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Xanthurenic acid (XA), an endogenous kynurenine, is a known vesicular glutamate transport (VGLUT) inhibitor and has also been

proposed as an mGlu2/3 receptor agonist. Changes in these systems have been implicated in the pathophysiology of schizophrenia and

other psychiatric disorders; however, little is known of how XA affects synaptic transmission. We therefore investigated the effects of XA

on synaptic transmission at two hippocampal glutamatergic pathways and evaluated the ability of XA to bind to mGlu2/3 receptors. Field

excitatory postsynaptic potentials (fEPSPs) were recorded from either the dentate gyrus (DG) or CA1 region of mouse hippocampal

slices in vitro. Addition of XA to the bathing medium (1–10 mM) resulted in a dose-related reduction of fEPSP amplitudes (up to 52%

reduction) in both hippocampal regions. In the DG, the VGLUT inhibitors Congo Red and Rose Bengal, and the mGlu2/3 agonist

LY354740, also reduced fEPSPs (up to 80% reduction). The mGlu2/3 antagonist LY341495 reversed the LY354740 effect, but not the

XA effect. LY354740, but not XA, also reduced DG paired-pulse depression. XA had no effect on specific binding of 1 nM

[3H]LY341495 to membranes with human mGlu2 receptors. We conclude that XA can modulate synaptic transmission via a mechanism

that may involve VGLUT inhibition rather than activation of mGlu2/3 receptors. This could be important in the pathophysiology of

nervous system disorders including schizophrenia and might represent a target for developing novel pharmacological therapies.
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INTRODUCTION

The kynurenine pathway represents a major route of
metabolism for the amino acid tryptophan and leads to
production of a number of neuromodulatory compounds
(Schwarcz et al, 2012; Stone, 1993). Numerous studies have
demonstrated modulation of neuronal excitability by the
kynurenines, with early evidence indicating that quinolinic
acid and related compounds induce convulsions in
rodents (Lapin, 1978a, b) and subsequent studies indicating
that kynurenines modulate both normal neuronal function
and neuropathophysiological mechanisms (Stone, 1993;
Schwarcz et al, 2012; Myint, 2012).

Tryptophan metabolism and kynurenine production were
suggested to have a role in psychiatric disorders in the
1960s (Lapin and Oxenkrug, 1969) and disruption of these
pathways has subsequently been implicated in schizophre-
nia and other central nervous system (CNS) disorders
(Schwarcz et al, 2012; Myint, 2012). It is of interest that

several kynurenines modulate glutamate receptor function
and synaptic activity (Stone, 1993) and that altered
glutamatergic synaptic function is believed to underlie
some of the symptoms of schizophrenia: modulation of
N-methyl-D-aspartate (NMDA) receptor function by an-
tagonists such as ketamine and phencyclidine exacerbate
positive, negative, and cognitive symptoms, and can induce
schizophrenia-like symptoms in normal individuals (Coyle
et al, 2003; Krystal et al, 1994; Millan, 2005). There is also
evidence of abnormal expression of a number of proteins
associated with both the release of neurotransmitter, such
as the vesicular glutamate transporter (VGLUT) family, and
the activity of postsynaptic receptors, such as the NMDA
receptor (Hahn et al, 2006; Maher and LoTurco, 2012;
Eastwood and Harrison, 2005; Varea et al, 2012; Uezato
et al, 2009; Oni-Orisan et al, 2008; Smith et al, 2001; Sodhi
et al, 2011). It is therefore tempting to speculate that
abnormal activity of the kynurenine pathway reported in
schizophrenia may lead to altered glutamatergic synaptic
transmission, thereby contributing to the neuropathophy-
siology of schizophrenia and other CNS disorders
(Schwarcz et al, 2012; Myint, 2012).

