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ABSTRACT
The role of cattle in developing countries is as a source of high-quality food, as draft
animals, and as a source of manure and fuel. Cattle represent important contribution
to household incomes, and in drought prone areas they can act as an insurance
against weather risk. So far, no studies have addressed how historical variations in
temperature and rainfall have influenced cattle populations in Africa. The focus of
this study is to assess the historical impact of climate variability on national cattle
holdings. We reconstruct the cattle density and distribution for two time periods;
1955–1960 and 2000–2005. Based on estimates from FAO and official numbers, we
generated a time series of cattle densities from 1961–2008, and compared these data
with precipitation and temperature anomalies for the same period. We show that
from 1961–2008 rainfall and temperature have been modulating, and occasionally
controlling, the number of cattle in Africa.

Subjects Agricultural Science, Ecosystem Science, Entomology, Global Health, Infectious
Diseases
Keywords Cattle, Climate, Africa, Malaria, Precipitation, Temperature

INTRODUCTION
Background
Since the 1960s there has been a period of climatic change with global land-surface

temperature rising about 0.5–0.6 ◦C (Hansen, Sato & Ruedy, 2012). Although some studies

have addressed effect of climate variability on cattle populations (Angassa & Oba, 2007;

Cossins & Upton, 1988; Desta & Coppock, 2002; Oba, 2001), no studies have described how

historical variations in temperature and rainfall influence cattle populations in Africa.

FAO estimates the number of cattle in Africa during the period 2001 to 2010 is twice

the estimates for the years 1961–1970. But, how variations in the climate influence cattle

depend on the ecological setting, and how variations in cattle influence the population,

depend on the availability of alternative energy sources as well as the cultural setting. The

role of cattle in developing countries is as a source of high-quality food, as draft animals,

and as a source of manure and fuel (Scoones, 1992; Taddesse et al., 2003). Cattle represent

important contribution to household incomes (Seo & Mendelsohn, 2006), and in drought

prone areas they can act as an insurance against weather risk (Fafchamps & Gavian, 1997).
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Most of the cattle in Africa are in arid and semiarid areas. In the forested humid areas

of humid West-Africa, as well as Democratic Republic of Congo, the tsetse tolerant

N’Dama and West African Shorthorn breeds are common. The most common cattle

breed is, however, the East and West African Zebu, which make up the majority of African

cattle (Deshler, 1963). Close to Lake Chad, the heat tolerant Kuri breed can be found,

although the density has declined since the 1950s (Tawah, Rege & Aboagye, 1997), and in

East Africa, the Sanga can be found on the western branch of the Great Rift Valley. In South

Africa the Afrikander is common. The different cattle types probably represent mixtures of

breeds introduced at various times (Deshler, 1963).

Many production systems supply water from ponds and rivers during the wet season,

and the need for watering increases with higher temperatures (Seif, Johnson & Lippincott,

1979). The IPCC 2007 report concluded that changes in range-fed livestock numbers in any

African region will be directly proportional to changes in annual precipitation (Intergov-

ernmental Panel on Climate Change, 2007).

Rötter and van de Geijn (1999) discussed how changes in climate potentially can

influence livestock;

• Feed production (Direct effect of CO2, temperature and precipitation)

• Animal health (Direct effect of feed production, heating through temperature, and

watering via precipitation and evaporation)

• Diseases (Indirect effect of stress, parasites, and vector borne diseases).

The coming century, it is virtually certain temperatures will increase, and that the

intensity of precipitation will change (Min et al., 2011). How the cattle has been, and

will be influenced directly through climate variability, and indirectly through parasites

and vector borne diseases is still uncertain. The lack of certainty in projected absolute

changes in precipitation amounts and how cattle respond to climate, makes it difficult to

to predict impacts of climate change. It is therefore necessary to understand the historical

impact of climate on cattle before projecting future impacts and developing adaptation

strategies (Hoffmann, 2010).

Feed production and consumption
The growth of plants are directly influenced by the atmospheric CO2 concentrations, with

two metabolic pathways; C3 and C4 (Stokes et al., 2010). While the productivity is expected

to increase for C3 plants, quality, productivity and digestibility is expected to decrease

with increasing CO2 concentrations. C4 plants are probably less affected (Stokes et al.,

2010). In the subtropical Australia it has been hypothesized that lower precipitation can be

compensated for by the benefits of increased CO2 (Henry et al., 2012). The compensating

effect in tropical Africa is uncertain.

