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Abstract Adhesion of bacteria to epithelial tissue is an
essential step in the progression of the urinary tract infec-
tions. Reduction of virulence factors responsible for micro-
bial attachment may help to decrease or inhibit colonization
of the host organism by pathogens. In the age of increasing
bacterial antibiotic resistance, more and more attention is
being paid to the use of plants and/or their bioactive com-
ponents in the prevention and treatment of human infec-
tions. Asiatic acid (AA) and ursolic acid (UA), two plant
secondary metabolites, were used as potential antibacterial
agents. The current study aimed to determine the possible
impact of AA and UA on morphology, hydrophobicity, and
adhesion of clinical uropathogenic Escherichia coli strains
(UPEC) to the uroepithelial cells. Our work describes for the
first time the effects exerted by AA and UA on virulence
factors of UPECs. The impact of both acids on the cell
surface hydrophobicity of the investigated strains was very
weak. The results clearly show the influence of AA and UA
on the presence of P fimbriae and curli fibers, morphology
of the UPECs cells and their adhesion to epithelium; how-
ever, some differences between activities of AA and UA
were found.

Introduction

In most infectious diseases, the adherence of pathogenic
organisms to the host tissues is an essential step of
invasion leading to colonization (Pizarro-Cerda and

Cossart 2006). Both specific (ligand-receptor like) and
nonspecific (physicochemical) interactions may play an
important role in the attachment ability of bacteria to the
epithelial cells. Various outer membrane components such
as fimbrial and afimbrial adhesions, flagella, proteins, and
lipopolysaccharides are responsible for specific interactions
between bacteria and the host cells. Bacterial adhesion is
also governed by van der Waals forces, hydrogen bonding,
electrostatic, and hydrophobic interactions. The role of
adherence in the ability of uropathogenic Escherichia coli
strains (UPECs) to induce urinary tract infections (UTIs)
has been extensively studied (Mulvey 2002). Both P and
type 1 fimbriae play a particular role in the adhesiveness
of UPECs (Melican et al. 2011). Bacterial binding is also
mediated by the hydrophobic interactions between uropa-
thogenic rods and uroepithelial cell surfaces. It is known
that adherence of bacteria to the epithelium is correlated
with increasing cell surface hydrophobicity of the micro-
organism (Saralaya et al. 2004; Wojnicz and Jankowski
2007). Changes of the nature of bacterial cell surface
could alter their adhesive capacity and thus reduce the
spread of the infection in the human body.

Currently, many reports describe plants and their second-
ary metabolites as a promising source of potentially thera-
peutic agents. One of the most bioactive plant components
are pentacyclic triterpenes (Chung et al. 2011). Their anti-
microbial, anti-inflammatory, and antitumor activities have
been reported (Cho et al. 2006; Fontanay et al. 2008; Ikeda
et al. 2008; Filocamo et al. 2011). To our knowledge,
triterpenes have not previously been studied for their bacte-
rial anti-adhesive properties. Therefore, the purpose of our
study was to determine the effect of AA and UA on the P
fimbriae and curli fibers expression, cell surface hydropho-
bicity of uropathogenic E. coli strains and their ability to
adhere to the human uroepithelium. Furthermore, the impact
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of both pentacyclic triterpenes on the cells morphology was
assessed.

Materials and methods

Bacterial strains

Twenty uropathogenic E. coli strains were isolated from the
urine specimens of patients with pyelonephritis, hospitalized
in the Academic Clinical Centre of the Wrocław Medical
University. E. coli identification was done by biochemical
methods using the API-20E test kit (BioMérieux, Warsaw,
Poland). The strains were maintained on Mueller–Hinton
agar slopes (Oxoid) at 4 °C.

Phylogenetic classification

Phylogenetic group was determined using primers specific
for two genes (chuA and yjaA) and DNA fragment
(TspE4.C2) according to the multiplex PCR method of
Clermont at al. (2000), however the yjaA sequence was
amplified separately. For this, the genomic DNA of each
strain was isolated using GeneMATRIX Bacterial &Yeast
Genomic DNA Purification Kit (EURx, Poland). The am-
plification products were separated by electrophoresis in a
2 % agarose gel. Gel images were visualized and analyzed
using the Quantity One system (Bio-Rad). The strains were
assigned to phylogenetic group B2 (chuA+, yjaA+) or D
(chuA+, yjaA−) or B1 (chuA−, TSPE4.C2+) or A (chuA−,
TSPE4.C2−).