Xanthurenic acid (XA) is a product of the kynurenine
pathway arising from tryptophan via transamination
of 3-hydroxykynurenine (Gobaille et al, 2008). A body of
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evidence suggests that XA may serve a neuromodulatory
function, including wide-spread, heterogeneous CNS levels;
accumulation in synaptic terminals; release of XA upon
electrical stimulation (Gobaille et al, 2008); intracerebro-
centricular XA administration inducing seizures (Lapin,
1978b) and intraperitoneal administration in rats being
antinociceptive (Heyliger et al, 1998; Fazio et al, 2012). A
number of factors suggest that XA might have a role in
psychiatric disorders, such as schizophrenia: first, some
early reports suggested altered levels of XA and tryptophan
metabolism in schizophrenic patients (Price et al, 1959;
Benassi et al, 1961); second, we have found that XA
modulates sensory inhibition in the thalamus in vivo
(Copeland et al, 2013), a process that may be of impor-
tance in schizophrenia (Pinault, 2011); third, the reported
molecular targets of XA are believed to be VGLUTs (Bartlett
et al, 1998; Carrigan et al, 2002) and, recently, preliminary
evidence suggested that XA may also modulate Group II
metabotropic glutamate (mGlu) receptor function (Fazio
et al, 2012; Mauro et al, 2010). Altered activity of both
VGLUT and Group II mGlu receptors has been linked to
schizophrenia (Fell et al, 2011; Gonzalez-Maeso et al, 2008;
Eastwood and Harrison, 2005; Varea et al, 2012).These
strands of evidence are all suggestive that maladaptation of
XA metabolism may be involved in the pathophysiology of
schizophrenia; therefore, we thought it is important to
further explore the potential of XA to modulate neuronal
function. We tested the effects of XA on synaptic
transmission in the in vitro slice preparation of mouse
hippocampus, and have also explored the XA mechanism of
action via an in vitro radioligand binding assay. In addition,
we have tested the effects of two VGLUT inhibitors that are
structurally unrelated to XA on glutamatergic transmission.
Data from mutant mice lacking VGLUT point to a key role
in neurotransmission (Wojcik et al, 2004; Fremeau et al,
2004); however, there is a paucity of data regarding the
effect of pharmacological modulation of VGLUTs. We have
found that XA modulates synaptic transmission, although
this appears to be via a mechanism distinct from direct
modulation of Group II mGlu receptors and may be via
VGLUT inhibition.

MATERIALS AND METHODS

Electrophysiology

All experiments were conducted on tissue from adult
(4P28) C57black/6j mice (Harlan, UK), housed on a 12-h
light/dark cycle with unlimited access to food and water.
Experimental conditions and procedures were in accor-
dance with the UK Animals (Scientific Procedures) Act 1986
and associated guidelines.

Mice were killed by decapitation and the brain was remo-
ved and placed into ice-cold oxygenated sucrose Krebs’
medium containing (mM): sucrose 202, KCl 2, KH2PO4 1.25,
MgSO4 10, CaCl2 0.5, NaHCO3 26, and glucose 10. The brain
was hemisected along the midline and 300mm parasagittal
slices were prepared with an oscillating microtome (Inte-
graslice, Campden Instruments). Slices were then transferred
to a recovery chamber at room temperature containing
oxygenated Krebs’ solution (mM): NaCl 124, KCl 2, KH2PO4

1.25, MgSO4 1, CaCl2 2, NaHCO3 26, and glucose 10.

Following at least 1 h of recovery, individual slices were
transferred to an interface recording chamber where they
were perfused with Krebs’ solution (35.6–36.2 1C). Extra-
cellular field potential recordings were made via a Krebs’-
filled glass micropipette (resistance 6–9 M( )) with an
Axoprobe 1 A amplifier (Axon Instruments), digitized
(5 kHz) via a CED1401 interface and stored on a computer
with Spike2 software (Cambridge Electronic Design). Field
excitatory postsynaptic potential (fEPSP) responses were
evoked (0.1 ms pulses applied every 10 s; 2.4–5.5 V adjusted
to B70% of the maximal spike-free response) by a bipolar
stimulating electrode. For the dentate gyrus (DG), recording
and stimulating electrodes were positioned in the lower to
middle portion of the molecular layer. CA1 recordings
were performed with the stimulating electrode positioned
in the stratum radiatum near the CA3-CA1 border and
the recording electrode positioned in the stratum radiatum
of the CA1.

Responses to stimuli were waveform averaged (six trials).
The amplitude of the average fEPSPs was quantified by
computing the amplitude over a 0.5- to 0.8-ms time window
centered on the peak of the fEPSP. Statistical significance
was determined by the appropriate t-test, with Po0.05
taken as statistically significant.

