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Abstract

Several works have reported on the reconstruction of 2D/3D limb kinematics from low-frequency EEG signals using linear
regression models based on positive correlation values between the recorded and the reconstructed trajectories. This paper
describes the mathematical properties of the linear model and the correlation evaluation metric that may lead to a
misinterpretation of the results of this type of decoders. Firstly, the use of a linear regression model to adjust the two
temporal signals (EEG and velocity profiles) implies that the relevant component of the signal used for decoding (EEG) has
to be in the same frequency range as the signal to be decoded (velocity profiles). Secondly, the use of a correlation to
evaluate the fitting of two trajectories could lead to overly-optimistic results as this metric is invariant to scale. Also, the
correlation has a non-linear nature that leads to higher values for sinus/cosinus-like signals at low frequencies. Analysis of
these properties on the reconstruction results was carried out through an experiment performed in line with previous
studies, where healthy participants executed predefined reaching movements of the hand in 3D space. While the
correlations of limb velocity profiles reconstructed from low-frequency EEG were comparable to studies in this domain, a
systematic statistical analysis revealed that these results were not above the chance level. The empirical chance level was
estimated using random assignments of recorded velocity profiles and EEG signals, as well as combinations of randomly
generated synthetic EEG with recorded velocity profiles and recorded EEG with randomly generated synthetic velocity
profiles. The analysis shows that the positive correlation results in this experiment cannot be used as an indicator of
successful trajectory reconstruction based on a neural correlate. Several directions are herein discussed to address the
misinterpretation of results as well as the implications on previous invasive and non-invasive works.
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Introduction

Brain-Machine Interfaces (BMI) have emerged as a new

alternative to recover functionality in impaired limbs, where the

neural signals related to movement are mapped onto the

multidimensional control of a physical effector. Hitherto, 2-D

movement control achieved with EEG in humans is very similar to

that achieved with cortical neurons [1,2], while 3-D movement

control has been achieved with EEG in humans [3,4], and with

cortical neurons in monkeys [5,8]. Most recent development in

humans includes a subject with tetraplegia [9]. Previous studies of

movement control, whether using spikes or EEG, involve task-

specific adaptations of the brain to evoke changes in the brain

oscillations used in the BCI decoding process and from which the

user receives feedback. Thus, these results do not necessarily

indicate whether the signals recorded during imagined or normal

muscle-based control contain information about the limb

kinematics. People may learn to use EEG features to control

multi-dimensional movements even though normal EEG does not

contain detailed limb kinematic information (i.e. full reconstruc-

tion of 2D or 3D trajectories). Therefore, it is still not clear

whether this type of information is present in the EEG. Indeed,

EEG signals were believed to lack sufficient signal-to-noise ratio

and bandwidth to encode detailed movement kinematics [10].

This assumption has been challenged in recent years generating a

vivid discussion in the field [11,12]. Using low frequency EEG,

reconstruction of hand movement profiles have been reported

(e.g., position and velocity profiles in 2D [13,14] and 3D work-

spaces [15–19]). These results indicate that detailed limb

kinematic information could be present in the low frequency

components of EEG, and could be decoded using linear regression

models. However, there is dubiety regarding the effectiveness and

performance of the applied methods [20,21].

This paper analyzes the mathematical implications of the use of

linear regression methods in the reconstruction of limb trajectories
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using neural temporal signals as well as of the use of the correlation

as the main metric to evaluate the decoding. The two key

mathematical results are related to: (i) the use of a linear

regression model to adjust two temporal signals (neural signal and

limb kinematics) imposes that both signals must span the same

frequency range, independent of the nature and information

content of the signals; and (ii) the use of correlation to evaluate the

fitting of two trajectories could lead to overly-optimistic results, as

this metric is invariant to scale and has a non-linear nature that

leads to higher values for sinus/cosinus-like signals at low

frequencies. These two properties may result in an misinterpre-

tation of the results of the reconstruction, likely to be present when

the signal to be predicted only contains low frequencies. This is the

case in the reconstruction of limb kinematics, as the typical

experimental settings result in velocity profiles similar to low

frequency sinusoidal signals f^1{2Hz. Indeed, the first math-

ematical result justifies why the only frequency range of the

temporal signal (e.g. EEG) suitable for the reconstruction is low

frequency. The second property states that a given positive

correlation value is not an absolute indicator of reconstruction

accuracy. Thus, the crucial question is whether there is a neural

correlate in this low frequency EEG or the reconstruction results

are due to a misinterpretation of the analysis.

To address this issue, seven subjects participated in an

experiment, performing self-selected and self-initiated 3D hand

reaching movements towards predefined targets, while EEG and

hand position (and velocity by numerical integration) were

simultaneously recorded. The chance level of the reconstruction

was empirically obtained by shuffling the recorded data (i.e.,

randomly assigning recorded EEG signals to velocity profiles) and

by using randomly generated synthetic data. Although the

accuracy of the reconstruction results were in line with studies

that reported the multidimensional limb kinematics reconstruction

from low frequency EEG, a systematic analysis revealed that the

reconstruction results were at the chance level. The present study

suggests caution when selecting linear models and corresponding

evaluation metrics to address the reconstruction of limb trajecto-

ries from low frequency temporal neural signals. Results could be

due to an inherent misinterpretation of the results of the analysis

and not due to a unique and significant relationship between limb

velocity profiles and low frequency EEG activity. For future EEG

decodings, the authors recognize the need to use a validation

procedure similar to the methodology proposed in this paper to

prove the real effectiveness and congruency between EEG activity

and limb trajectory reconstruction.

Mathematical Analysis of the Methods

Linear regression models for time series
Let y(t) be the variable of interest at time t and let

x(t)~(x1(t), � � � ,xd (t))T[Rd be a vector of potential predictor

variables at time t. A linear regression models the response y(t) as

a linear function of x(t):

y(t)~x(t)’bzEt ð1Þ

where b are the linear parameters and E(t) is the error term. If

needed, a bias term can be incorporated into the predictor x(t).
This general model varies depending on the input variables x(t).
The simplest model involves only data at time t, denoted a static

regression. In the context of neural signals, it is common to include

lagged variables for the predictor variables, i.e., x(t) contains

information from previous points in time, which is denoted as

auto-regressive models (AR). Despite the fact that AR models

present dependencies among variables, ordinary linear regression

models still provide a reasonable solution under the assumptions of

stationarity and weak dependence. The use of a linear regression

model with temporal signals presents some properties in terms of

the frequencies of the input and output variables that affect the

decodings:

Property 1. Let SC be the spectral content of a temporal

signal, then:

