidents 1.3 and 2.5 years after
HCT. One patient with a history of CNS radiation, intrathecal chemotherapy, and two
preceding high-intensity conditioning transplantations died on day 97 from
leukoencephalopathy.

Pre-transplantation lymphocyte counts
In the preceding multivariate analyses, we used lymphocyte counts immediately before
transplantation as a continuous adjustment factor. Here, we analyzed pre-transplant
lymphocyte counts as continuous variable and transplantation outcomes (Table 3B) with the
post-transplantation neutrophil nadir used as an additional adjustment factor. While no
statistically significant associations were seen with acute GVHD, chronic GVHD or NRM,
low lymphocyte counts predicted significantly higher relapse risk (HR 1.48; p=0.003) and
increased overall mortality (HR 1.41; p=0.007).

DISCUSSION
The study yielded two major, new results. First, the depth of the neutrophil nadirs within the
first 3 weeks after transplantation was highly associated with the risks of acute GVHD and
associated NRM but not with GVT effects. Second, peripheral blood lymphocyte counts
immediately before transplantation were associated with GVT effects but not with acute
GVHD or NRM. These findings suggested that the immunological mechanisms involved in
acute GVHD differed from those initiating GVT effects.

The first result showed that patients with the lowest neutrophil nadirs had significantly
increased risks of both acute GVHD and 5-year NRM compared to patients with higher
nadirs. For example, the risk of grades III-IV acute GVHD rose steadily from 3.5% in the
highest neutrophil nadir range to 11% in the lowest nadir range, and the risk of 5-year NRM
rose from 3% to 25%. The data suggested that the neutrophil nadir might serve as a
continuous predictor of risks for GVHD and NRM. While the risks of acute GVHD and
NRM increased significantly with decreasing nadir, both the cumulative incidence rates and
the hazard ratios of relapse were unchanged across the range of neutrophil nadirs. It could be
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argued that some diseases, which are especially susceptible to GVT effects such as B-cell
malignancies, were unevenly distributed among the nadir ranges, but the multivariate
analyses were adjusted for the type of malignancy.

Unsurprisingly, the most significant factor predicting low post-transplantation neutrophil
nadirs was pre-transplant neutropenia. Other factors included underlying malignancies,
having received a prior transplant with high-intensity conditioning, and unrelated grafts, but
these were included as adjustments in all analyses. Low pre-transplant neutrophil counts
likely resulted from extended chemotherapy and impaired marrow function before referral to
HCT. Typically, neutropenic patients are treated with prophylactic, broad-spectrum
antibiotics. Antibiotics can impart unintended collateral damage to symbiotic
microorganisms that live in the human gastrointestinal tract [23]. Specifically, repeated
exposure to broad-spectrum antibiotics can dramatically alter the composition of human gut
microbial communities, and these changes can persist for long periods of time [24,25]. It is
possible that both the neutropenia and the altered microbiota emerging after antibiotic
treatments can lead to a pro-inflammatory state which induces production of cytokines, such
as interferon-γ, TNF- α, IL-1, and IL-6, and increased expression of HLA-DR and
costimulatory molecules, not only on antigen-presenting cells, but also on skin and gut
epithelia. In this hypothetical sequence of events, skin and gut epithelia might conceivably
present minor histocompatibility antigens to donor T-cells, thereby amplifying GVHD
manifestations specifically in these two organs at the exclusion of GVT effects or immune
reactions against other organs, such as those typically involved in autoimmune diseases.
Alternatively, indirect antigen-presentation from these cells might be enhanced by low-grade
inflammation associated with neutropenia and altered microbial flora.

Results from previous studies support the hypothesis that gut and skin microbiomes can
influence the development of GVHD. “Germ-free” murine recipients of H-2 incompatible
HCT had less clinically detectable GVHD and survived significantly better than
conventionally raised mice, and their histologic GVHD lesions were less pronounced [26–
28]. Human aplastic anemia patients given marrow grafts from HLA-identical siblings
experienced both significantly less acute GVHD and better survival when the transplantation
was carried out in a protective, “bacteria-free” environment compared to a conventional
environment [29]. Similarly, a pediatric study showed improved prevention of GVHD with
suppression of microbial flora [30]. In another study, human HCT recipients randomly
assigned to antibiotic prophylaxis with ciprofloxacin and metronidazole had less acute
GVHD than those given ciprofloxacin alone [31]. The authors suggested that anaerobic
flora, favored by ciprofloxacin monotherapy, played a role in the pathogenesis of acute
GVHD.