Test compounds were applied by addition to the bathing
medium. XA (Tocris or Sigma-Aldrich) was prepared either
by dissolving directly into the Krebs’ solution, or by
preparation of a stock solution in equimolar NaOH and
then diluting to the required concentration in Krebs’
solution. The preparation method did not appear to impact
the characteristics of the XA effect and the results are
therefore pooled. Both LY354740 (Tocris) and LY341495
(Tocris) were prepared as 10 mM stock solutions in
equimolar NaOH, stored in frozen aliquots, and diluted to
the desired concentration in Krebs’ solution on the day of
the experiment. Congo Red (Sigma-Aldrich) was dissolved
directly into Krebs’ solution on the day of testing. Rose
Bengal (Sigma-Aldrich) was prepared on the day of testing
as a 10-mM stock in water and diluted to the desired
concentration in the Krebs’ solution. To inhibit GABA
receptor-mediated effects, CGP55845 (5 mM; Tocris) and
either picrotoxin (100 mM; Tocris) or bicuculline meth-
ochloride (30 mM; Tocris) were added to the Krebs’ solution.

Radioligand Binding

Human mGlu2 receptor membrane preparation (Millipore)
was diluted in assay buffer (20 mM HEPES, 100 mM NaCl,
3 mM MgCl2, pH 7.4) to give a final concentration of 6.6mg/
ml. To start the reaction, membrane (0.75mg/well) was added
to deep-well polypropylene microtiter plates containing
[3H]LY341495 (1 nM; 40 Ci/mmol; American Radiolabeled
Chemicals) and appropriate concentrations of XA (Sigma-
Aldrich) in assay buffer. Final assay volume was 0.2 ml. Non-
specific binding was defined with 100mM LY354740. Assay
plates were incubated at room temperature (21–23 1C) for
2 h, and bound and free radioligands were separated by rapid
filtration with 3� 1 ml of cold assay buffer using Whatman
GF-B uniplates (Brandel) presoaked in 0.3% polyethyleni-
mine (Sigma-Aldrich). The uniplates were dried at 37 1C for
30 min, 50ml Microscint 20 (Perkin-Elmer) added to each
well, and radioactivity determined using a Packard Topcount
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2 (Perkin-Elmer). Experiments were performed in duplicates
performed four times. Data are expressed as counts per
minute (±SEM) and comparisons were made using Wilcox-
on matched-pairs test (Po0.05).

RESULTS

XA Modulation of Synaptic Transmission in the DG

In the DG, pairs of stimuli evoked fEPSPs that were
abolished in the presence of 10 mM of the AMPA receptor
antagonist NBQX (Sheardown et al, 1990). When pairs of
stimuli were applied (40 ms interval), fEPSPs exhibited
paired-pulse depression, indicative of medial perforant
pathway activation (Macek et al, 1996). Application of XA
resulted in a reversible and concentration-dependent
depression in the amplitude of the fEPSP, with 3 mM
depressing the fEPSP by 21±2% (n¼ 11; Po0.001) with a
further reduction of 52±9% (n¼ 4; Po0.05) from control
observed in the presence of 10 mM XA (Figure 1). Similarly,
LY354740, a selective Group II mGlu receptor agonist
(Monn et al, 1997), depressed the fEPSP in a concentration-
dependent manner, with the top concentration tested
(1 mM) reducing the fEPSP by 74±3% (n¼ 18; Po0.001)
from control amplitude (Figure 1).

To test whether the XA effect was via Group II mGlu
receptors, we conducted a number of investigations. First,
reduction of the fEPSP amplitude observed in the presence
of LY354740 (300 nM) was reversed in the presence of the
Group II receptor antagonist LY341495 (Kingston et al,
1998) from 31±6% when LY354740 was applied alone to
3±2% (n¼ 3; P40.05 compared with control; Po0.05
compared with LY354740 alone) in the presence of
LY341495 (300 nM). However, in the same recordings, the
depression of fEPSP amplitude in the presence of XA
(3 mM; 23±2%; n¼ 3) was not reversed when XA was co-
applied with LY341495 (300 nM; 26±2%; n¼ 3; Figure 2).
In the presence of GABA receptor antagonists, XA (3 mM)
produced a depression of synaptic transmission of 26±4%
(n¼ 3) that was not significantly different to the depression
observed in the presence of XA (3 mM) under control
conditions (P40.05; Figure 2). Finally, to test whether XA
acts as a modulator of Group II receptor function, XA
(3 mM) was co-applied with a submaximal concentration of
LY354740 (30 nM). No potentiation of the submaximal
effect of LY354740 by XA was seen (Figure 2).