Antimicrobial agents

AA (purity, ≥97 %) and UA (purity, ≥90 %) were purchased
from Sigma-Aldrich (Poznań, Poland). Stock solutions at a
concentration of 10 mg/mL were prepared by dissolving
acids in 96 % ethanol at 70 °C and stored at −20 °C. For
all experiments, final concentrations of triterpenes were
prepared by diluting the stock with Mueller–Hinton broth
(MHB).

Antimicrobial testing

The minimal inhibitory concentrations (MICs) of AA and UA
were determined by the broth microdilution method recom-
mended by the Clinical Laboratory Standard Institute (CLSI
2008). Briefly, the stock solutions (10 mg/mL) of triterpenes
were dissolved in MHB to give the concentrations of
4,096 μg/mL and then diluted twofold to achieve the concen-
trations from 4 to 1,024 μg/mL. Then, 200 μL of each con-
centration was added in well (96-well microplate) and
inoculated with the tested strains, yielding a bacterial density

of 5×106CFU/mL. After 24 h incubation at 37 °C, the MIC
was defined as the lowest concentration that inhibited bacte-
rial growth. Each assay was repeated three times.

Effect of AA and UA on P fimbriae expression

UPEC strains were incubated with AA and UA at concen-
trations of 10, 20, 30, 40, and 50 μg/mL for 24 h at 37 °C
and next were washed three times in phosphate-buffered
saline (PBS). Equal volumes of bacterial suspensions (0.5
McFarland) and 3 % solution of human erythrocytes with or
without D-mannose were mixed to determine the ability of
the tested strains to haemagglutination (Evans et al. 1980).

Effect of AA and UA on curli fibers expression

E. coli strains were incubated with AA and UA (10–50 μg/
mL) for 24 h at 37 °C. After incubation, bacteria were
washed three times and next 10 μl of bacterial suspensions
were inoculated onto YESCA agar plates containing congo
red. Curli-producing E. coli bound to Congo red dye and
formed red colonies, whereas curli-negative bacteria formed
white colonies (Hammar et al. 1995).

Effect of AA and UA on hydrophobicity of bacterial cells

UPEC strains were incubated with AA and UA at concen-
trations of 10, 20, 30, 40, and 50 μg/mL for 24 h at 37 °C.
Following the incubation, bacterial cells were washed three
times in PBS. After last centrifugation, the bacterial suspen-
sions were diluted to obtain final optical density (measured
at 470 nm) of 1.0. Untreated cells were assessed as a control.
The salt aggregation test (SAT) of ammonium sulfate was
used (Lindahl et al. 1981). The control and treated suspen-
sions (20 μL) were mixed with a series of dilutions of
ammonium sulfate (20 μL) ranging from 0 to 3.2 mol/L.
The lowest concentration of ammonium sulfate at which
bacteria aggregated was determined. Based on the SAT
values, the strains were classified as: 0.1–0.2 mol/L, very
strong hydrophobic; 0.4–1.0 mol/L, strong hydrophobic;
1.2–1.6 mol/L, hydrophobic; ≥1.8 mol/L, hydrophilic.

Effect of AA and UA on adhesion to epithelial cells

The cell adhesion assay was performed essentially as de-
scribed previously (Wojnicz et al. 2012). Human uroepithe-
lial cells from fresh urine of nonbacteriuric females were
resuspended in PBS to give 105 cells per milliliter (Bürker
chamber count). Bacteria were grown in MHB in the pres-
ence of 10–50 μg/mL AA and UA, harvested by centrifu-
gation (4,000 rpm for 20 min), resuspended in PBS and
adjusted to a concentration of 1.5×108CFU/mL. Equal vol-
umes of epithelial cells and pentacyclic triterpene-treated

246 Folia Microbiol (2013) 58:245–252



bacterial suspensions were incubated for 1 h at 37 °C with
shaking. Unattached bacteria were removed from the sus-
pension by centrifugation (200 rpm for 20 min) and washing
three times in PBS. The final pellets were air dried on glass
slides and May–Grünwald stained. The attached bacteria on
40 separate cells were counted by direct light microscopy
(Nikon Eclipse 400) and adherence was determined as the
mean number of bacteria attached per cell. Control values
were determined using epithelial cells mixed with bacteria
without AA and UA (Jahanshahi et al. 2010).