A study by Seif et al. (Seif, Johnson & Lippincott, 1979) showed Zebu water consumption

increased by 58% when temperature increased from 10 to 31 ◦C. This is only 2.8%

increase per degree, if we consider this as a linear process. At higher temperatures, feed
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consumption decreases (Seif, Johnson & Lippincott, 1979) and fertility increases (Jöchle,

1972). Lower food consumption can be of importance in the dry season. This is in line with

the perception of farmers in the savanna zone of central Senegal, who say low temperatures

may lead to fodder shortage (Mertz et al., 2009).

Indirect consequences of climate
Although climate influence the vegetation in these semiarid environments, the coupling

between climate and animal numbers might not be as straight forward as grass production

and the need for watering; in tsetse infested areas, high temperatures might reduce the

vector populations and cause a reduction in animal trypanosomiasis (Hall et al., 1984;

Terblanche et al., 2008), in Nigeria increased rainfall has been linked to outbreaks of

blackquarter (Bagadi, 1978), and in the eastern part of Africa, where east coast fever

prevail, climate variability can be related to the survival and reproductive success of

the tick Rhipicephalus appendiculatus (Branagan, 1973), and as the development of the

Theileria parasite (Young & Leitch, 1981). Livestock also play a role in malaria transmission

by creating favourable environments and blood meals for Anopheles arabiensis. We have

previously shown that understanding fluctuations in cattle populations is important

to assess the historical and future distribution of two of the most efficient vectors of

malaria in Africa (Lunde et al., 2013a; Lunde et al., 2013b). Tirados et al. (2011) showed

that a cattle herd of 20 heads outside a house reduced the number of Anopheles arabiensis

landing on humans by 50%. It has also been speculated that certain malaria epidemics in

India and Somalia can be explained by herds of livestock being decimated during drought

years (Choumara, 1961; Cragg, 1923).

To quantify the historical impact of climate variability on cattle in Africa, we construct

a statistical model which include precipitation (P), temperature during the rainy season

(Tw), and temperature during the dry season (Td). We also adjust for armed conflicts and

include a sigmoid-shaped Gompertz curve which represents an increase in infrastructure

over time (number of herders/farmers, provision of wells/water stations, veterinary

services) that allows an increased carrying capacity over time without population

density-dependence.

METHODS
The main aim of this paper is to quantify the effect climate variability has had on national

cattle holdings from 1961–2008. To do so we specify a linear model under the assumption

of normally distributed errors and constant variance:

Wny,c = β +m1 ·Ge(a,b)+m2 ·CFy,c+m3 ·Tdy,c +m4 ·Twy,c +m5 ·Py,c+ ε (1)

where

β = Intercept

Ge(a,b)= Gompertz function with parameters a and b

CFy,c = Armed conflict weighted by cattle density within a country
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Tdy,c = Five year weighted mean temperature anomalies in the dry season,

spatially weighted by cattle density within a country

Twy,c = Five year weighted mean temperature anomalies in the wet season,

spatially weighted by cattle density within a country

Py,c= Five year weighted annual mean monthly precipitation anomalies,

spatially weighted by cattle density within a country

ε = Error.

In the following sections we explain how the spatial weights are constructed, the data

sources, and corrections done to the data.

Construction of spatial weights
In 1963 Walter Deshler published a map of cattle distribution in Africa. The map is

complete, except from two countries with large cattle populations; Ethiopa and Upper

Volta (Burkina Faso). Data was also missing from Gabon and Spanish Sahara (Western

Sahara), but these territories were probably empty of cattle. For Ethiopia and Upper Volta

(Burkina Faso) we used FAO’s estimate of 2005 cattle density and adjust the totals to

Faostat’s estimate for 1961. This process is described later.