In the presence of LY354740, a significant change in the
paired-pulse ratio was observed with a shift from paired-
pulse depression in all recordings toward paired-pulse
facilitation. LY354740 (30 nM) resulted in a 17±3% (n¼ 4;
Po0.05; Figure 3) change compared with control, and in the
presence of 1 mM LY354740 the change in the paired pulse
ratio was 36±5% (n¼ 14; Po0.001). In the presence of XA,
no significant change in the paired-pulse ratio was observed
at either 3 mM (0±2%; n¼ 11; P40.05) or 10 mM
(� 3±1%; n¼ 4; P40.05; Figure 3).

Modulation of Synaptic Transmission in the DG by
VGLUT Inhibitors

The VGLUT inhibitors Rose Bengal (1–30 mM) and Congo
Red (1 mM) decreased the amplitude of the fEPSP recorded

in the DG (Figure 1). In the presence of 1 mM of the
prototypical VGLUT inhibitor (Ahmed et al, 2011) Congo
Red, the fEPSP amplitude was reduced to 61±2% of control
(n¼ 3; Po0.01), with no significant change in the paired-
pulse ratio (6±2% of control; n¼ 3; P40.05). In the
presence of Rose Bengal, the fEPSP amplitude was reduced
in a concentration-dependent manner, with 30 mM, the
highest concentration tested, reducing the amplitude by
80±12% compared with the control amplitude (n¼ 4;
Po0.01). At a concentration of 10 mM, Rose Bengal
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depressed the fEPSP amplitude by 42±% and produced
only a small increase in the paired-pulse ratio of 6±1%
(n¼ 7; Po0.001) (Figure 3).

XA Modulation of Synaptic Transmission in the CA1
Region

Application of XA (3 mM) produced a statistically signifi-
cant decrease in CA1 fEPSP amplitude to 18±5% (Po0.05;

Figure 4) from control in five out of six recordings. In four
of the six recordings, XA application resulted in changes to
the fEPSP waveform, indicative of increases in overall
excitability (Figure 4a). In one of these recordings, spiking
on the peak of the fEPSP meant it was omitted from the
peak amplitude measurements. In contrast, application of
LY354740 (1 mM) resulted in no significant change to the
fEPSP (Figure 4).
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XA (3 mM) or LY354740 (30 nM) or co-application of the agonist LY354740 (30 nM) together with XA, taken from the same experiments. Note that XA
did not potentiate the submaximal effect of LY354740.
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XA Binding to the mGlu2 Receptor

In membranes stably expressing the human mGlu2
receptor, XA (1mM–1 mM) had no effect on specific binding
of 1 nM [3H]LY341495. In contrast, 100 mM LY354740 was
able to significantly displace [3H]LY341495 binding
(2.6±1.0% of control-specific binding; n¼ 8; Figure 5).

DISCUSSION

In the present study, we have characterized the actions of
XA on synaptic transmission in the DG and CA1 regions of

the mouse hippocampus and find evidence of XA modulat-
ing neurotransmission in both regions. We also explored
the possibility of XA modulation of Group II mGlu
receptors and, in contrast to previous reports (Fazio et al,
2012; Mauro et al, 2010), find little evidence of interaction
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with these receptors under our assay conditions. We do,
however, observe modulation of synaptic transmission in
the DG with similar characteristics by other VGLUT inhi-
bitors. This suggests that XA may exert its effects via this
molecular target, rather than via the Group II mGlu
receptors.

Modulation of Hippocampal Synaptic Transmission
by XA

In the DG and CA1 regions of the mouse hippocampus, XA
induced a depression of the fEPSP. In the DG, this effect was
unchanged in the presence of GABA receptor antagonists,
suggesting an action of XA independent of any effects on
inhibition. In the CA1 region, the actions of XA were more
complex and, in addition to the depression of synaptic
transmission, we observed alterations in the fEPSP wave-
form consistent with increases in excitability. This observa-
tion concurs with previous reports that XA may be
proconvulsant (Lapin, 1978a, b) and that XA reduces
sensory inhibition in the thalamus (Copeland et al, 2013).