In mice, outgrowth of Escherichia (E.) coli bacteria was observed during gut GVHD and
GVHD was ameliorated when E. coli growth was curtailed by oral polymyxin B, consistent
with the hypothesis that microorganisms could modulate GVHD [32]. Another murine study
confirmed outgrowth of E. coli during GVHD, a finding that was interpreted to represent a
shift toward pro-inflammatory bacterial species [33]. Probiotics appeared to reduce GVHD
in experimental models [34], as did oral administration of lactobacillus rhamnosus, while
administration of ciprofloxacin led to worse survival, possibly as a result of a disturbed
microbiome [35]. These results were consistent with the adverse effect on GVHD caused by
pretreatment of mice with ampicillin and the reversal of this effect by introduction of
lactobacilli [12]. Findings in human allogeneic HCT recipients did not identify special
bacterial populations as potential risk factors for subsequent GVHD but found greater
microbial disturbance early after transplantation in patients who developed GVHD [12].
Sequential high-resolution 16s rRNA studies of skin and gut microbiomes, especially among
patients with high vs. low post-transplantation neutrophil nadirs, might provide insight into
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whether microbiome changes could be implicated in the causal pathway leading to
development of acute GVHD.

The second major finding of the current study was that lymphocyte counts immediately
before transplantation had significant associations with the risk of relapse and, consequently,
with overall mortality but showed no associations with the risks of acute GVHD, chronic
GVHD or NRM. Specifically, patients with higher lymphocyte counts had significantly less
risk of relapse or progression and better overall survival than those with lower lymphocyte
counts. Because pretransplant flow cytometry examinations of the peripheral blood were
focused on detecting malignant cells, we have no detailed information on lymphocyte or
mononuclear subsets in these patients. In the absence of that knowledge, we would
hypothesize that lymphocyte levels might serve as a proxy for the numbers of host antigen-
presenting cells with the result that larger numbers of these cells are associated with stronger
GVT effects. Even though our findings are currently unexplained, they are consistent with
the possibility that GVT effects can be separated from acute GVHD, and that they are
initiated by different mechanisms. Alternatively, it could be argued that pre-transplant
lymphocyte counts were a reflection of the intensity of the preceding chemotherapy used to
reduce the tumor burden. Thus, low lymphocyte counts might be a surrogate marker for
“resilience” of the malignancy to respond to therapy. In order to offset this confounder, the
analysis was adjusted for underlying diagnoses.

Four studies in patients treated with either myeloablative or reduced-intensity conditioning
regimens showed that the risk of relapse was not reduced by acute GVHD [7,36–38]. In
contrast, a recent large study in patients with leukemias and myelodysplastic syndromes
treated with high-intensity regimens did find significant incremental effects of acute GVHD
on risk of relapse, although this effect was observed only beyond the first 18 months [39].
Others showed GVT effects associated with acute GVHD in patients with ALL and more
advanced AML but not AML in first remission [16,40]. Ishiyama also reported GVT effects
associated with acute GVHD [41]. A large, retrospective CIMBTR study [42] analyzed
results in patients given allogeneic HCT for AML and MDS. Acute GVHD after
myeloablative conditioning did not affect relapse, but both chronic GVHD alone and acute
plus chronic GVHD were associated with reduced relapse risks. In contrast, all three
manifestations of GVHD were associated with highly significant reductions in risk of
relapse in patients given a variety of reduced-intensity conditioning regimens. The
discordance between current results after minimal-intensity conditioning and some of the
previous results after high-intensity conditioning might, in part, reflect differences in the
diseases treated, which might have different susceptibilities to GVT effects. Previous studies
included mainly patients with acute leukemias and chronic myeloid leukemia, while more
than half of the current patients had B-cell malignancies, multiple myeloma, or Hodgkin
lymphoma, and only two patients had CML.

In conclusion, low posttransplant neutrophil counts predicted increased risks of acute
GVHD, de novo chronic GHVD and NRM, while high pretransplant lymphocyte counts
were associated with a lower risk of relapse and improved survival. These results suggested
that different mechanisms were involved in the two types of localized, immunologic graft-
vs.-host reactions.
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Figure 1.
Pre- and post-transplant neutrophil changes among patients in four post-transplant
neutrophil nadir ranges (A). Pre- and post-transplant lymphocyte changes among patients in
four pre-transplant lymphocyte count ranges (B).
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Figure 2.
Cumulative incidences of relapse mortality (A) and non-relapse mortality (B) in relation to
four neutrophil nadir ranges. The percentages shown within the boxes are 5-year data.

