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Abstract

In this study, the feasibility of high resolution magic angle spinning (HR MAS) magnetic resonance spectroscopy (MRS) of
small tissue biopsies to distinguish between tumor and non-involved adjacent tissue was investigated. With the current
methods, delineation of the tumor borders during breast cancer surgery is a challenging task for the surgeon, and
a significant number of re-surgeries occur. We analyzed 328 tissue samples from 228 breast cancer patients using HR MAS
MRS. Partial least squares discriminant analysis (PLS-DA) was applied to discriminate between tumor and non-involved
adjacent tissue. Using proper double cross validation, high sensitivity and specificity of 91% and 93%, respectively was
achieved. Analysis of the loading profiles from both principal component analysis (PCA) and PLS-DA showed the choline-
containing metabolites as main biomarkers for tumor content, with phosphocholine being especially high in tumor tissue.
Other indicative metabolites include glycine, taurine and glucose. We conclude that metabolic profiling by HR MAS MRS
may be a potential method for on-line analysis of resection margins during breast cancer surgery to reduce the number of
re-surgeries and risk of local recurrence.
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Introduction

Cancer is a major cause of death, with incidences predicted to

increase with the aging population [1]. Breast cancer is the most

common malignancy in women, and annually nearly 3000 women

receive surgery and additional treatment for breast cancer in

Norway [2]. In order to minimize the risk of local recurrences,

infiltrating tumors should be removed with free resection margins.

Currently, resection margins are evaluated by a pathologist after

surgery, and a significant number of patients is scheduled for re-

surgery [3,4]. In addition to the increased burden for the patient,

this also has a cost and capacity downside for the hospital.

Providing information to distinguish between tumor and non-

involved adjacent tissue during breast cancer surgery can help

surgeons delineate the tumor margins more accurately, thereby

significantly reducing the number of necessary re-surgeries.

The term metabolomics refers to the systematic studies of small-

molecular compounds of metabolism in cells, biofluids, organs or

tissues [5]. Metabolites are downstream products of metabolism,

and thereby a close measure of the phenotype of the biological

system being studied. Magnetic resonance spectroscopy (MRS) has

a long tradition for metabolite analyses, and the use of high

resolution magic angle spinning (HR MAS) enables analyses of

intact tissue samples [6]. This methodology is a promising tool

within cancer diagnostics and treatment evaluation [7], and has

already been applied in many studies of cancer [8–17]. Numerous

metabolites are detected in breast cancer biopsies, and the spectral

quality achieved using HR MAS is comparable to what is obtained

with liquid extracts [18]. The metabolic information contained in

the spectra can be used to establish prognostic and predictive

classifiers using appropriate multivariate statistical analyses, such

as principal component analysis (PCA) and partial least squares

(PLS) regression, which handles the highly co-variant nature of

MRS variables.

Recent technological advances facilitate automated analyses of

biological samples, and installations of MR equipment in close

proximity to the surgical theaters are in a growing phase. A case

report from colon adenocarcinoma supports that the time-

response of HR MAS is sufficiently fast for effective use on-line

during surgery [19]. Metabolic profiling thus has the potential to

become a method for rapid characterization of cancerous biopsies

in the operation theatre. Previous studies have shown the ability of

HR MAS to distinguish between cancerous and normal cervical

[20], colon [15,19] and prostate tissues [16,21]. A study using
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ultrasound-guided breast core-needle biopsies was recently pub-

lished [22]. However, the reported sensitivity for predicting cancer

was low, possibly due to the low number of included samples.

Furthermore, potential over-fitting due to multiple samples from

single subjects was not considered.

The aim of the current study was to evaluate the accuracy of

HR MAS MRS derived classifiers to distinguish breast tumor and

non-involved adjacent tissue for future on-line analyses within the

surgical theater using biopsies from a large biobank. For this

purpose, a robust validation scheme handling multiple samples

from single subjects has been implemented. Furthermore, the

classification impact of biopsies with low tumor content has been

investigated.