SC of y(t)[½fL,fH �uSC of x(t)[½fL,fH � ð2Þ

(Z) If the predictor variables xi(t) present the spectral content

(SC) within a frequency range ½fL,fH �, then all the spectral content

of the predicted signal y(t) is within this frequency range ½fL,fH �.
This can be easily shown by the Fourier transforms x(f ) and y(f )
of the time series defined by x(t) and y(t). Using the linear

properties of the Fourier transform [22], the model can be

expressed in the frequency domain as y(f )~
P

i bixi(f ) where

xi(f ) is the Fourier transform of the predictor variable xi(t). Let

½f i
L,f i

H � be the frequency band for xi(f ) and let fL~ miniff i
Lg and

fH~ maxiff i
Hg be the minimum and maximum frequencies

among all predictors. Then, any linear combination of the signals

x(t) will result in a y(t) signal confined to the ½fL,fH � frequency

band (as the model coefficients bi influence the amplitude and

phase of the predicted y(t) but do not affect the oscillation

frequency). ([) When using a linear regression model for the

estimation of a time series y(t) with the spectral content confined

to a band ½fL,fH �, x(t) must have spectral content in ½fL,fH � (in

fact, this content is the only one useful for the adjustment). This is

straightforward from the previous property. Note that if x(t) does

not have spectral content in ½fL,fH �, then it is not possible to

estimate y(t) with this model.

The consequence of this property in the decoding of limb

kinematics (denoted by y(t)) from neural temporal signals such as

the EEG (denoted by x(t)) follows:

Consequence 1. On one hand ([), given a limb velocity

profile y(t) with frequencies confined to a band ½fL,fH �, only

neural signals x(t) with spectral content in ½fL,fH � will contribute

to predict y(t). Temporal signals with frequency content out of this

band may have an adverse effect on the fitting as they are noise for

the regression process. In addition, a change in the frequency

range of the limb velocity y(t) to ½f ’L,f ’H � will also change the

useful frequency range of neural signal x(t) for the fitting to that

band, regardless of whether there is a neural correlate within this

band. On the other hand (Z), filtering the neural signal x(t) at

½fL,fH � implies that only velocity profiles y(t) with spectral content

at ½fL,fH � can be reconstructed.

In practical terms, this consequence implies that, if both signals

are related by a linear regression, there will not be a predeter-

mined frequency range in the neural signals x(t) to decode the

limb kinematics y(t) (i.e., if the neural signal spectra used in the

reconstruction are confined to a specific band, only velocity

profiles with frequencies within this band could be reconstructed,

and if the limb frequency of motion changes then the neural signal

spectra used in the reconstruction must also change).

Evaluation metrics
The metric that captures the similarity between two signals in

decoding studies is the linear correlation corr between the

measured signal y(t) and the corresponding predicted one ŷy(t).
The corr metric has the following two properties:

Property 2. The corr of two signals y(t) and ŷy(t) is invariant

to the scale of the data:

Decoding Kinematics from Low Frequency Signals
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corr(y(t),ŷy(t))~corr(azby(t),czdŷy(t)) ð3Þ

with a, b, c, and d constants and b � dw0. For two signals y(t) and

ŷy(t), the computation of their correlation is not affected by

transforming y(t) to azby(t) and/or (t) to ŷyczdŷy(t).
Property 3. Let be y1(t)~ sin w1t and y2(t)~ sin w2t two

sinusoid signals with w1vw2, then:

Vt[(0,T2=2),autocorr(y1(t))wautocorr(y2(t)), ð4Þ

where T2 is the period of y2(t). The autocorrelation function w(t)
of a sinusoid with unitary amplitude and frequency w is

w(t)~
1

2
cos (wt). Then, as cos (w1t)w cos (w2t) Vt[(0,T2=2) it

follows that autocorr(y1(t))wautocorr(y2(t)). The same result is

valid for cosines signals.

The consequences of both properties in the evaluation of the

decoding are:

Consequence 2. As the correlation is invariant to scale, a

high correlation between the velocity measurement y(t) and the

velocity estimation ŷy(t) does not necessarily indicate an accurate

estimation of the limb trajectory (i.e., low position error) as the

position is the integral of the velocity in time.

Consequence 3. The correlation of sinusoid/cosinus signals

with equal amplitudes and small time-shifts is higher at low

frequencies. As the time frequency profile of limb velocity in a

center-out task is similar to the shape of a sinusoid (start with zero

velocity, a progressive acceleration and finally deceleration until

zero at the end point), then the correlation between the real y(t)
and the estimated velocity profiles ŷy(t) will be less sensitive to

temporal shifts at lower frequencies.

In practical terms, both consequences imply that positive values

of correlation between real y tð Þ and estimated velocity profiles ŷy(t)
do not necessarily imply a correct trajectory reconstruction. This

effect is more likely to occur when the signals under evaluation are

sinusoid-like at low frequencies, which is the case of natural limb

motion in center-out tasks.

Example of the model properties
This subsection describes, through an example, how these

properties may lead to a misinterpretation of the decoding results.

The example estimates three datasets of predictand sinusoids at

different frequencies, where the first two datasets present similar

frequencies while the third one is at a frequency one order of

magnitude higher (1, 1.5 and 10 Hz respectively). For the sake of

simplicity, each predictand was estimated from the three datasets,

that is, from itself and from the other two predictors which are at

different frequencies (see Fig. 1 for further details). For each

combination of predictor and predictand, the example provides

the correlation between the original predictand and the linear

regression reconstruction (c1 in Figure 1), and between a scaled (c2)

and a temporally shifted (c3) version of the reconstructed signal.

The results are displayed in Figure 1. The reconstructed signals

are equal to the real signals when both datasets are the same, while

they differ in magnitude and frequency when the datasets are not

equal (i.e. when they do not agree in frequency, as explained by

property 1). It is also relevant to mention that the frequency of

reconstructed datasets is equal to the predictor dataset irrespective

of the frequency of the predicted dataset, i.e., only frequencies that

agree with the predictors can be obtained with a linear model.

Since the example is noise free, the reconstruction for the correct

frequency is perfect and c1~1. As the frequency between

predictor and predictand increases, the correlation decreases

(c1~0:229 between the first and second datasets with a frequency

difference of 0:5Hz, and c1 drops to zero between the third and

the first two datasets when frequency differs in one order of

magnitude). In all cases the results for c2 are the same than for c1.

The same correlation results are obtained irrespectively of the

scale of the reconstructed variables, explained by property 2.

When the datasets agree, c3^0:989,0:959,0:078 for the first,

second and third dataset, respectively. Time-shifts in the

reconstruction reduce the correlation with a larger effect on the

dataset with higher frequencies, explained by property 3.

Note that the effect of the combination between the properties

of the linear regression and the correlation metric may lead to a

misinterpretation of the reconstruction: for the first and second

datasets, the fact that they are sinusoids-like signals with low and

similar frequencies leads to a correlation of c1^0:229 (which

could be interpreted as a positive decoding result). However, the

reconstruction is poor and far from the original signal (see ŷy12 and

ŷy21). At low frequencies, the correlation values can even increase

when shifting the signals, as shown by the value of c3~0:321 for

y2 and ŷy12.