We geo-referenced the raster map published by Deshler to a Miller Oblated Stereo-

graphic projection. Thereafter, the country borders, coastlines and rivers were manually

removed, only leaving the dots in the maps. One point in the original map represents

5000 cattle (heads). In the rasterized version of the map, one point would consist of a

group of pixels. The geo-referenced raster is a one band grayscale raster with values from

0 (black) to 255 (white). First, pixels with values grater than 200 were removed. Such a

high threshold was chosen based on manually checking the distribution of representative

dots. The remaining points could now be treated as probable candidates of being an

observation of 5000 cattle. To automatically identify groups of points, we applied the

Partitioning Around Medoids (PAM) algorithm (Kaufman and Rousseeuw, 1990). Since we

knew the approximate total number of cattle in each country, and we also knew each point

represent 5000 heads, the expected number of clusters was ≈ FAOtot,country · 5000−1,

where FAOtot,country is the FAO estimate of national cattle holdings. To speed up the

algorithm we split the computation for each country in hexagonal tiles. After running

the PAM-algorithm for all countries, except Ethiopia, Upper Volta, Gabon, and Spanish

Sahara, we manually removed or added points which either were duplicates, or were not

detected by the algorithm.

After the raster map had been converted to clean points, we used a spherical non-

parametric estimator method to calculate point densities. Such kernel estimators were

developed to omit problems with discontinuities of the estimates dependent on the bin

positions. In this work we used a spherical kernel developed by Kevin Hodges (Hodges,

1996) (with power m= 1). This is a computational efficient kernel designed to derive storm

track statistics. It is defined locally so that the influence of a point is restricted to a local

region.
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To choose a global smoothing parameter we maximize the cross-validation function

suggested by Diggle and Fisher (Diggle & Fisher, 1985):

0d(Cn)=−
1
n

n∑
i=1

loge[f̂−i(Xi,Cn)] (2)

where

f̂−i(Xi,Cn)=
1

n− 1

n∑
j6=i

K(Xj ·Xi,Cn). (3)

Still the greatest value of the local, and hence global, smoothing parameter which is

described later, is restricted by the grid spacing. If the spherical cap is too small, some

points will not be included in the density estimation, and κ must therefore be restricted.

For the maps produced in this paper the value of κ = 21907.45(κ̃ = 1.000046) which

is equivalent to an arc bandwidth radius of 0.55◦. This parameter is then adaptively

modified based on the ideas of a pilot density estimate and cross validation as described

by Hodges (Hodges, 1996). If the smoothing parameter is

κ(κ̃ = 1+ 1/κ) (4)

the local smoothing parameter is determined as:

κN,i = κN

(
f̂p(Xi)

g

)γ
(5)

where κN is the global smoothing parameter, f̂p(Xi) is the pilot estimate at each point Xi, g
is the geometric mean of the pilot densities. The γ parameter is subjectively chosen to be

0.5 which Abramson (Abramson, 1982) showed (in the Cartesian domain) give lower bias

than normal fixed bandwidth estimates.

After smoothing the cattle observation we normalize the densities to match 5000 · n.

To estimate a comparable cattle density around year 2000 we converted the FAO

observed bovine density (census data) (Robinson & Fao’s Animal Production and Health

Division, 2011) to points, each point equal to 5000 animals. First, the FAO raster was

converted to polygons using the Geospatial Data Abstraction Library (GDAL) (The Open

Source Geospatial Foundation). In cases where the modulus of the sum inside the polygon

is non-zero, the probability of sampling an additional point (Zhi+1) is the modulus divided

by 5000. Next, we construct 50 realizations of the maps. Each time we sample ni completely

spatial random points (Bivand, Pebesma & Gomez-Rubio, 2008; Pebesma & Bivand, 2005)

within each polygon, and estimate the density as described earlier. Mostly, the observations

from 2000 are aggregated to district level, and hence the observations do not have the

same quality with respect to spatial distribution as those of Walter. The global smoothing

parameter is held constant, while the local smoothing parameter will vary for each of the 50

estimates.
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This method is used to provide a best-guess estimates of the cattle densities around 1960

and 2000 without making any assumptions about dependencies on land use or climate.

There are two good reasons for doing this. First of all we do not know how the cattle

distribution is related to climate within individual countries. Secondly; if we had already

assumed that cattle distribution and density was dependent on climate or land use it would

be hard to justify relating this data set to those variables.