Methods

Patients and Tissue Samples
Cancer and non-involved tissue from breast cancer patients

undergoing surgery at St.Olavs Hospital, Trondheim, Norway and

Molde Hospital, Molde, Norway, have been consecutively enrolled

in a local biobank. The tissue samples are immediately frozen in

liquid nitrogen and stored until the MR analysis. The current

study includes 328 tissue samples from 228 patients with surgery

performed between 1999 and 2006. None of the patients received

neoadjuvant treatment prior to surgery. Information on diagnosis,

tumor grade, hormone receptor status, and lymph node in-

volvement was obtained from patient records, including pathology

reports. Axillary lymph node status was examined by sentinel node

procedure or axillary clearance. Histological grade was de-

termined according to guidelines of the Norwegian Breast Cancer

Group (NBCG), based on the Bloom and Richardson classification

system [23]. Estrogen receptor (ER) and progesterone receptor

(PgR) status were determined by immunohistochemistry ($10%

staining cancer cells considered receptor positive). Detailed patient

characteristics are described in Table 1. The study was approved

by the Regional Committee for Medical and Health Research

Ethics, Central Norway, and written informed consent was

obtained from all included patients.

HR MAS MRS
HR MAS MRS analyses of the tissue samples (n = 328) were

performed on a Bruker Avance DRX600 spectrometer (Bruker

BioSpin GmbH, Germany) equipped with a 1H/13C MAS probe

with gradient aligned with the magic angle axis. Frozen tissue

samples were cut to fit a MAS rotor (50 mL, median sample weight

16.2 mg) added phosphate buffered saline (PBS, 40 mL) based on

D2O containing trimethylsilyl 3-propionic acid sodium salt (TSP,

1.0 mM). Samples were spun at 5 kHz at a temperature of 4uC.

Proton spectra were acquired using a spin-echo Carr-Purcell-

Meiboom-Gill (CPMG) sequence (cpmgpr, Bruker) with 2 s water

suppression prior to a 90u excitation pulse. T2 filtering was

obtained using a delay of 1 ms repeated 136 times, resulting in an

effective echo time of 285 ms. A total of 128 scans over a spectral

region of 10 kHz were collected into 32 k points, giving an

acquisition time of 1.64 s. The spectra were Fourier transformed

into 128 K after 0.3 Hz exponential line broadening, and

chemical shifts were calibrated according to TSP (0 ppm). The

tissue specimens were fixed in 10% formalin and embedded in

paraffin after the HR MAS analysis. One 5 mm section was cut

from each paraffin block, stained with haematoxylin, erythrosine,

and saffron (HES), and examined microscopically by an experi-

enced pathologist. The relative areas of normal and neoplastic

epithelial elements were scored visually. An overview of the

biopsies and estimated tumor content is given in Table 2.

Data Preprocessing
The spectral region between 20.08 and 4.7 ppm was selected

for further processing. Values of negative spikes were replaced by

boundary values and the baseline offset was corrected by

subtracting the lowest value. Baseline trends were removed by

asymmetric least squares [24] with the smoothing parameter

l= 1e7, the asymmetry parameter p = 0.0001 and the order of

differences in penalty d = 2. Peak alignment was performed using

icoshift [25] with 39 manually chosen intervals and the highest

correlated spectrum as the reference as described in ref. [26]. The

area upfield from 3.0 ppm was removed after preprocessing.

Signals from ethanol pollutions at 3.691–3.642 ppm were deleted

together with fatty acid residuals at 4.200–4.400 ppm, resulting in

spectra of 2759 variables. The resulting spectra were mean-

normalized. Preprocessing of the data was performed in Matlab

7.6.0.

Multivariate Data Analysis
The variation of the data was explored by PCA [27]. PLS

discriminant analysis (PLS-DA) [28] was used to discriminate

cancer samples from adjacent non-involved tissue. PLS-DA was

executed after variable stability (VAST) scaling [29] of the data in

a supervised manner, with mean-centering instead of autoscaling

prior to multiplication of the scaling weights. The classification

performance was obtained using double cross-validation [30]

consisting of two nested leave-20%-out cross-validation loops. The

inner loop (repeated 20 times) was used to optimize the number of

latent variables (LVs) for PLS-DA, while the outer cross-validation

loop (repeated 80 times) was used to determine the classification

performance (accuracy, sensitivity and specificity). In order to

circumvent overoptimistic results it was assured that data from the

same patient were always present in one set, either the training,

test, or validation set. VAST scaling was applied during each

cross-validation loop on the training set and the resulting scaling

Table 1. Patient characteristics.