Methods

The experimental design follows the experiment and analysis

described in [15,17,19] and is extended to understand whether

there is a neural correlate behind the decoding of the limb velocity

profile using EEG signals and a linear regression model.

Data recording and reaching apparatus
EEG system. EEG activity was recorded by a gTec system (2

synchronized gUSBamp amplifiers), with 28 electrodes according

to the 10/10 international system, with the ground on FPz and

reference placed on the left earlobe. Vertical and horizontal EOG

were also recorded. EEG and EOG signals were acquired with a

sampling frequency of 256Hz, power-line notch-filtered and

lowpass-filtered at 60 Hz.

3D Motion capture system. The 3D limb position was

recorded by a video-based VICON motion capture system, which

recorded 3D positions of 22 visual reflective markers attached to

the body (head, torso, shoulder, arms, wrists, hands, and

fingertips). The sampling frequency of the device was 100 Hz.

Reaching apparatus. The apparatus presented 9 positions

in a 3D workspace (size 20–30–15 cm), with one position used as

homing location for the finger and the others as locations to reach

in the workspace (minimum and maximum distances from the

homing location to any location were 10 and 30 cm, respectively).

These locations were equipped with reflective markers for the

establishment of the 3D location by the VICON, and with electric

switches for the synchronization between the onset and the

termination of the movement by the EEG and VICON

simultaneously, by means of a common electric signal (Figure 2A).

Experimental design
Seven right-handed male healthy volunteers participated in the

experiments (age range: 25{32 years) after the protocol was

approved by the Institutional Review Board of the University of

Zaragoza. All participants were asked to read and sign an

informed consent form to participate in the study. The participants

were seated in a comfortable chair in front of the reaching

apparatus (Figure 2A). Participants were instructed to move the

right arm-hand-finger from the homing location to a self-chosen

location (center-out paradigm) and then return to the homing

position. This process was self-paced, lasting on average 7.5 s

Decoding Kinematics from Low Frequency Signals
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(minimum 2.8 s and maximum 9.7 s). During the reaching task,

subjects were asked to maintain a natural and constant posture

and to minimize blinking while maintaining gaze fixed at a

reference point in the center of the apparatus. For the remaining

time they were allowed to blink and rest. During the experiment

the participants performed reaching operations towards fixed

target locations on the apparatus. The experiment was executed in

five time blocks of 5 minutes each, where the subjects executed in

mean 200 reaching operations towards eight locations (minimum

128 and maximum 262). Figure 2B illustrates the trajectories

Figure 1. Illustration of the model and metric properties. The left panel shows three datasets of temporal signals xi(t) representing predictor
variables at 1Hz, 1:5Hz and 10Hz. The upper panel shows the predictands variables yi(t), which are identical to the predictors (i.e. they correspond to
a linear model yi(t)~b:xi(t) with b~1). Each dataset contains 100 signals and 90% of them was used to train a linear regression model while the
remaining 10% was used to evaluate performance. The linear regression model was used predict each dataset from itself and the others. For each
case, the reconstructed signals and correlation results are shown in the middle panel. The effect of the artifact is revealed in the usage of the
regression model and correlation to validate datasets 1 and 2, where the correlation values are approximately 0.23, despite having different
frequencies.
doi:10.1371/journal.pone.0061976.g001

Figure 2. Experimental design. (A) Snapshot of the experimental setup showing a participant with the EEG electrodes (electrode locations are
shown in the upper left of the picture), the visual reflective markers attached to the body, and the reaching apparatus. The participant has given
written informed consent to publication of their photograph. (B) Examples of recorded trajectories for the hand of one subject during the reaching
operations towards the target locations.
doi:10.1371/journal.pone.0061976.g002
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recorded for subject 1. All trials were epoched from 500 ms prior

to the movement onset until the end of the reaching movement.

EEG and Movement Data Pre-Processing
EEG data were re-sampled to 100 Hz and re-referenced by a

CAR montage. The two most frontal sensors were excluded from

the analysis to mitigate the influence of any ocular artifact. A total

of 26 sensors were then used. All EEG traces were visually

inspected and non-satisfactory or noisy trials were discarded. The

movement-related power spectra changes at different frequency

bands of the artifact-free EEG activity were examined with time-

frequency analysis. The EEG was divided into epochs of 500 ms of

length and windowed with a Hamming function (frequency

resolution of 2 Hz) with successive steps of 25 ms before applying

the Fourier transform. The relative power spectra changes

between rest and movement were computed as the ratio between

the power spectra of a baseline at each frequency bin (mean power

spectra in the time interval from 21s to 20.6s to the movement

onset) and the spectra of the pre-movement and movement for

each trial (time interval from 20.4s to 1s relative to movement

onset).

Motion data were visually inspected and non-satisfactory or

noisy trials were discarded. The last 100 ms of all trajectories were

also eliminated as in some trials participants slightly moved their

finger to push the switch, leading to high frequency position

artifacts. Data were smoothed using a moving average filter

(window size of eight samples) and re-referenced to the homing

point. The velocity profiles were then calculated by numerical

integration of each limb position profile and standardized by

subtracting the mean and dividing by the standard deviation.

Linear Decoding Model
The linear decoding model computes the relationship between

the movement kinematics and the EEG data. EEG data were

filtered by a zero-phase shift, sixth-order, low-pass Butterworth

filter with a cutoff frequency of 1Hz, and then the standardized

temporal difference was computed for each electrode, following

[15,17,19,23]:

xn(t)~
sn(t){msn

ssn

ð5Þ

where sn(t)~vn(t){vn(t{1) is the difference in time of the EEG

sensor n, and msn
and ssn are the mean and standard deviation of

the temporal difference. Although many variants of the linear

regression model of Equation (1) can be developed, a common

approach is to use an autoregressive model to decode each

dimension separately [15,17,19,23–26]:

yx(t)~axz
XN

n~1

XL

k~1

bx
n,kxn,k(t) ð6Þ

yy(t)~ayz
XN

n~1

XL

k~1

b
y
n,kxn,k(t) ð7Þ

yz(t)~azz
XN

n~1

XL

k~1

bz
n,kxn,k(t) ð8Þ

where yx(t),yy(t),yz(t) are the hand velocities in the X, Y and Z

dimensions, xn,k(t) is the standardized difference in time of the

EEG at electrode n and time lag k (N~26 is the number of

electrodes and L~11 is the number of time lags corresponding to

100ms of EEG activity prior to time t). The model parameters

ax,ay,az and bx
n,k,b

y
n,k,bz

n,k were estimated using Multiple Linear

Regression (MLR).

Metrics and Evaluation Process
The metrics used to assess the goodness of the reconstruction

were the Pearson correlation coefficient (corr) [13,15,23,24] and

the normalized root mean square error (nrmse) [27–29] between

the measured and reconstructed velocities, which are in line with

previous non-invasive and invasive studies. The distributions of

these metrics were characterized by the median and the 25th and

75th percentiles. The outliers (i.e., values that do not belong to the

distribution) were identified as values greater than q3zr(q3{q1)

or smaller than q1{r(q3{q1), where q1 and q3 are the 25th and

75th percentiles, respectively. If data are normally distributed,

r~1:5 corresponds to approximately s~+2:7 and 99:3%
coverage.