Time series of national cattle holdings and spatially weighted time
series of climate
FAOstat (FAO, 2011) reports the estimated number of cattle heads within a country from

1961. We relate this to the annual mean temperature and precipitation from University

of Delaware air temperature and precipitation and repeat the same analysis with CRU

v3.1. The data sets were interpolated to the same grid as the cattle densities using distance

weighted interpolation. It should be noted that for example Madagascar, Somalia, and

Ethiopia have very few weather observations. In countries with few observations, the

results are less robust. Since the data from FAOstat is reported on national scale we need

to aggregate the temperatures and precipitation to the same levels. To do this we use the

newly constructed cattle densities. Each value inside the country (c) boundaries are given a

weight (Wi,y,c) based on the cattle density.

Wi,y,c =
Xi,y,c

n∑
i=1

Xi,y,c

(6)

where the cattle density in year (y) is linearly interpolated between 1960 and 2000.

The weighted mean temperature anomalies (T) or precipitation anomalies (P) for each

country is then (given for T here):

Ty,c =

n∑
i=1

Ti,y,c ·Wi,y,c. (7)

Standardized anomalies can be calculated from the actual temperature or precipitation

by dividing the difference from the mean on the standard deviation, or more specifically

(x is actual temperature and n is the number of observations):

Ty,c =
x− 1

n

∑
x√(

x− 1
n
∑

x
)2

n

. (8)

To account for the weather the past years we do an additional time smoothing with a

kernel, K

K = [0.016,0.127,0.265,0.327,0.265]. (9)
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And the new Ty,c becomes

Ty,c =

4∑
i=0

Ty−i,c ·K[5− i]. (10)

Armed conflicts
To adjust for conflicts (CF) which might have influenced the cattle densities (Brück &

Schindler, 2009), we use the armed conflict site data set from UCDP/PRIO. This data set

contains year, coordinates (L) and radius in km (r) of conflicts (CF) from 1946 to 2005. On

the same grid we define CFi,j as a function of distance (D) from L and r.

CFi,j =
D4

r4 (11)

where CFi,j > 0.

Allowing increased carrying capacity over time without population
density-dependence
We introduce a sigmoid-shaped growth curve which represents an increase in infrastruc-

ture (number of herders/farmers, provision of wells/water stations, veterinary services).

This function allows an increased carrying capacity over time without population

density-dependence. We use a Gompertz function, and adjust the time and scale of the

data. A description of the procedure is following in the next lines.

We normalize time (tn) from −2 to 2 (so that 1961 = −2 and 2008 = 2). This

normalization is done based on the properties of the Gompertz function. The cattle

numbers (W) from Faostat are also normalized (Wn) to range from min(Wn) = 0 to

max(Wn)= 1:

Wn(t)= (max(W)−min(W))−1
·W(t)+

(
1−

max(W)
min(W)

)−1

(12)

where W(t) is the number of cattle at time t, and Wn(t) is the scaled number of cattle at

time t.
Next, we estimate a and b using nonlinear weighted least-squares to optimize the

function:

Ge(a,b)= a · e(b·e
(−tn)) (13)

and

Wn = Ge(a,b)+ ε. (14)

Depending on the country, the cattle numbers reported by FAO might be based on

estimates. Since these estimates are more unreliable than actual observations we want

to give less weight to those. To define the weights we apply a two way search to find the

minimum number of years since the last observation (�). For example if there were
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observations in 1999 and 2003, but not in 2000–2002, the weights for 1999, 2000, 2001,

2002 and 2003 would be 1−1,2−1,3−1,2−1,1−1.

Using Eq. (1) we use stepwise model selection by Bayesian information criterion (BIC)

to estimate the model which explain most of the variance. A few cases suggested that war

had a positive effect on cattle numbers. Since we believe this is unreasonable, war having a

positive effect on national cattle holdings was not allowed in the model.

We assume errors follow a normal distribution, ε ∼N (0,σ 2), and test this assumption

by applying a Shapiro-Wilk test of normality, as well as investigating the normal QQ plot

of the residuals. To test for heteroscedasticity, we applied a Breusch-Pagan (Cook and

Weisberg) test.