Effect of AA and UA on bacterial cell morphology

The strains were incubated at 37 °C for 24 h with AA and UA
at concentrations of 50, 150, and 250 μg/mL. The bacterial
samples were then washed three times in PBS. The final
pellets were air dried on glass slides and Gram-stained and
observed in Nikon Eclipse 400 microscope. The shape of
bacterial cells and the length of the filaments and their pro-
portions in the total number of microorganisms per 100 ran-
domly observed bacteria were recorded. The microorganisms
with length of 5–15 μm were classified as short filaments,
those with >15 μm as long filaments. Experiments were done
separately three times.

Statistical analysis

All values are given as mean±SD. The differences in adhesion
and morphology between rods exposed to AA and UA and
unexposed were analyzed by a t test for independent samples.
All tests were analyzed at the significance level P<0.05 using
Statistica 7.1.

Results

Molecular characterization of bacterial strain

PCR assays revealed that the 20 E. coli isolates fell into two
phylogenetic groups B2 (n016, 80 %) and D (n04, 20 %).

Antibacterial activity

The MIC values of AA and UA against the 20 isolates of E.
coli were high and distributed in a range from 512 μg/mL
to>1,024 μg/mL.

Effect of AA and UA on P fimbriae expression

All tested E. coli strains expressed P fimbriae. All concen-
trations of both acids caused the loss of the ability to
agglutinate human erythrocytes. Results are shown in
Table 1.

Effect of AA and UA on curli fibers expression

All examined E. coli rods were curli-producing strains. As
shown in Table 1 only the highest concentrations of AA and
UA (40 and 50 μg/mL) affected the synthesis of curli fibers.

Effect of AA and UA on hydrophobicity of bacterial cells

Of the 20 studied E. coli strains, four possessed very strong
hydrophobic surface—they aggregated at 0.1–0.2 mol/L of
ammonium sulfate. The cell surfaces of 11 strains were
strongly hydrophobic exhibiting aggregation at 0.4–
1.0 mol/L of ammonium sulfate. The rest of the strains
displayed a hydrophilic nature. In the next stage of our
study, we determined the effect of AA and UA at concen-
trations of 10, 20, 30, 40, and 50 μg/mL on the cell surface
hydrophobicity of 15 hydrophobic strains. The change of
the cells’ surface character from very strongly hydrophobic
to strongly hydrophobic was observed exclusively at the
highest of tested triterpene concentrations (50 μg/mL) in
three cases after the treatment with UA and in two cases
after exposure to AA.

Effect of AA and UA on adhesion to epithelial cells

The adhesion of 15 UPEC strains with very strongly
hydrophobic and strongly hydrophobic cells surface,
possessing P fimbriae and curli fibers, to the uroepithe-
lial cells was determined. The results are shown in
Figs. 1 and 2. The mean number of untreated bacterial
cells attached to the one uroepithelial cell was 313.0±
27.7 (Fig. 2a). The adhesion of all strains was reduced
following treatment with both AA and UA at concen-
trations of 40 and 50 μg/mL. The mean number of
bacteria attached to the one epithelial cell was signifi-
cantly reduced to 69 % (216.0±19.2) and to 48 %
(152.0±16.7) after the treatment with 40 and 50 μg/
mL AA, respectively (P<0.05; Fig. 2b). The effect
exerted by UA on the adhesion of UPECs to uroepithe-
liuim was slightly weaker. The mean number of bacteria
attached to the one uroepithelial cell was reduced to
72 % (225.0±11.8) and 53 % (166.0±21.4) after incu-
bation in 40 and 50 μg/mL AA, respectively (P<0.05;
Fig. 2c). These results were also statistically significant
(P<0.05). The changes in adhesion of bacteria treated
with lower concentrations of acids were statistically
insignificant.

Effect of AA and UA on bacterial cell morphology

The control samples of the 20 investigated E. coli strains
contained rods of normal length (96.1 %) and short fila-
ments (3.9 %; Table 2). Only the exposure of bacteria to AA

Folia Microbiol (2013) 58:245–252 247



and UA at concentration of 250 μg/mL induced morpholog-
ical changes. The lower concentrations of both triterpenes
did not alter bacterial morphology. Significant changes in
the shape of bacterial cells were observed after exposure to
UA (P<0.05). Microscopic analysis revealed the presence
of long (40.45 %) and short filaments (10.9 %), ghost cells
(2.35 %), and short filaments with mid-cell swellings
(1.25 %; Fig. 3). In the UA-containing suspensions, the
normal length bacterial cells (45.05 %) were also observed.
AA had a much weaker impact on bacterial morphology. E.
coli rods exposed to AA formed only short (6.15 %) and

long filaments (2.95 %); neither “swollen” forms nor ghost
cells were observed. The normal length bacteria accounted
for as much as 90.9 % of the total cell number.