The relative contribution of each electrode in each time lag was

computed in terms of the magnitude of the regression coefficients

bx
n,k,b

y
n,k,bz

n,k:

c(n,k)~
1

g
|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bx

n,k)2z(b
y
n,k)2z(bz

n,k)2
q

ð9Þ

where c(n,k) is the relative contribution of electrode n at time lag

k, g~
PN

n~1

PL
k~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bx

n,k)2z(b
y
n,k)2z(bz

n,k)2
q

is a normalization

factor, N is the number of sensors, and L is the number of time

lags. In order to examine the contribution of different scalp regions

in the decoding model, the relative contribution of the electrodes

was computed as:

C(n)~
1

g
|
XL

k~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bx

n,k)2z(b
y
n,k)2z(bz

n,k)2
q

ð10Þ

The contribution of the different time lags in the decoding

model was computed as:

T(k)~
1

g
|
XN

n~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bx

n,k)2z(b
y
n,k)2z(bz

n,k)2
q

ð11Þ

The performance of the decoding model was evaluated by a 10-

fold cross-validation procedure (to avoid over-fitting due to the

relatively small number of trials compared to the dimension of the

problem). In this procedure, the full set of trials (a trial is the EEG

and velocity profile data of a complete reaching movement) were

sampled without replacement to create training and test sets of

each fold. To maintain independency of the test and training, all

the pre-processing steps that involve multiple trials were computed

independently for each fold using only the corresponding training

examples. The values of the metrics were computed for each test

trial for each fold, and the validation procedure was considered

complete when all the ten combinations of training and test data

were exhausted.

Decoding Kinematics from Low Frequency Signals
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Source Localization and Source Contribution
The standardized low-resolution brain electromagnetic tomog-

raphy source localization method (sLORETA) [30] was employed

to localize the brain regions that generate the EEG signals. The

contribution of the neural sources in encoding hand kinematics

was computed by the correlation values (corr) between the time

series of the squared activity for each EEG sensor with the time

series of the estimated neural sources [15]. The set of corr values

of each source was multiplied by the regression coefficients of their

associated sensors (at the time lag with the highest percentage of

contribution, see Equation 9) and the maximum was selected as

the contribution of each source in the decoding model. These

values were projected onto axial MRI slices of the brain to obtain

the brain structure and Brodmann area associated with the sources

with the maximum contribution.

Analysis of Low Frequency EEG Decoding
This section analyzes the computation of the decoding model

when low EEG frequencies were used.

Evaluation of whether the decoding model performance is

above chance level. Five different combinations of EEG

measurements and velocity profiles where evaluated to study the

performance of the linear decoding model and to test whether the

performance is above chance level.

The first combination is the one of interest (Recorded data)

since it uses the low frequency recorded EEG and the recorded

velocity profiles. The remaining four combinations were used to

test the chance level, and there is no association between the EEG

and the velocity profiles. In the second combination, the same

linear model was applied to a shuffled version of the EEG data

(Shuffled data), i.e. velocity profiles were assigned randomly to the

EEG of other trials. The shuffling process and computation of the

decoding was repeated N&20 times (per participant) to avoid

chance effects due to the stochastic nature of the process (with N

= 10% of the number of training trials). The rationale is to

disassociate velocity and EEG information when building the

decoding model. Since there may still be some information despite

the random association of velocity profiles and EEG measure-

ments, the third combination uses artificially generated EEG

measurements and artificially generated velocity profiles (Random

EEG&VEL), and the fourth and fifth combinations use recorded

(random) EEG measurements with artificial (recorded) velocity

profiles (Random EEG and Random VEL). The rationale in these

combinations is to evaluate the decoding by using either random

EEG and/or random velocity data with no association informa-

tion between them. The randomly generated EEG measurements

and velocity profiles were created using the first- and second-order

statistical properties of the original low frequency EEG and

velocity profiles. EEG voltage for sensor i and trial j was computed

by vi,j~A: cos (2pftzw), where A*N (mi
A,si

A), f*N (mi
f ,si

f ) and

w*U(0,2p). The mean and the standard deviation of the

frequency (mf ,sf ) and amplitude (mA,sA) were computed across

all trials for each electrode. The velocity profile of trial j for each

coordinate was computed by Mj~A: sin (2p
f

2
tzw), where

A*N (mA,sA), f*N (mf ,sf ) and w~0. The mean and standard

deviation of the frequency (mf ,sf ) and amplitude (mA,sA) were

computed across all trials for each coordinate, and the phase was

zero as at t&0 all recorded velocity profiles start to increase from a

zero velocity. In this case, there is no information relating the

kinematics to the EEG.

Progressive Elimination of the Number of

Electrodes. Seven decoding models were built in an iterative

way, eliminating the electrodes with the greatest contribution to

the linear regression model (Equation 10). The number of sensors

used in each model was 26, 25, 23, 21, 17, 14 and 11, respectively.

The rationale is to eliminate the most prominent neural activity of

the decoding before building the next model.

Experimental Results

Decoding of kinematics from EEG data
Power spectra of the EEG and source localization. The

relative power spectra changes between rest and movement,

averaged across all participants, revealed power increase in the

slow wave range (v4)Hz and de-synchronization in the a (8-12)Hz

and b (14-30)Hz frequency bands (Figure 3). Firstly, the power

increase is more prominent at sensors located on the contralateral

motor and pre-motor scalp and parietal areas (C3, CP3, P3). This

power increase started at &300ms prior to the movement onset in

the contralateral parietal areas and then switched to the

contralateral motor areas (Figure 4A) at &0ms. Secondly, de-

synchronization is more prominent in the a and b bands of sensors

placed on the contralateral (C3, CP3, CP1 and P3) and on the

ipsilateral (C4, CP4 and P4) motor and parietal areas. This de-

synchronization started &400ms prior to the movement onset and

remained until the end of the movement, being less prominent

during the pre-movement than during the movement execution

(Figures 4B and C). These results are consistent with those of [31]

and [32]. The source localization analysis (Figure 4B) revealed the

activation of the motor-related (precentral and postcentral gyrus in

Brodmann areas 6 and 4) and neighboring brain regions (primary

somatosensory cortex in Brodmann areas 1 and 2). Prior to the

movement onset (tv0ms) the cortical activity is distributed in the

motor cortex and parietal areas of both hemispheres. During the

movement execution (tw0ms) the cortical activity is estimated

with more prominence in the motor areas of the left hemisphere

(contralateral to the moved arm).

These results show that different frequency bands are modu-

lated by the motor task performed by the participants, which

suggests that evaluation of the decoding model be carried out with

EEG activity filtered in those bands.