Data corrections
As mentioned, 1960 data was missing from Gabon, Spanish Sahara (Western Sahara),

Ethiopia and Upper Volta (Burkina Faso). For Ethiopia and Upper Volta (Burkina Faso) we

use FAO’s estimate of 2005 cattle density (Gridded livestock of the world (GLW) (Wint &

Robinson, 2007)), and adjust the totals to Faostat’s estimate for 1961. For these countries.

Since GLW was released, additional data has become available for Afder, Gode, Korahe,

Warder, Fik, Degehabur, and Shiniele in Ethiopia (Central Statistical Authority, 2004).

GLW is updated with this information. This data set should roughly give an estimate of

the cattle distribution and density for 2000–2005. Since Ethiopia was classified as Ethiopia

PDR in 1961 we used the total of Ethiopia and Eritrea in 2000 to match the 1961 Ethiopia

PDR total. To make pseudo points for the four countries we randomly sampled (Bivand,

Pebesma & Gomez-Rubio, 2008; Pebesma & Bivand, 2005) nearest integer of administrative

zone totals divided by 5000 points in each zone.

For the present day estimates it should be noted that data for Mauritania was missing.

FAO does report the estimated total, and to estimate the density for Mauritania we

distribute the total in the areas which are not reported as zero. There are two major areas

in Mauritania which are likely to have cattle. The major area is to the south, while a smaller

area is located around 21.5 North–6.6 degrees East. In the latter area we assume the density

to be approximately equal to the density on the Mali side of the border, while the remaining

is equally distributed in the Southern area.

Non-technical summary of the methods
We estimated a continuous surface of cattle densities and distribution from point

observations. From this data we calculated annual mean precipitation, and dry and

wet season temperature anomalies where the cattle were present. These time series

were correlated with the official cattle holdings for each country using a linear model,

giving more weight to actual observations, and less weight to estimates. In addition, we

have included the Gompertz function to account for adaptation and growth. We also

adjust for armed conflicts which has been important for cattle numbers in, for example,

Mozambique (Brück & Schindler, 2009).
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Figure 1 Cattle density and distribution 1960s and 2000s. Estimated cattle (heads per square kilometre)
density around 1960 (upper left), 2000 (upper right) and difference (2000–1960, bottom) relative to the
mean.

RESULTS
Figure 1 shows the estimated cattle distribution and density in the 1960s and 2000s, and

their difference over the mean density. In general, most areas have more cattle today than in

the early phase of global warming. But there are some exceptions. The declines are mainly

observed in Northern Somalia, and Northern Kenya, around the Niger river, Mauritania,

parts of South Africa, Mozambique, Namibia, and Madagascar. Although there are large

variations, the main signal is that dry areas have seen a reduction in the amount of cattle

opposite to wetter areas, which have seen an increase.

Figure 2 shows the sign of the slope for precipitation (P), wet season temperature (Tw),

and dry season temperature (Td). Only values where the degree of confidence is greater

than 95%, and the model could explain more than 30% of the variance are shown. In

most of the countries where precipitation is significantly correlated with cattle numbers,

increased annual rainfall is associated with increased cattle numbers. The exceptions,
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Figure 2 Effect of climate variability on cattle holdings. Upper panel (left to right): Sign of slope for precipitation (P), wet season temperature
(Tw), and dry season temperature (Td). Positive values means increased precipitation/temperature is associated with increased number of cattle and
vice versa. Middle panel (left to right): Percent variance explained by precipitation, wet season temperature and dry season temperature. Lower panel
(left to right): Total variance explained by the model, variance explained by variability in Gompertz function, and variance explained by climate
variability.
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which have notable cattle populations, are Cameroon, Nigeria, and Benin, countries which

have warm and relatively humid climates.

On the other hand, the influence of temperature during the wet season demonstrate a

more diverse pattern. Temperature can influence cattle through direct heating, through

vector borne diseases, and by modulating evaporation. However, the most dominant

factors controlling evaporation is the vapor content in the air and the turbulence which

can transport vapor away from the surface. There are eleven countries where temperature

explain more than 10% of the variance, where warmer wet season temperatures have a

positive impact in Lesotho (10%) and Ghana (17%), and a negative impact in Zimbabwe

(7%), Uganda (5%), Benin (17%), Mali (13%), Senegal (11%), Mauritania (13%), Libya

(17%), Morocco(/Western Sahara) (30%), Liberia (10%), Gambia (10%), and Tunisia

(21%).