Discussion

Adhesion of UPECs to the uroepithelium is a crucial step in
the pathogenesis and colonization of the urinary tract. The
hydrophobic interactions between bacteria and host tissues
are important adhesion-promoting factors. Bacterial surface
hydrophobicity is correlated with increased pathogenic po-
tential (Dykes et al. 2003). It is well-documented that E. coli
strains causing UTIs possess hydrophobic cell surfaces
(Najar et al. 2007). We established that 15 out of 20 tested
E. coli strains also possessed a hydrophobic character. It may
confirm a significant role of this virulence factor among
bacterial strains responsible for pyelonephritis. Results of
research conducted by Sunman et al. (2001) and Raksha et
al. (2003) also showed hydrophobic nature of the cell surface
of E. coli isolated from patients with UTIs. It is known that
the change of the bacterial cell surface from hydrophobic to
hydrophilic correlates with the limited colonization of epi-
thelial cells (Wojnicz and Jankowski 2007). The effects of
various phyto-extracts on the bacterial cell surface hydro-
phobicity have been reported in several papers. These plant
extracts exhibit modulating activity on the cell surface hy-
drophobicity of the microorganisms and thus potentially
affect their pathogenicity (Barnabas and Nagarajan 1988;
Nishino et al. 1987; Rauha et al. 2000; Dykes et al. 2003).
For example, the aqueous extract of bearberry has been
shown to alter the hydrophobicity of E. coli (Turi et al.
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Fig. 1 Effect of AA and UA on
the adhesion of E. coli strain to
the uroepithelial cells

Table 1 The effect of AA and UA on the presence of P fimbriae and
curli fibers in E. coli strains (n020)

Concentration (μg/mL) Presence of virulence factor
(% of strains)

P fimbriae Curli fibers

AA 0 100 100

10 80 100

20 65 100

30 65 100

40 60 80

50 60 75

UA 0 100 100

10 80 100

20 65 100

30 65 100

40 65 95

50 65 75
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1999) and Helicobacter pylori (Anuuk et al. 1999). In an-
other study, Nostro et al. (2004) found that surface hydro-
phobicity and adherence of Streptococcus mutans was
reduced when bacteria were grown in the presence of the
Helichrysum italicum extract.

Due to the absence of reports devoted to the effects of
single phytocompounds on the bacterial cell surface hydro-
phobicity and adherence, we decided to investigate the
impact of pentacyclic triterpenes (AA and UA) on these
virulence factors. It is known that the biological activities
of triterpenes may be related to the effect of these com-
pounds on membranes, especially of the eukaryotic cells
(Prades et al. 2011). This phenomenon is related to the
structural similarity of pentacyclic triterpenes to cholesterol.
These compounds could possibly be incorporated into the
biomembranes instead of cholesterol and change their hy-
drophobic properties. Our study showed that neither AA nor
UA have a significant effect on cells surface hydrophobicity.
Such limited impact of AA and UA on the tested UPECs
may probably be caused by the absence of the cholesterol in
bacterial cells. Moreover, pentacyclic triterpenes can form
micellar phases that could affect their incorporation into cell
membrane and the ability to change the cell surface hydro-
phobicity (Rafat et al. 2008).

It is worth noting that, despite the weak antihydrophobic
activity, both triterpenes significantly reduced the attachment

of bacteria to urinary epithelial cells. Adhesion significantly
decreased after treatment of bacteria with 40 and 50 μg/mL
AA and UA. The mechanism of this inhibitory effect may
probably be associated with suppression of the synthesis of
the bacterial surface structures such as P fimbriae and curli
fibers related to adhesion of rods to the host tissues.We cannot
comprehensively discuss our results with respect to other
reports because the data from other laboratories mainly de-
scribe the changes in the adhesiveness of bacteria treated with
plant extracts or fruit juice. Well recognized is the adhesion-
preventing activity of Vaccinium macrocarpon against E. coli
and H. pylori (Johnson-White et al. 2006). Cunningham et al.
(2004) and Foo et al. (2000) reported that cranberry proantho-
cyanidins are responsible for anti-adhesion of H. pylori and
associated with urinary tract infections E. coli rods. Yamanaka
et al. (2004) noticed that cranberry juice decreased adsorption
of oral streptococci to saliva-coated hydroxyapatite beads.
Similarly, extracts of H. italicum, Mikania laevigata,
Mikania glomerata, Syzygium aromaticum, Piper betle, and
Piper guajava showed positive anti-adherence activity to the
saliva-coated glass surface against oral streptococci (Nostro et
al. 2004; Yatsuda et al. 2005; Rahim and Khan 2006; Razak
and Rahim 2003). Only one paper describes the impact of UA
on bacterial adherence properties (Moodley et al. 2011).
Decreased adhesion to polystyrene surfaces was noticed for
E. coli and S. aureus incubated in subinhibitory (subMIC),