Age Median (range) 60.7 (29.6–91.8)

Tumor size Median (range) 2.0 (0–7)

Diagnosis IDC 175

ILC 21

Other* 32

Grade 1 26

2 100

3 80

Unknown 22

ER** status Positive 168

Negative 49

Unknown 11

PgR*** status Positive 132

Negative 80

Unknown 16

Lymph node status Positive 90

Negative 122

Unknown 16

*Ductal carcinoma in situ, mucinous carcinoma, several diagnoses.
**Estrogen receptor status.
***Progesterone receptor status.
doi:10.1371/journal.pone.0061578.t001
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parameters were applied independently to the test or validation

set. The loadings of the PLS-DA models were colored according to

their variable importance in projection (VIP) scores [31]. Further

validation of the significance of the PLS-DA classification results

were performed by permutation testing, and p-values ,0.05 were

considered significant [32].

Alternative ways of PLS-DA model making were investigated by

handling samples with very low tumor content in different ways;

either by defining samples with a low tumor cell content (between

0–4%) as adjacent non-involved tissue, or by defining all samples

with tumor cell content .0% as tumor tissue. Models were also

made by removing samples with low tumor cell content from the

training data and including them only in the test set (Table 3).

As an additional approach, classification was performed using

only the spectral region containing the choline-containing

metabolites (3.252–3.196 ppm) as input for the classification

model. This approach is relevant for the ongoing discussion

concerning choline metabolism in cancer.

PLS-DA was performed using the PLS_Toolbox 6.5.1 for

MATLAB (Eigenvector Research, Inc. Wenatchee, WA).

Results

Representative HR MAS MR spectra from breast biopsies with

high tumor cell content and normal adjacent tissue are given in

Figure 1. As previously reported [14], adipose tissue has an

immense impact on the spectral features due to the methylene and

methyl lipid protons giving rise to large signals centred around 1.3

and 0.9 ppm, respectively. None the less, the low molecular weight

metabolites are still visible in the spectra due to the T2-filtering

applied for MR acquisition.

A PCA score plot of the preprocessed spectra coloured

according to the tumor cell content of the samples is presented

in Figure 2A. A trend related to increasing tumor content is visible

from left to right along the first principal component (PC1,

explaining 40.1% of the variance of the spectra), showing that

differences in tumor content are contributing to the main variation

of the data set. The corresponding loading profile (Figure 2B)

shows that the samples with a low tumor content have higher levels

of glucose, while samples with a high tumor content have higher

levels of ascorbate, lactate, creatine, glycine, taurine and the

choline-containing metabolites (glycerophosphocholine (GPC),

phosphocholine (PCho), and free choline). The second PC,

explaining 16.3% of the variation, is separating samples based

on their level of PCho with a low PC2 score representing high

levels of PCho (not shown). Upon visual inspection, PC3 and

higher do not seem to explain any variance related to tumor

content.

The score plot from PLS-DA (Figure 3A) shows clear clusters of

normal adjacent tissue and cancerous tissue. The distinction is

mainly due to the variation described by LV1, attributed to higher

levels of ascorbate, lactate, creatine, glycine, taurine, and the

choline-containing metabolites in addition to lower levels of

glucose in the cancerous samples, a pattern similar to the one

observed by PCA. The distinction is less clear on LV2, which is

mainly attributed to variation in taurine and PCho levels among

the whole sample cohort. The PLS-DA classification results for

separating tumor and non-involved tissue are given in Table 3.

Various schemes for classifying the tumor and non-involved

adjacent tissue were investigated. Nearly all approaches lead to

accuracy, sensitivity and specificity around 90%. The best

classification result is achieved when defining all samples contain-

ing tumor cells (.0% tumor content) as tumor tissue, and training

the classification model leaving out biopsies with a low tumor

content (0%,tumor content ,5%). All classification results were

highly significant (p,0.001 by permutation testing).

Choline metabolism has a central role in breast cancer research.

Figure 4 shows the PCA score and corresponding loading (PC1)

plot from analysis of the choline spectral region (3.252–

Table 2. Tissue composition of the biopsies for the study cohort.

Number of samples/
patients Median (min-max) distribution of tissue type (%)

Tumor Fat Connective Glandular Necrotic

Normal adjacent tissue (Tumor
content 0% )

65/43 0 20(0–100) 60(0–100) 0(0–40) 0

Tumor content 1–4% 5/5 2(2–4) 5(0–98) 78(0–93) 0(0–15) 0(0–32)

Tumor content 5% 32/29 5 0 (0–47.5) 95 (47.5–95) 0(0–20) 0 (0–5)

Tumor content .5% 226/182 20 (7–95) 0(0–80) 70(0–93) 0(0–20) 0(0–30)

doi:10.1371/journal.pone.0061578.t002

Table 3. PLS-DA classification results for separating tumor and adjacent non-involved tissue.