The pathway from temperature to cattle in these countries is probably diverse. For

example in Tunisia and Morocco theileriosis is influenced by temperature. In the drier and

warmer countries, the need for water increases as the temperature increases.

Outside the rainy season, temperature can interact differently. At higher temper-

atures, feed consumption decreases (Seif, Johnson & Lippincott, 1979) and fertility

increases (Jöchle, 1972). Lower food consumption can be of importance in the dry season.

According to the model, Western Sahel seems to be especially sensitive to the dry-season

temperature. This is in line with the perception of farmers in the savanna zone of central

Senegal, who say cold temperatures may lead to fodder shortage (Mertz et al., 2009).

In the least climate sensitive countries, the Gompertz model can explain most of the

variance. We interpret the greatest climate sensitivity will be seen where resource limits are

reached, and the resource limits are then modulated by climate (Fig. 3A). Thus, we expect

the present day climate insensitive countries to be more vulnerable to climate variability

as the cattle populations converge toward the carrying capacity limit; One way to adapt to

climate variability, from season-to-season and year-to-year, is to move cattle to new areas.

As the number of cattle increases, there will be more competition for food and water, and

the strategy of moving cattle might be less successful if most areas are already occupied. In

this case, use of concentrate feeds might be a viable alternative, while the access to water

might still make the cattle populations vulnerable.

Although temperature is important, precipitation show a more consistent pattern,

with a positive effect in the drier countries, and a negative effect in wetter countries

(Fig. 3B). We obtained similar results as the ones shown in Fig. 3B when using a mixed

effect model (Bates, Maechler & Bolker, 2011). In this analysis, countries were classified

based on the UNEP index of aridity (Middleton, United Nations Environment Program &

Thomas, 1997), taking into account the potential evapotranspiration and average annual

precipitation. The mixed linear model, with the same form as the linear model described

earlier, was repeated for cattle belonging to each of aridity classes with country as a random

variable. In this analysis, the fixed effect of one standard deviation increase in precipitation

were; Arid: 0.60 (CI 95% 0.47, 0.74), Semi-arid: 0.11 (0.01, 0.22), Dry subhumid: 0.14
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Figure 3 Climate sensitivity. Left: Relationship between the variance explained by the Gompertz function and climate. In countries where the
number of cattle fit well with the Gompertz curve there is little climate sensitivity. Where the carrying capacity is close to its limit the cattle
populations will fluctuate around the mean and hence the Gompertz function will not explain the variance. In these countries climate variability is
the major source of variation. Vertical lines are box-and-whisker diagrams plotted at quantiles 0–0.1 to 0.9–1 by 0.1. Black dot indicate median for
each quantile. Right: The effect of one standard deviation increase in precipitation vs annual mean rainfall (1961–1990). Y-axis is in %, and show
the change in cattle numbers relative to the mean number of cattle (1961–1990). A value of 50 on the y-axis would indicate one standard deviation
of rainfall (over five years) would increase the national cattle holdings by 50% relative to the mean. A value of −50 would indicate a reduction of
50%. Vertical lines are box-and-whisker diagrams plotted at quantiles 0–0.25 to 0.75–1 by 0.25. Black dot indicate median for each quantile.

(0.07, 0.22), Subhumid:−0.01 (−0.07, 0.05). No clear associations were found between

temperature anomalies and national cattle holdings.

DISCUSSION
The cattle populations which are most sensitive to climate variability are located in arid

regions. In the IPCC 2007 report it was stated that “... changes in range-fed livestock

numbers in any African region will be directly proportional to changes in annual

precipitation.” This is only true in dry environments, and that in wetter environments,

increased precipitation has no, or negative impacts on the national cattle stocks.