Storb et al. Page 12

Biol Blood Marrow Transplant. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Storb et al. Page 13

Table 1

Patient and disease characteristics (n=459)*

Characteristic n (%)

Sex

    Female 183 (40)

    Male 276 (60)

Patient age, years

    0–19 7 (2)

    20–29 17 (4)

    30–39 28 (6)

    40–49 68 (15)

    50–59 152 (33)

    60–69 169 (37)

    70–79 18 (4)

    Median (range) 57 (7–75)

Diagnosis

    ALL 27 (6)

    AML 111 (24)

    CLL 50 (11)

    CML 2 (<1)

    HL 29 (6)

    MDS 53 (12)

    MPD 5 (1)

    MM 86 (19)

    NHL 91 (20)

    Waldenstrom’s 5 (1)

Relapse risk group [14]

    Low 111 (24)

    Standard 220 (48)

    High 128 (28)

Conditioning regimen

    2Gy TBI 87 (19)

    2Gy TBI + Flu 343 (75)

    3Gy TBI + Flu 24 (5)

    4Gy TBI + Flu 5 (1)

Prior high-intensity transplant

    No 243 (53)
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Characteristic n (%)

    Yes† 216 (47)

Donor

    HLA-id sibling 217 (47)

    Other HLA-matched related 4 (1)

    HLA-matched unrelated 216 (47)

    HLA-mismatched unrelated‡ 22 (5)

HCT-CI

    0 83 (18)

    1 45 (10)

    2 96 (21)

    3 113 (25)

    4 45 (10)

    5 38 (8)

    6 25 (5)

    7+ 12 (3)

CMV seropositive

    Patient 250 (54)

    Donor 184 (40)

*
All patients reported here were entered on prospective clinical trials that were registered with ClinicalTrials.gov. Data on other patients, for

example those whose insurance denied participation in clinical trials and who were therefore placed on treatment plans, are not included in this
analysis.

†
Autologous HCT as part of tandem autologous/allogeneic HCT: n=114; failed autologous HCT: n=87; preceding autologous HCT for other

disease: n=9; failed allogeneic HCT: n=15.

‡
One HLA-allele mismatched.

Abbreviations, e.g., ALL=acute lymphocytic leukemia, AML=acute myeloid leukemia, CLL=chronic lymphocytic leukemia, CML=chronic
myeloid leukemia, HL=Hodgkin lymphoma, MDS=myelodysplastic syndrome, MPD=myeloproliferative disorder, MM=multiple myeloma,
NHL=non-Hodgkin lymphoma, TBI=total body irradiation, Flu=fludarabine, HLA=human leukocyte antigen, HCT-CI=Hematopoietic Cell
Transplantation-Comorbidity Index, CMV=cytomegalovirus.
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Table 2

Multivariate analysis of risk factors for neutrophil nadir < 500/µL

OR (95% Ci) P Nadir multiplier† P

Pre-transplant neutrophil level (µL)

    >2000 1.0

    500–1999 3.55 (2.0–6.2) <0.0001 0.56 (0.42–0.75) <0.0001

    <500 5.94 (2.1–17) 0.0009 0.18 (0.12–0.27) <0.0001

Disease group

    ALL,AML,MDS,CML 1.0

    HL,NHL,CLL 0.57 (0.3–1.1) 0.11 0.91 (0.66–1.27) 0.58

    MM 0.24 (0.1–0.6) 0.002 1.54 (0.96–2.47) 0.08

Donor

    Related 1.0

    Unrelated 3.62 (1.9–6.8) <0.0001 0.56 (0.39–0.80) 0.001

Patient age, years

    <50 1.0

    50–64 1.51 (0.8–2.8) 0.18 0.74 (0.53–1.05) 0.09

    65+ 2.40 (0.8–7.2) 0.12 0.72 (0.45–1.16) 0.18

Donor age, years

    <50 1.0

    50+ 0.87 (0.5–1.7) 0.68 0.87 (0.59–1.27) 0.47

CD34 cell dose × 106/kg

    5.9+ 1.0

    <5.9 (lowest quartile) 1.29 (0.7–2.4) 0.41 0.91 (0.67–1.23) 0.55

Prior high-intensity transplant

    No 1.0

    Yes* 0.46 (0.2–0.9) 0.03 1.68 (1.18–2.39) 0.004

No. of prior chemotherapy regimens

    0–3 1.0

    4+ 0.95 (0.5–1.7) 0.87 0.92 (0.69–1.23) 0.59

HCT-CI score

    0–2 1.0

    3+ 1.12 (0.7–1.9) 0.66 0.89 (0.68–1.15) 0.37
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*
Autologous HCT as part of tandem autologous/allogeneic HCT: n=114; failed autologous HCT: n=87; preceding autologous HCT for other

disease: n=9; failed allogeneic HCT: n=15.

†
The nadir is a continuous outcome on a log scale – the effects of risk factors are expressed as multipliers. For example, a pre-transplant count

<500 reduces the nadir by 82%; a diagnosis of MM increases the nadir by 54%.
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