Correct classification Sensitivity Specificity

Tumor ($5%TC) vs non-involved (,5% TC) 90% 83% 92%

Tumor (.0% TC) vs non-involved (0% TC) 89% 87% 89%

Tumor (.0% TC ) vs non-involved (0% TC)* 92% 91% 93%

Tumor (.0% TC) vs non-involved (0% TC)** 92% 90% 94%

*Samples with 0%,tumor content ,5% not used for model training, but included in testing only (5 samples, see Table 2).
**Samples with 0%,tumor content #5% not used for model training, but included in testing only (5+32 = 37 samples, see Table 2).
TC, tumor content.
doi:10.1371/journal.pone.0061578.t003

Metabolic Differentiation of Breast Tissue

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e61578



Figure 1. HR MAS spectra and illustration of typical features observed in the corresponding HES images (200X). (A) Invasive ductal
carcinoma with an estimated tumor content of 80% in the analysed biopsy. (B) Invasive mucinous carcinoma with an estimated tumor content of 60%
in the analysed biopsy. (C) Normal breast tissue (adjacent to tumor). No tumor cells were detected, and the HES image shows the typical feature of
normal terminal lobular duct units. The poor signal to noise ratio in this spectrum is probably due to the high level of connective tissue (85%).
doi:10.1371/journal.pone.0061578.g001

Figure 2. Variation in tumor cell content as described by PCA. (A) The score plot of the pre-processed spectra, colored according to the
tumor cell content (%) of the corresponding biopsies. (B) The corresponding loading profile of PC1, explaining 40.1% of the total variation of the data.
b-Glc, b-glucose; Asc, ascorbate; Lac, lactate; Cr, creatine; Gly, glycine; Tau, taurine; GPC, glycerophosphocholine; PCho, phosphocholine; Cho, free
choline.
doi:10.1371/journal.pone.0061578.g002
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3.196 ppm), including only the signals from GPC, PCho, and

choline. The samples are labelled according to the tumor cell

content (%). In general, a high score for PC1 is associated with

high tumor content, and as shown by the loading profile, this is

attributed to relatively higher values of all the choline-containing

metabolites, especially PCho. 71.3% of the variation of the spectra

is explained in the first PC. PLS-DA modelling shows that the

choline region contains enough information to significantly

discriminate tumor and non-involved adjacent tissue (p,0.001

by permutation testing). However, the classification result report-

ing accuracy, sensitivity and specificity of 88%, 87% and 88%,

respectively, are lower than when including the complete low

molecular weight metabolic profile.

Discussion

In this study, we have proven the possibility to differentiate

breast tumor and non-involved tissue with high sensitivity and

specificity based on metabolic profiling by HR MAS MRS. Using

different approaches for classification, we showed accurate

discrimination of tumor and non-involved tissue also for samples

with low tumor cell content. This shows the possibility of applying

MR metabolomics for real-time determination of resection

margins during breast cancer surgery.

MR metabolomics has the advantage of being a rapid and low-

cost analysis method that can be performed while the patient is still

on the surgery table. The total process of preparing and analysing

the biopsy takes approximately 15 minutes, while data analysis of

the resulting spectra using previously developed and validated

classification models can be performed in under a minute. A free

resection margin determined during surgery can then be further

validated by histology after surgery. Due to the non-destructive

nature of HR MAS MRS, this can even be done on the same

tissue sample after HR MAS.

Tumor samples were shown to contain higher levels of

ascorbate, lactate, creatine, glycine, taurine, and the choline-

Figure 3. PLS- DA classification of tumor and non-involved tissue. (A) The score plot, separating tumor and non-involved tissue, and (B) the
corresponding loading profiles of LV1 and LV2. LV1 and LV2 explain 35.8% and 13.2% of the x-variation and 53.3% and 4.9% of the y-variation,
respectively. b-Glc, b-glucose; Asc, ascorbate; Lac, lactate; Cr, creatine; Gly, glycine; Tau, taurine; GPC, glycerophosphocholine; PCho, phosphocholine;
Cho, free choline.
doi:10.1371/journal.pone.0061578.g003