XA is reportedly an agonist of Group II mGlu receptors
(Fazio et al, 2012; Mauro et al, 2010). We, therefore, sought
to determine whether the depression of synaptic transmis-
sion produced by XA was mediated via an interaction with
these receptors. Consistent with previous reports (Macek
et al, 1996; Kew et al, 2002), activation of Group II mGlu
receptors with the Group II selective agonist LY354740
depressed transmission in the DG and this effect was
reversed by the Group II selective antagonist LY341495;
however, LY341495 did not affect the depression of synaptic
transmission produced by XA, suggesting that XA is
unlikely to be acting as a conventional orthosteric agonist
of the Group II mGlu receptors. The depression of synaptic
transmission by LY354740 at the perforant path-DG synapse
is mediated predominately by activation of mGlu2, rather
than mGlu3 receptors (Kew et al, 2002). A number of mGlu2
receptor-selective PAMs have been developed (Fell et al,
2011) and are reported to enhance the action of orthosteric
agonists on synaptic transmission in the DG (Galici et al,
2006). We tested the possibility that XA was a PAM, but saw
no evidence of such an action. Similarly, we previously
reported that XA modulates sensory processing in the rat
thalamus in vivo, but the PAM LY487379 was found to not
potentiate this effect (Copeland et al, 2013), whereas the
effects of a Group II agonist were enhanced by the PAM
(Copeland et al, 2012). In the CA1 region, consistent with
previous reports (Gereau and Conn, 1995), application of
LY354740 had no effect on synaptic transmission at the
Schaffer collateral-CA1 synapse, whereas XA produced clear
effects. In total, these data suggest the actions of XA
observed in the hippocampus are unlikely to be a result of
Group II mGlu receptor activation, or PAM activity.
Consistent with this conclusion, in the radioligand binding
assay XA was found to not bind to the mGlu2 receptor
orthosteric binding site.

In addition to pharmacological differences, further
evidence that the effect of XA was not via Group II mGlu
receptors was provided by the observed mechanistic
difference between the mode of action of XA and the effect
of Group II mGlu receptor activation. At the medial
perforant path-DG synapse, responses to pairs of stimuli

typically exhibit paired-pulse depression (Macek et al, 1996).
This represents a form of short-lived synaptic plasticity
believed to arise from changes in the probability of
presynaptic neurotransmitter release (Kamiya and Zucker,
1994). In our experiments, LY354740 produced a clear
change in the paired-pulse ratio, an observation consistent
with presynaptic Group II mGlu receptors reducing the
probability of transmitter release (Macek et al, 1996);
however, in the presence of XA we observed no such
change. This might suggest that XA modulates glutamatergic
neurotransmission postsynaptically (Bartlett et al, 1998);
however, XA is known to inhibit VGLUTs (Carrigan et al,
2002; Bartlett et al, 1998), the transport system thought to be
responsible for L-glutamate accumulation into synaptic
vesicles in presynaptic terminals. There are three known
VGLUT subtypes (VGLUT1–3; Shigeri et al, 2004; Takamori,
2006), which have been localized in the hippocampus, with
VGLUT1 and VGLUT2 particularly associated with excita-
tory synapses (Herzog et al, 2006; Shigeri et al, 2004;
Takamori, 2006). Electrophysiological studies in neuronal
tissue where VGLUT expression has been silenced geneti-
cally demonstrate a decrease in amplitude of the post-
synaptic response at glutamatergic synapses (Wojcik et al,
2004; Fremeau et al, 2004). Mice with genetic deletion of
VGLUT also show minimal change in release probability
(Fremeau et al, 2004; Wojcik et al, 2004), with synapses
lacking VGLUT having a tendency toward depression in
response to trains of stimuli (Fremeau et al, 2004; Smear
et al, 2007); thus, despite a presynaptic location of VGLUT,
VGLUT inhibition might not be expected to affect the
paired-pulse ratio, consistent with XA exerting minimal
effects on the paired-pulse ratio. In the current study, we
have further investigated the effect of VGLUT modulation on
synaptic transmission with two VGLUT inhibitors, Congo
Red (Ahmed et al, 2011) and Rose Bengal (Pietrancosta et al,
2010). These compounds both depressed synaptic transmis-
sion in the DG and, as with XA, showed little effect on the
paired-pulse ratio compared with the Group II mGlu
receptor agonist, despite attenuating the fEPSP amplitude
to a similar degree. In total, therefore, an effect of XA at
VGLUT would be a likely explanation for the reduction in
synaptic transmission seen with XA.