The observed negative association between precipitation and national cattle holdings

in humid countries could be the effect of cross-border movement of livestock. We

show that, while the Sahelian nations Niger and Chad show the expected positive

relationship between rainfall and cattle numbers, their southern neighbours (Benin,

Nigeria, Cameroon and CAR) have negative relationships. Figure 1 shows that the majority

of cattle both these groups of countries are close to the borders between the former and

latter groups. Since nomadic cattle herding or transhumance is the dominant form of cattle

herding in this region, a likely explanation is that cattle are driven south during periods
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of drought in the Sahel to areas with higher rainfall. In Mali, cattle are less frequently

herded across the southern borders but instead are driven from the Sahel into higher

rainfall regions further south within the country. This may explain in part why Mali

has no clear relationship with rainfall, as the main effect of drought may be a shift in

cattle further south within the country. Unfortunately the data presented here do not

allow quantifying cross-border movement. It is also possible that the negative response

to precipitation in humid areas can be explained by precipitation driven variability in the

tsetse-fly populations, with more efficient transmission of trypanosomes in wet years. To

establish any associations between variability in the number of tsetse flies and cattle, there

is a need for historical datasets describing how the number of tsetse flies has varied in space

and time.

Due to lack of consistent weather records for parts of Africa, and uncertainty in the

estimated cattle densities, the absolute estimated effect of preceding precipitation and

temperature anomalies on national cattle holdings should be interpreted with care. The

consistent response in dry and humid regions does however make physical sense, with long

wet or dry periods being the main factor controlling water and food availability, and in

the end, cattle. We have not addressed if the declines and increases in cattle numbers are

reflecting planning, by for example slaughtering and selling more cattle in dry periods, or

if the declines in cattle numbers in dry periods can be attributed to natural mortality due

to lack of food and water. These are important aspects which should be further investigated

and documented, since the response to long term (30 years) changes in the climate might

be different from the responses to short term fluctuations (2–3 years).

Since this is a statistical model with its limitations, it is therefore optimistic to

extrapolate these relationships into the future. Instead we will show the expected changes

in precipitation in the next century, and combine these maps with information about

where cattle was present in the 1960s. We look at three of the Representative Concentration

Pathways (RCP), where RCP 2.6 (Image, 14 models) showing future climate with strong

mitigation, RCP 4.5 (miniCam, 18 models) is an in-between scenario and RCP 8.5

(Message, 16 models) assumes no mitigation. Figure 4 shows the expected response in

precipitation under the four different scenarios. To minimize the effect of multidecadal

variability we have used three averaging periods, baseline (1961–2000), near future

(2006–2050), and distant future (2051–2100). Under the scenario where no mitigation

takes place (Message), the Southern part of Africa will have a reduction in mean annual

precipitation of 0.1–0.2 standard deviations in 2051–2100. Under the Image scenario

the signal is weakened and the agreement between the models is lower. The miniCam

scenario lies in between. The Southern part of Africa is one of the areas with a relatively

high sensitivity to precipitation, and it is very likely that the cattle populations in this

region will be negatively affected if no mitigation takes place. However, the increased CO2

can reduce the impact of decreased rainfall, by increasing the soil nutrient availability. It is

also likely that mean precipitation will decrease in parts of Mauritania, Mali and Senegal.

The opposite is true for Eastern Africa and Eastern Sahel. These areas have shown little

sensitivity to precipitation the last 50 years, and it is likely to very likely that the annual
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Figure 4 Future precipitation patterns. The mean expected changes from 1961–2000 in precipitation
under three different climate scenarios. Shading indicate standard deviations, black contours show the
presence of cattle in the 1960s. Only values where more than 66% of the models agree are shown. Black
dots indicate more than 90% of the models agree on the sign of change.

precipitation will increase with no mitigation. The signal is weaker under the Image and

miniCam scenarios.

It is interesting to note that the East African countries are less sensitive to climate

variability. If new areas are utilized for cattle production over time, like the Ethiopian

case (Funk et al., 2012), the resulting increased carrying capacity of a country will wash
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out the effects of climate variability in the data. In the analysis presented here we suggest

the national cattle holdings in Ethiopia have not been influenced by climate variability.

However, the cattle populations in the Borana pastoral production system in Ethiopia have

been strongly influenced by rainfall variability and trends (Angassa & Oba, 2007). It is

therefore important to remember our analysis is restricted to nations.

The concept of carrying capacity is briefly addressed in the 2007 IPPC report, part

III (Intergovernmental Panel on Climate Change, 2007). Carrying capacity is a key to

understand how cattle will be influenced by changes in the climate. Adaptation on national

scales can happen through utilization of new areas, but at some point there will be few new

areas to use, and the vulnerability to climate will most likely increase.
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