Decoding performance using EEG from different

frequency bands. The decoding model was evaluated with

EEG activity filtered in the following frequency bands: very low d
(0-1)Hz, a (8–12) Hz, m (12–15) Hz, b (14–28) Hz and the band

(0–40) Hz. Figures 5A and B display the distributions of corr and

nrmse for all trials and participants. With EEG in the a, b and m
bands, the distributions of corr present a zero-median distribution

(pw0:01, Wilcoxon signed-rank test) in all the dimensions of

velocity (X,Y and Z respectively). With EEG in the very low and

(0-40)Hz bands, the distributions are positive and significantly

different from zero (pv0.01, Wilcoxon signed-rank test). The

medians of these distributions obtained in the very low band (0.42,

0.21, 0.52) are one order of magnitude higher than in the (0–

40) Hz band (0.05, 0.03, 0.09). The nrmse distribution over all

participants is not significantly different among bands (pw0.05,

Kruskal-Wallis test).

Regarding the decoding using the very low frequency band, the

averages of the corr and nrmse for all participants are displayed in

figures 5C and D. The corr presents positive mean values in all

dimensions of the hand velocity, with average (0:29,0:15,0:37).
The average of nrmse is (21:7,28:4,25:5), which indicates that the

decoding error is on average no greater than 25% of the trajectory

length.

The significant and positive correlation of the very low

frequency band, together with the non-significance different from
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zero and very low correlation in the other bands, are consistent

with previous studies [15–17]. However, as these results may be

misinterpreted (see the mathematical properties described in

Section 2), the investigation of whether there is a neural correlate

within this band required further analysis.

Analysis of low frequency decoding results
Decoding with shuffled data and/or random EEG and

velocity sets. In the decoding models that used recorded and

shuffled data, the source contribution analysis showed that the

precentral gyrus in the frontal lobe (Brodmann Area 6) of the left

hemisphere presented the greatest activation (Figure 6A and B),

indicating that the contralateral motor region has the major

contribution in limb motion. For the decoding model that used

synthetic EEG&VEL, synthetic EEG and synthetic VEL, the

medial frontal gyrus in the frontal lobe (Brodmann Area 9), the

parahippocampal gyrus in the limbic Lobe (Brodmann Area 27)

and the cuneus in the occipital lobe (Brodmann Area 19) presented

the greatest activation (Figure 6C, D and E), indicating that the

physiologic meaning of these models is not related to the primary

motor areas. Note that while the contralateral motor region of the

brain was the major contributor in the decoding models built with

recorded and shuffled data, this was not the case for the decoding

models built with artificial data.

The distributions of corr and nrmse obtained with the real

model (Recorded data) and with the chance level models (Shuffled

data, Random EEG&VEL, Random EEG and Random VEL) are

displayed in Figure 6F and G, for all participants. For each

Figure 3. Scalp topography of power spectra changes of the EEG (relative to baseline from 21 to 20.6 s) averaged across all trials
and participants. Time in abscissa from 20.8 s to 0.8 s. Frequency in ordinate from 0 to 50 Hz at a resolution of 2 Hz. Movement onset occurs at
t~0 s (solid black line in all graphs). Sensors above the contralateral and ipsilateral motor areas revealed a power increase in the slow wave range
(v4)Hz and a de-synchronization in the a (8-12)Hz and b (14-30)Hz frequency bands. Graph at the right lower corner represents the average across-
sensors relative power spectra changes of the recorded EEG.
doi:10.1371/journal.pone.0061976.g003

Decoding Kinematics from Low Frequency Signals

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e61976



dimension of the velocity profiles, no significant differences were

found between the medians of the corr distributions of the real

model and the chance level models (pw0.01, Wilcoxon rank-sum

test). No significant differences were obtained with the distribu-

tions of nrmse (pw0.01, Wilcoxon rank-sum test) from all the

decoding models. These results show that the same performance

was achieved regardless of the data used to build the model, that is,

the performance of the decoding model is at the chance level.

Figure 7 shows, for the participant with the best reconstruction

results, the source contribution and recorded vs. estimated

velocities and trajectories for two of the targets and for decoding

models with recorded data, shuffled data and random EEG. In the

recorded data and shuffled data decoding models, the precentral

gyrus in the frontal lobe (Brodmann Area 6) presented the greatest

activation (i.e., direct involvement of the motor cortex), whereas in

the random EEG decoding model, the parahippocampal gyrus in

the limbic Lobe (Brodmann Area 27) presented the greatest

activation (i.e. no direct involvement of the motor cortex). The first

column of the figure shows the measured velocity profiles and the

corresponding trajectories, while the next three columns show the

reconstructed velocity profiles and the corresponding reconstruct-

ed trajectories obtained with the recorded data, the shuffled data

and the random EEG decoding model, respectively. The

reconstructed velocity profiles show that there is little difference

between the estimate obtained with the different decoding models

and that the mean+std values of corr are similar in the three

decoding models. In addition, the reconstructed trajectories are

similar in the three decoding models. Note that as these

trajectories were obtained by integrating the estimated velocity

profiles, there is an accumulation of error over time due to the

error in the velocity estimation (and then the final target location is

never reached). These results show that similar velocity profiles

and similar trajectories are reconstructed with the recorded data

decoding model and with the chance level decoding models.

Analogous results were obtained with other location targets and

remaining participants.
Progressive Elimination of the Number of

Electrodes. For each participant, seven decoding models with

26, 25, 23, 21, 17, 14 and 11 electrodes were built by progressively

eliminating the electrodes with major contribution to the

regression (see Equation 10). When using the models with higher

number of electrodes, the most prominent areas were the motor

regions, but the decoding model was forced to use electrodes from

other areas as they were progressively discarded. The source

contribution analysis showed that in decoding models with 26, 25

and 23 sensors (Figure 8A–C), the precentral gyrus in the frontal

lobe (Brodmann Area 6) and the postcentral gyrus in the parietal

lobe (Brodmann Area 2) provided the greatest activation, which

indicates that the contralateral motor cortex provided the major

Figure 4. Topographies of changes in the power spectra averaged for all trials and participants (relative to baseline from 21 to
20.6 s with respect to the movement onset) in the (A) d, (B) a and (C) b frequency bands. Power increase in the slow wave range started at
&300 ms prior to the movement onset and remained until &200ms relative to the movement onset. The de-synchronization in the a and b bands
started &400 ms prior to the movement onset and remained until the end of the movement. (d) The source localization of the underlying EEG
activity averaged for all trials and participants revealed a network of activation in the motor-related and neighboring areas prior to the movement
onset, and the activation of the contralateral motor cortex during the execution of the movement.
doi:10.1371/journal.pone.0061976.g004
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contribution. In the remaining decoding models, the source

contribution analysis showed that no motor region contributes in

the decoding (see Figures 8D–F).