XA and the Kynurenine Pathway

XA occurs naturally in the mammalian CNS (Gobaille et al,
2008) and the data presented here, and in our previous
publication (Copeland et al, 2013), demonstrate modulation
of neuronal function by XA in multiple brain regions. Thus,
XA can join the list of naturally occurring kynurenines,
such as the NMDA receptor agonist quinolinic acid and the
ionotropic glutamate receptor antagonist kynurenic acid
(Stone, 1993), which modulate synaptic transmission. It is
noticeable that XA is reported to be present in the brain in
low micromolar concentrations (Gobaille et al, 2008), yet we
required millimolar concentrations to depress synaptic
transmission; however, mechanisms exist to allow XA
accumulation in vesicles, and in vivo XA is released in the
cortex in response to electrical stimulation in a manner
requiring sodium channel activity (Gobaille et al, 2008). It is
therefore likely that surveying gross tissue concentrations
does not necessarily provide an accurate prediction of the
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concentration at the release site, which may be orders of
magnitude higher than the concentration sampled in the
extracellular fluid. This is the case for neurotransmitters such
as glutamate, which may be present at the synapse in
millimolar concentrations (Clements et al, 1992). Similarly, it
has recently been reported that antipsychotics may accumu-
late in synaptic vesicles leading to higher than expected local
concentrations in the synaptic cleft than might be predicted
(Tischbirek et al, 2012). In addition, there are reportedly
active transport systems for XA in neurones (Gobaille et al,
2008) and in intact neuronal tissue these systems may reduce
the concentration of exogenously applied XA reaching the
synapse, again, as is seen with established transmitters such
as glycine (Berger et al, 1998) and glutamate (Herman and
Jahr, 2007). It is therefore likely that XA levels occurring at
the synapse may be in the range at which we see effects on
synaptic transmission. This reinforces the notion that XA
changes can affect synaptic function.

Possible Involvement in Disease Mechanisms

In this study, we have provided evidence that XA can
modulate glutamatergic neurotransmission in the mouse
hippocampus and, previously, we demonstrated modulation
of sensory processing by XA in the rat thalamus, an effect
likely involving modulation of GABAergic signaling
(Copeland et al, 2012). Both Glutamate and GABA receptor
signaling are believed to be altered in schizophrenia (Hahn
et al, 2006; Maher and LoTurco, 2012; Uhlhaas and Singer,
2010; Coyle et al, 2003; Sodhi et al, 2011) and expression of
VGLUT, a likely molecular target of XA, is also affected in this
disease (Eastwood and Harrison, 2005; Varea et al, 2012;
Uezato et al, 2009; Oni-Orisan et al, 2008). Furthermore, there
is considerable evidence suggesting that levels of kynurenines,
such as kynurenic acid, are altered in psychiatric disorders,
including schizophrenia, bipolar disorder, and depression
(Schwarcz et al, 2012; Myint, 2012) and that XA metabolism
may be altered in patients (Price et al, 1959; Benassi et al,
1961). In schizophrenia, a number of studies demonstrate
impairments in both the gene expression and activity of
kynurenine pathway enzymes, and increases in kynurenine
metabolite levels in cerebrospinal fluid (Schwarcz et al, 2012;
Myint, 2012). Changes in kynurenine levels have been
observed in drug-naı̈ve first-episode schizophrenic patients,
suggesting that changes might be linked to pathology, rather
than drug-treatment (Erhardt et al, 2001). Together, these
observations point to disruption of the kynurenine pathway as
a feature of schizophrenia, and further studies are required to
establish whether these changes also result in altered XA
levels. In total, our data demonstrating effects of XA on
synaptic transmission and sensory processing, the ability of
XA to alter neuronal activity via VGLUT, and the possibility of
XA levels being altered in disease raise the intriguing
possibility that XA may have a role in the abnormal neuronal
activity underlying schizophrenia (Pinault, 2011; Uhlhaas and
Singer, 2010).

In conclusion, our data show that XA can be added to the
list of kynurenines, which are able to modulate synaptic
transmission and that this action is independent of Group II
mGlu receptor modulation. In addition, we have demon-
strated depression of glutamatergic synaptic transmission
by three structurally unrelated VGLUT inhibitors. Given the

role of glutamatergic signaling in a wide range of CNS
disorders, this raises the possibility of VGLUT being worthy
of further investigation as a target for development of novel
therapeutics.
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