Figure 4. Variation in tumor cell content as described by PCA of the choline region. (A) The score plot of the choline-containing
metabolite region of the spectra, colored according to the tumor cell content (%) of the corresponding biopsies. (B) The corresponding loading
profile of PC1 explaining 71.3% of the total variation of the data.
doi:10.1371/journal.pone.0061578.g004
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containing metabolites, in addition to lower levels of glucose

compared to non-involved tissue, and this metabolic pattern was

associated with increasing amounts of tumor cells present in the

sample. An increased consumption of glucose and high accumu-

lated levels of lactate in tumor samples are consistent with the

Warburg effect [33,34]. Further, we showed that tumor and non-

involved tissue could be accurately discriminated using only the

choline-region as input for the classifier. The choline-containing

metabolites are of high interest in cancer research, and abnormal

choline metabolism is frequently observed [35]. Samples with high

tumor cell content had higher levels of all the choline-containing

metabolites compared to samples with low tumor cell content, with

PCho being especially elevated in tumors. This is reflecting the

increased proliferation rate in tumors, as choline is an important

constituent of cell membranes through the formation of phospha-

tidylcholine, and PCho and GPC are precursors and breakdown

products of this activity [36]. In some cancer cells, a relatively

large amount of glycolytic carbon is diverted into serine and

glycine metabolism through phosphoglycerate dehydro-genase

(PHGDH), which could explain the increased glycine concentra-

tion in the samples containing tumor cells [37]. The metabolic

reprogramming in cancer is comprehensive, and it is reasonable

that other metabolites such as creatine and taurine also are

affected. This may explain the observed multi-collinearity of the

metabolite changes.

This study was performed using a large patient cohort, with

a robust validation scheme correcting for the use of several

samples from the same patient. This step is important as several

biopsies from each patient will be analysed for determination of

surgical margins in a clinical setting. A motivation for investigating

the effect of various options of treating tissue samples with a low

tumor content was that these samples frequently in literature are

removed from the data set [38,39]. This is, however, not an

optimal approach if one wants to detect non-involved adjacent

tissue; even with the presence of very few tumor cells, a sample will

be considered tumor tissue in a clinical setting. The optimal

classification procedure was achieved when removing the samples

with low tumor cell content from model training, and including

these samples as tumor samples in the test data. A sensitivity and

specificity of 91% and 93%, respectively, were achieved. However,

only five spectra had tumor cell content between 1–4%, while 37

spectra had tumor cell content between 1–5%. Inclusion of more

samples with low tumor cell content is desirable in order to truly

test the prediction performance on such samples, as it might be

expected that tumor tissue close to the margins may contain a low

number of tumor cells.

Breast tissue biopsies contain a varying amount of lipids, and the

lipid signals present at 1.3 and 0.9 ppm were in many cases the

most intense signals in the spectra despite using a lipid-suppressing

CPMG sequence for MRS acquisition. In order to circumvent

dominance of the lipid signals during data analysis, the regions

containing these signals were removed from the spectra and the

data were normalized to equal total intensity prior to analysis.

Thus, the differing amount of breast lipids present in the samples is

partly corrected for, and emphasis is made to the low molecular

weight metabolites.

We have previously shown that the MR metabolic profile of

a tissue sample contains prognostic information beyond that of

traditional clinical parameters, with high levels of lactate and

glycine being indicative of lower 5-year survival rates [39,40].

Furthermore, the MR metabolic profile contains information

related to breast cancer subtypes [41,42]. In addition, MR

metabolic profiles have been correlated to hormone receptor status

and lymphatic spread [8,22,38]. This renders the possibility to use

the spectra acquired during surgery for prognostic assessment of

patients for further treatment planning after surgical removal of

the tumor.

For further assessment of using MR metabolomics as a clinical

tool for determining surgical margins, differentiation of cancer and

non-involved tissue should be examined by real-time analysis of

surgical biopsies from tumor border region, and the results should

be compared to histology. A more quantitative histopathology

assessment of the tumor content should be performed, by

investigating multiple sections throughout the biopsy after HR

MAS analysis. The effect of using either frozen or completely fresh

tissue should be investigated, as a study comparing the metabolic

profiles of fresh tissue to over-night freezing have shown moderate

changes in the metabolite concentrations due to freezing [43]. It is

possible that even better separation of cancer and non-involved

tissue could be achieved by using completely fresh, non-frozen

tissue samples.

Conclusion
Based on a large patient cohort (228 patients) we have shown

that metabolic profiling by HR MAS MRS can be used for

accurate classification of tumor and non-involved adjacent breast

tissue. The analysis has a time frame enabling on-line analysis of

resection margins during breast cancer surgery. The results were

obtained using a proper double cross validation procedure

assuring that the data originating from the same patient always

were present in one set, either the training, test, or validation set.

Moreover, using different visualization techniques we were able to

identify the metabolites related to the differentiation of tumor and

non-involved adjacent tissue.
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