Figures 8G and H show the distribution of corr and nrmse for

the seven decoding models. The medians of corr distributions were

not significantly different for the first five models (pw0.05,

Kruskal-Wallis test), but were significantly different when utilizing

the models with 14 and 11 electrodes. For the latter, the medians

of the corr distributions decreased 13, 27 and 17% (in the X, Y,

and Z dimensions), and 14, 35 and 20% (in the X, Y, and Z

dimensions) in comparison with the model that utilized the entire

number of electrodes (26 electrodes). Additionally, the distribu-

Figure 5. (A,B) Distributions of corr and nrmse for all participants for decoding models evaluated with EEG in the very low d (0–1) Hz,
a (8–12) Hz, m (12,15) Hz, b (14–30) Hz and (0–40) Hz frequency bands. In the a, b and m frequency bands, the distributions of corr have a
significant zero-median distribution in X-, Y- and Z-dimension of the velocity. For the very low d and the (0–40) Hz frequency bands the distributions
of corr were positive and significantly different from zero, although the medians of the distributions obtained in the very low d are notably higher
than for the (0–40) Hz band. These results support the selection of the very low d band to further study the decoding of hand velocity. (C,D)
Decoding results using the very low d (0–1) Hz frequency band. mean+std values of corr and nrmse in the decoding of hand velocity profiles
using the very low frequency band for all participants plus overall mean.
doi:10.1371/journal.pone.0061976.g005

Figure 6. Analysis of low frequency decoding results. (A-E) Neural sources involved in encoding hand kinematic projected onto sagittal MRI
slices, with dotted lines indicating the source location with the greatest contribution. Contralateral motor regions of the brain provided the greatest
contribution in the decoding models that used (A) recorded and (B) shuffled data. No motor related brain region is involved in the decoding model
that used (C) Random EEG&VEL, (D) Random EEG and (E) Random VEL. (F–G) Distributions of (F) corr and (G) nrmse for all participants for the real
model (Recorded data) and the chance level models (Shuffled data, Random EEG&VEL, Random EEG and Artificial VEL). These results revealed no
significant differences between the real model and the chance level models.
doi:10.1371/journal.pone.0061976.g006
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tions of nrmse were not significantly different (pw0.05, Kruskal-

Wallis test). These results indicated that decoding models with 26,

25, 23, 21 and 17 electrodes obtain significantly similar results

using EEG signals from different scalp areas (as the most

prominent sensors of each model were progressively discarded),

i.e., the same information used in the decoding could be obtained

alternatively from different areas of the brain (up to a limit, where

if more electrodes are removed the distribution of correlations

tends to zero).

Figure 9 shows examples for participant 1: location of used and

removed electrodes and the sources contribution analysis (for the

decoding model with 26, 21 and 14 sensors). Note how the

electrodes located above the motor strip are removed (red crosses)

to obtain the decoding model with 21 and 14 sensors. While in the

decoding model with 26 sensors the major cortical contribution

was the precentral gyrus of the frontal lobe (Brodmann Area 6) on

the left hemisphere (Figure 9 top) involving the motor area, in the

decoding models with 21 and 14 electrodes the major cortical

contribution was respectively located on the fusiform gyrus in the

Figure 7. Examples for one of the participants of the source contribution and recorded vs estimated 3D velocity profiles and the
corresponding trajectories in two of the targets (obtained with the decoding model that utilizes recorded data, shuffled data and
random EEG data). First column displays the measured velocity profiles and trajectories; the second, third and fourth columns display the time
course of the reconstructed velocity profiles and the reconstructed trajectories.
doi:10.1371/journal.pone.0061976.g007
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occipital lobe (Brodmann Area 18) and on the superior temporal

gyrus in the temporal lobe (Brodmann Area 22) which are not

directly related to the primary motor neural networks. Recorded

vs. estimated velocities and trajectories for one of the targets are

also displayed in Figure 9. Small differences are observed between

the reconstructed velocity profiles obtained with the three

decoding models. The mean+std values of corr are similar in

the three decoding models, and no significant differences were

found in the medians of the corr distributions of the three

decoding models (pw0.01, Wilcoxon rank-sum test).

Discussion

The interest in reconstructing limb kinematics from EEG is

recent, although it is recognized to be a challenge due to inherent

difficulties of EEG signals (i.e., low signal-to-noise ratio, limited

bandwidth, or poor information content) [10]. However, recent

studies have reported achievements using the low frequency

activity of the EEG and linear regression models [14–19]. This

paper analyzed the mathematical properties of the linear

regression model and of the correlation metric and how they

may affect the interpretation of the decoding results of the analysis.

These properties could explain, from a strictly mathematical point

of view, the positive correlations when decoding limb kinematics

from low frequency temporal signals using linear regression

models. However, further investigation was required to verify

whether there was a neural correlate behind the trajectory

reconstruction using this frequency band or if it was just a

misinterpretation of the results of the analysis.

This issue was investigated herein, and this paper reports the

result of an experiment where healthy participants performed

predefined reaching movements of the hand in 3D space (executed

with an average of &1Hz). The first objective was to check

whether it was possible to reconstruct the limb velocity profiles

from low frequency EEG, with accuracies comparable to the state

of the art. The results confirmed that the best reconstruction

results were obtained using the (0–1) Hz band, with a positive

distribution of the correlations and significantly different from zero

for all coordinates. These results were quantitatively of the same

order of previous studies [15–17], confirming that the best

reconstruction of limb velocity profiles occurs when using low

frequency activity of the EEG.

The second objective was to understand whether there was a

neural correlate behind the reconstruction. This was analyzed by

testing the statistical significance of the previous decoding model

with chance level decoding models (without physiological relation

to the motion process) and with models that progressively

eliminated the most prominent sensors (progressive elimination

of the physiologic relation to the motion process). On one hand,

the correlations and normalized errors of the results of the models

were not statistically different (i.e., similar correlations and errors

were obtained regardless of whether the decoding model was

trained with recorded, shuffled, random EEG or random velocity

profiles). Note that shuffled and random data combinations were

evaluated to ecover the chance level of the model in the absence of

any limb velocity information. On the other hand, when iteratively

removing the sensors with major contributions to the decoding

(including all those above the motor strip and in the frontal and

parietal contra-lateral areas), the results in terms of correlation and

normalized errors were not statistically significant. Both results

jointly with the source analysis support the fact that, while

mathematically there is a solution for each particular dataset, the

accuracies of the velocity profiles reconstruction are at chance

level (i.e. the model is able to provide the same results

irrespectively of the presence or absence of limb velocity

information). Also, the same reconstruction accuracy can be

obtained by iteratively eliminating the most useful information for

the decoding and by using information from other sensors (other

brain areas). As a consequence, it is possible to argue that there is

no unique information behind the reconstruction in this experi-

ment, and thus it is not possible to claim a decoding with this

model.