Table 2 Morphological changes observed in E. coli strains after incubation with AA and UA

The mean number of cells per 100 randomly observed bacteria

Normal length (2–5 μm) Short filaments (5–15 μm) Long filaments (> 15 μm) “Swollen” filaments Ghost

Control 96.10 (±1.86) 3.90 (±1.86) 0 0 0

AA 90.90 (±2.15) 6.15 (±1.63) 2.95 (±1.28) 0 0

UA 45.05 (±6.00) 10.90 (±1.97) 40.45 (±4.70) 1.25 (±0.64) 2.35 (±1.18)

A) C)B)

Fig. 2 Adhesion of E. coli strain to the uroepithelial cell unexposed (a), exposed to 50 μg/mL AA (b), and 50 μg/mL UA (c). Magnification,
×1,000
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MIC and suprainhibitory (supraMIC) concentrations of UA.
For Pseudomonas aeruginosa, decreased adhesion was ob-
served only after exposure to subMIC and MIC of UA, while
increased adhesion was observed at supraMIC concentration
of this triterpene. In contrast, the adhesion of Staphylococcus
saprophyticus to polystyrene surfaces was increased after
treatment of bacteria in subMIC but decreased after treatment
in MIC and supraMIC concentrations of UA. Moodley et al.
(2011) noticed that UA demonstrated the greatest ability to
prevent bacterial colonization in comparison to oleanolic acid
and methyl oleanolate. It was also interesting that the adhesion
of Klebsiella pneumoniae was increased after exposure to all
concentrations of UA (Moodley et al. 2011).

In addition to changes in bacterial cell surface hydropho-
bicity, the alteration of cell morphology can decrease the
adhesion of pathogens to host cells. Untreated E. coli appear
rod-shaped with the lengths ranging between 2 and 5 μm. We
observed that the exposure of these organisms to the AA and
UA resulted in morphological abnormalities. Formation of
filaments, ghost cells, and mid-cell swellings forms were
recorded. The results were dependent on type of triterpene
used. All altered bacterial forms listed above were observed
only after the treatment of UPECs with subMIC of UA.
Incubation of bacteria with AA led to formation of long
filaments, not observed in control samples; however, the
percentage of them was very low. Kurek et al. (2010) also
investigated the impact of pentacyclic triterpenes UA and

oleanolic acid (OA) on the morphology and peptidoglycan
synthesis of Listeria monocytogenes. They noticed that the
length of bacterial cells was reduced. Szakiel et al. (2008)
observed that Bacillus megaterium incubated with OA also
became visibly shorter. In contrast, E. coli cells appeared
several fold longer after the exposure to this acid. Bacterial
filamentation is often observed as a result of DNA damage,
inhibition of replication or alteration of FtsZ protein that is key
to bacterial cell division (Justice et al. 2006). Morphological
alterations observed in E. coli cells after their exposure to AA
and UA may indicate that triterpenes can penetrate into the
bacterial cells and interact with DNA, proteins involved in the
septum formation or affect the replication process.

Based on the differential effects exerted on E. coli by UA
and AA, it is possible that they may arise from the differ-
ences in the chemical structure of these compounds (Fig. 4).
Research conducted by Wen et al. (2005) on the relationship
between structure and activity of pentacyclic triterpenes
showed the A-ring structure to have a significant impact
on biological activity. Despite the structural similarities of
the triterpenes in the other rings, the A-ring in AA and UA is
very different, with two additional hydroxyl groups in AA
which could possibly affect bacterial length and shape.

In conclusion, interest in natural products has increased
quite significantly in the past decade. Medicinal plants as
well as their secondary metabolites have been assessed for
possible bioactive agents for prevention of different human

A) B)

 

C)

Fig. 3 Morphological changes observed in E. coli strains grown in the presence of UA: a long and short filaments, b filament with mid-cell
swellings, c ghost cell. Magnification, ×1,000
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infections. Despite this, there are still many unknowns in
this field, requiring further in-depth research.
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