Note that this result does not mean that low frequency EEG

lacks information about movement, rather it only shows that the

linear regression model is not able to reconstruct the limb

kinematics from low frequency temporal EEG signals (Although

not reported in the paper, the same analysis was performed for

position profiles leading to the same conclusions). This issue must

be highlighted as there are several studies supporting the existence

of motor-related potentials (MRP), which are slow shifts in the

Figure 8. Results of the decoding models for the progressive elimination of the number of electrodes. (A–F) Neural sources involved in
encoding hand kinematic projected onto sagittal MRI slices, with dotted lines indicating the source location with the greatest contribution.
Contralateral motor regions of the brain provided the greatest contribution in the decoding models with 26, 25 and 23 sensors. No motor related
brain region is involved in the other decoding models. (G–H) Distributions of (G) corr and (H) nrmse for all participants for decoding models built by
progressive elimination of electrodes. These results indicate that significant similar results were obtained in the decoding models that utilize 26, 25,
23, 21 and 17 electrodes, but the results were significantly different and lower when utilizing 14 and 11 electrodes.
doi:10.1371/journal.pone.0061976.g008
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EEG activity induced by volitional movements [33,34]. These

potentials originate approximately two seconds prior to movement

onset developing the Bereitschafts potential (BP) or readiness

potential (RP) [35], and rebound during movement execution

developing the motor potential (MP). BPs have been used to detect

movement intention [36,37] while MPs have been used to detect

movement parameters such as direction [31,38]. In these

approaches the extracted motor information are general move-

ment parameters (i.e., the intention to move, the direction of the

movements) usually detected before movement onset or just after

movement initiation.

Another possible experiment to understand the decoding model

could involve repetitive motions of the limb at different (and

higher) frequencies to illustrate how the EEG that better fits the

limb kinematics changes with the limb frequency (which will be

congruent with the mathematical model). However, any shift in

the limb kinematics and the EEG frequencies to evaluate the

decoding would not necessarily reveal an absence of neural

correlate (i.e., it would be necessary to apply a similar method-

ology as the one proposed in this paper to evaluate the chance

level of the model). This is the reason why this experimental setup

was discarded.

The position of this paper with respect to other previous works

that describe limb kinematics decoding from low frequency EEG

using linear regression models [14–19] is that the results must be

confirmed to be above chance level. Previous reconstruction

claims [17] reported by the authors of the present paper are not

valid, as the results of the analysis were misinterpreted. Other

studies reported kinematics decoding using linear filtering and

EEG activity of higher frequency bands [13], which does not hold

the property that both signals must have the same frequency

range. However, in this case the noise of the filtering could have

played a crucial role, allowing high frequency EEG to fit low

frequency velocity profiles based on the ratio of observation and

system noise. Moreover, there are several studies that have

developed reconstruction of limb movement profiles using invasive

recordings of brain activity (ECoG, LFP and SUA). While these

studies use linear models, the neural characteristics used in the

model are neural firing sequences [8] or non-linear processing of

the brain signals [39,40]. In addition, there are other works where

a linear decoding model is used within a biofeedback strategy

[1,3,27,41–43]. In these cases the subject may learn to self-regulate

brain oscillatory activity through internal nonlinear mechanisms

that regulate the neural signals utilized by the decoding model

(closed loop control). If the decoding model cannot capture all the

Figure 9. Examples for participant 1 for the decoding model that used recorded data with 26, 21 and 14 sensors. Top: Location of the
electrodes (black dots) used to built the decoding model and the removed electrodes (red crosses), and estimated neural sources involved in
encoding hand kinematic projected onto sagittal MRI slices. Bottom: Recorded vs estimated 3D velocity profiles and trajectories in one of the targets.
The first column displays the measured velocity profiles (upper panel) and trajectories (lower panel); the second, third and fourth columns display the
time course of the reconstructed velocity profiles (upper panels) and the reconstructed trajectories (lower panel).
doi:10.1371/journal.pone.0061976.g009
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degrees of freedom of the neural process due to the constraints

imposed by the model and the characteristics, then self-regulation

would improve the accuracy up to a performance plateau [44].

Finally, the conclusions of this paper cannot be generalized to

those studies that address the decoding of individual parameters of

motion since these studies use non-linear models, establishing a

pattern recognition problem [31,38,45] and not a linear regression

as studied herein.

There are at least two possible paths to avoid the mathematical

constraints of the linear regression in future limb kinematics

decodings. One possibility would be to use other characteristics of

the EEG signals extracted from the full frequency spectrum or

from other frequency bands using nonlinear transformations (e.g.

time-resolved power extracted from time-frequency representa-

tions [32, 49] or temporal source current estimates [26]). This

feature extraction process will, in principle, enable the use of

information from different frequency ranges during the recon-

struction. Another possibility would be to use a non-linear model

to relate the limb kinematics to EEG temporal sequences in other

frequency ranges. This would alleviate the constraint that the two

sets of temporal signals must present the same frequency ranges.

Author Contributions

Conceived and designed the experiments: JMA LM ARM NB JM.

Performed the experiments: JMA LM. Analyzed the data: JMA.

Contributed reagents/materials/analysis tools: JMA. Wrote the paper:

JMA LM ARM NB JM.

References

1. Wolpaw JR, Mcfarland DJ (2004) Control of a two-dimensional movement
signal by a noninvasive brain-computer interface in humans. In: Proc. Natl

Acad. Sci. volume 101, pp. 17849–17854.

2. Wolpaw JR (2010) Brain-computer interface research comes of age: traditional
assumptions meet emerging realities. Journal of Motor Behavior 42: 351–353.

3. McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic

(EEG) control of threedimensional movement. Journal of Neural Engineering 7:

036007.

4. Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous three-dimensional
control of a virtual helicopter using a motor imagery based brain-computer

interface. PLoS ONE 6: 1–10.

5. Paninski L, Shoham S, Fellows MR, Hatsopoulos NG, Donoghue JP (2004)

Superlinear population encoding of dynamic hand trajectory in primary motor
cortex. Journal of Neuroscience 24: 8551–8561.

6. Kim SP, Rao YN, Erdogmus D, Sanchez JC, Nicolelis MAL, et al. (2005)

Determining patterns in neural activity for reaching movements using
nonnegative matrix factorization. EURASIP Journal on Applied Signal

Processing 2005: 3113–3121.

7. Mulliken GH, Musallam S, Andersen RA (2008) Decoding trajectories from

posterior parietal cortex ensembles. Journal of Neuroscience 28: 12913–12926.

8. Saleh M, Takahashi K, Amit Y, Hatsopoulos NG (2010) Encoding of
coordinated grasp trajectories in primary motor cortex. Journal of Neuroscience

30: 17079–17090.

9. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, et al. (2012)
Reach and grasp by people with tetraplegia using a neurally controlled robotic

arm. Nature 485: 372–375.

10. Lebedev MA, Nicolelis MA (2006) Brain-machine interfaces: past, present and

future. Trends in Neurosciences 29: 536–546.

11. Waldert S, Pistohl T, Braun C, Ball T, Aertsen A, et al. (2009) A review on
directional information in neural signals for brain-machine interfaces. Journal of

Physiology-Paris 103: 244–254.

12. Jerbi K, Vidal J, Mattout J, Maby E, Lecaignard F, et al. (2011) Inferring hand

movement kinematics from MEG, EEG and intracranial EEG: From brain-
machine interfaces to motor rehabilitation. IRBM 32: 8–18.

13. Lv J, Li Y, Gu Z (2010) Decoding hand movement velocities from EEG signals

during a continuous drawing task. Biomedical Engineering Online 9.

14. Presacco A, Goodman R, Forrester LW, Contreras-Vidal JL (2011) Neural

decoding of treadmill walking from non-invasive, electroencephalographic
(EEG) signals. Journal of Neurophysiology.

15. Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-

dimensional hand movements from noninvasive electroencephalographic
signals. Journal of Neuroscience 30: 3432–3437.

16. Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2011) Fast attainment of

computer cursor control with noninvasively acquired brain signals. Journal of

Neural Engineering 8: 036010.

17. Antelis JM, Montesano L, Minguez J (2011) Towards decoding 3D finger
trajectories from EEG. International Journal of Bioelectromagnetism 13: 112–

114.

18. Agashe HA, Contreras-Vidal JL (2011) Reconstructing hand kinematics during

reach to grasp movements from electroencephalographic signals. In: IEEE
Engineering in Medicine and Biology Magazine. pp. 5444–5447.

19. Ofner P, Muller-Putz GR (2012) Decoding of velocities and positions of 3D arm

movement from EEG. In: 34th Annual International Conference of the IEEE
EMBS. pp. 6406–6409.

20. Poli R, Salvaris M (2011) Comment on fast attainment of computer cursor

control with noninvasively acquired brain signals. Journal of Neural Engineering

8: 058001.

21. Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2011) Reply to comment on ‘fast
attainment of computer cursor control with noninvasively acquired brain

signals’. Journal of Neural Engineering 8: 058002.

22. Proakis JG, Manolakis DG (1996) Digital signal processing: Principles,

algorithms, and applications. Upper Saddle River, EUA: Prentice-Hall.

23. Bradberry TJ, Rong F, Contreras-Vidal JL (2009) Decoding center-out hand
velocity from MEG signals during visuomotor adaptation. NeuroImage 47:

1691–1700.

24. Georgopoulos AP, Langheim FJP, Merkle ACLAN (2005) Magnetoencephalo-

graphic signals predict movement trajectory in space. Experimental Brain

Research 25: 132-135.

25. Yeom HG, Kim JS, Chung CK (2011) Movement trajectory estimation in three-

dimensions from magnetoencephalographic signals. In: Proceedings of the 5th
International Brain-Computer Interface Conference. pp. 32–35.

26. Toda A, Imamizu H, Kawato M, Sato MA (2011) Reconstruction of two-
dimensional movement trajectories from selected magnetoencephalography

cortical currents by combined sparse Bayesian methods. NeuroImage 54: 892–

905.

27. Schalk G, Kubanek K, Miller KJ, Anderson NR, Leuthardt EC, et al. (2007)

Decoding twodimensional movement trajectories using electrocorticographic
signals in humans. Journal of Neural Engineering 4: 264–275.

28. Pistohl T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C (2008) Prediction
of arm movement trajectories from ECoG recordings in humans. Journal of

Neuroscience Methods 167: 105–114.

29. Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV (2010) Electrocorti-
cographic amplitude predicts finger positions during slow grasping motions of

the hand. Journal of Neural Engineering 7: 046002.

30. Pascual-Marqui R (2002) Standardized low resolution brain electromagnetic

tomography (sLORETA): technical details. Methods and Findings in Experi-
mental & Clinical Pharmacology 24: 5–12.

31. Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, et al. (2008) Hand

Movement Direction Decoded from MEG and EEG. Journal of Neuroscience
28: 1000–1008.

32. Yuan H, Perdoni C, He B (2010) Relationship between speed and EEG activity
during imagined and executed hand movements. Journal of Neural Engineering

7: 26001.

33. Cui RQ, Deecke L (1999) High resolution DC-EEG analysis of the

bereitschaftspotential and post movement onset potentials accompanying uni-

or bilateral voluntary finger movements. Brain Topography 11: 233–249.

34. S Jankelowitz JC (2002) Movement-related potentials associated with self-paced,

cued and imagined arm movements. Experimental Brain Research 147: 98–107.

35. Colebatch JG (2007) Bereitschaftspotential and movement-related potentials:

origin, significance, and application in disorders of human movement.
Movement Disorders 22: 601–610.

36. Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, et al. (2011)

Detection of movement intention from single-trial movement-related cortical
potentials. Journal of Neural Engineering 8: 066009.

37. Lew E, Chavarriaga R, Silvoni S, del R Millan J (2012) Detection of self-paced
reaching movement intention from EEG signals. Frontiers in Neuroengineering

5: 1–17.

38. Wang Y, Makeig S (2009) Predicting intended movement direction using EEG

from human posterior parietal cortex. In: Proceedings of the 5th International

Conference on Foundations of Augmented Cognition. Neuroergonomics and
Operational Neuroscience: Held as Part of HCI International 2009. pp. 437–

446.

39. Chao ZC, Nagasaka Y, Fujii N (2010) Long-term asynchronous decoding of arm

motion using electrocorticographic signals in monkeys. Frontiers in Neuroengi-
neering 3.

40. Zhuang J, Truccolo W, Vargas-Irwin C, Donoghue JP (2010) Decoding 3-D

Reach and Grasp Kinematics from High-Frequency Local Field Potentials in
Primate Primary Motor Cortex. IEEE Transactions on Biomedical Engineering

57: 1774–1784.

41. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002)

Brain-machine interface: Instant neural control of a movement signal. Nature
416: 141–142.

42. Taylor DM, Tillery SIH, Schwartz AB (2002) Direct Cortical Control of 3D
Neuroprosthetic Devices. Science 296: 1829–1832.

Decoding Kinematics from Low Frequency Signals

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e61976



43. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, et al. (2003)

Learning to Control a Brain-Machine Interface for Reaching and Grasping by
Primates. PLoS Biology 1: e42.

44. Kim H, Biggs J, Schloerb W, Carmena M, Lebedev M, et al. (2006) Continuous

shared control for stabilizing reaching and grasping with brain-machine
interfaces. IEEE Transactions on Biomedical Engineering 53: 1164–1173.

45. Rickert J, de C Oliveira SC, Vaadia E, Aertsen A, Rotter S, et al. (2005)

Encoding of movement direction in different frequency ranges of motor cortical

local field potentials. Journal of Neuroscience 25: 8815–8824.

Decoding Kinematics from Low Frequency Signals

PLOS ONE | www.plosone.org 14 April 2013 | Volume 8 | Issue 4 | e61976


