Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 23;69(Pt 4):o565–o566. doi: 10.1107/S1600536813007241

Ethyl 23-benzyl-8,11,14-trioxa-23,28,29-triaza­penta­cyclo­[19.7.1.02,7.015,20.022,27]nona­cosa-2,4,6,15(20),16,18,21,26-octa­ene-26-carboxyl­ate

Truong Hong Hieu a,*, Le Tuan Anh a, Anatoly T Soldatenkov b, Vasily G Vasil’ev b, Victor N Khrustalev c
PMCID: PMC3629615  PMID: 23634102

Abstract

The title compound, C33H35N3O5, is the product of the multicomponent condensation of 1-benzyl-4-eth­oxy­carbonyl­piperidin-3-one with 1,5-bis­(2-formyl­phen­oxy)-3-oxapentane and ammonium acetate. The mol­ecule comprises a penta­cyclic system containing the aza-14-crown-4-ether macrocycle, tetra­hydro­pyrimidine, tetra­hydro­pyridine and two benzene rings. The aza-14-crown-4-ether ring adopts a bowl conformation with a dihedral angle of 62.37 (5)° between the benzene rings. The tetra­hydro­pyrimidine ring has an envelope conformation with the chiral C atom as the flap, whereas the tetra­hydro­pyridine ring adopts a distorted chair conformation. Two amino groups are involved in intra­molecular N—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature  

For general background to the design, synthesis, chemical properties and applications of macrocyclic ligands for coordination chemistry, see: Hiraoka (1982); Pedersen (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For the crystal structures of related compounds, see: Levov et al. (2006, 2008); Komarova et al. (2008); Anh et al. (2008, 2012a ,b ,c ); Hieu et al. (2009, 2011, 2012a ,b ); Khieu et al. (2011); Sokol et al. (2011).graphic file with name e-69-0o565-scheme1.jpg

Experimental  

Crystal data  

  • C33H35N3O5

  • M r = 553.64

  • Monoclinic, Inline graphic

  • a = 10.5304 (5) Å

  • b = 12.6363 (5) Å

  • c = 10.7246 (5) Å

  • β = 92.865 (1)°

  • V = 1425.29 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.30 × 0.24 × 0.21 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.974, T max = 0.982

  • 18837 measured reflections

  • 8289 independent reflections

  • 6878 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.094

  • S = 1.00

  • 8289 reflections

  • 377 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007241/cv5393sup1.cif

e-69-0o565-sup1.cif (37.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007241/cv5393Isup2.hkl

e-69-0o565-Isup2.hkl (405.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007241/cv5393Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N24—H24⋯O1′ 0.882 (18) 2.015 (18) 2.6928 (16) 132.8 (15)
N25—H25⋯O14 0.882 (18) 2.441 (17) 2.9744 (17) 119.3 (13)
C6—H6⋯O1′i 0.95 2.42 3.3516 (19) 168
C18—H18⋯O1′ii 0.95 2.42 3.3613 (19) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the National Foundation for Science and Technology Development (NAFOSTED), Hanoi, Vietnam (grant No. 104.02–2012.44) for the financial support of this work.

supplementary crystallographic information

Comment

Design, preparation and applications of macroheterocyclic ligands for coordination, supramolecular and medicinal chemistry draw constant attention of investigators during the last several decades (Hiraoka, 1982; Pedersen,1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have developed the effective method of synthesis of azacrown ethers including piperidine (Levov et al., 2006); Anh et al., 2008, 2012a,b), cycloalkanopiperidine (Levov et al. 2008); bispidine (Komarova et al.; Sokol et al.; Hieu et al. 2012a; Anh et al. 2012c); perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine (Hieu et al., 2009, 2012b; Khieu et al., 2011) subunits.

In attempts to apply the chemistry for obtaining azacrown ether containing ethoxy-substituted bispidino subunit with two nitrogen atoms in the unsymmetrical positions, we studied the multicomponent condensation of the 1-benzyl-4-ethoxycarbonylpiperidin-3-one (ketone component) with 1,5-bis(2-formylphenoxy)-3-oxapentane (podand) and ammonium acetate. The reaction has proceeded smoothly under mild conditions to give the title compound as an unexpected product (Fig. 1). The first step of this cascade process appears to be the intermolecular condensation of one aldehyde group of the podand with the activated methylene group of the ketone component. Then the addition of one molecule of ammonia to the keto-group yields its hydroxyl-amino form. Further the second aldehyde group is condensed with the amino group to form the intermediate azacrown ether containing 1,4-azadiene fragment fused to piperidine moiety. The final step is the double Mannich cycloaddition of another molecule of ammonia to the azadiene moiety followed by dehydration to form the product. The structure of the new azacrown system, C33H35N3O5 (I), was unambiguously established by X-ray diffraction study.

The molecule of I comprises a pentacyclic system containing the aza-14-crown-4-ether macrocycle, tetrahydropyrimidine, tetrahydropyridine and two benzene rings (Fig. 2). The aza-14-crown-4-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.37 (5)°. The central tetrahydropyrimidine ring has an envelope conformation (the C1 carbon atom is out of the plane passed through the other atoms of the ring (r.m.s. deviation = 0.023 Å) by 0.661 (2) Å), which is stabilized by the intramolecular N25—H25···O14 hydrogen bond (Table 1). The terminal tetrahydropyridine ring adopts a distorted chair conformation (the N1' nitrogen and C6' carbon atoms are out of the plane passed through the other atoms of the ring (r.m.s. deviation = 0.012 Å) by -0.245 (3) and 0.431 (3) Å, respectively). The three N24, N25 and N1' nitrogen atoms have the trigonal-pyramidal geometries. The carboxylate substituent (except for the terminal C16' carbon atom) is practically coplanar to the basal C22—C23—C4'—C5' plane of the tetrahydropyridine ring (the O2'—C14'—C4'—C5' dihedral angle is -5.5 (2)°). This disposition is apparently determined by the intramolecular N24—H24···O1' hydrogen bond (Table 1).

The molecule of I possesses an asymmetric center at the C1 carbon atom and crystallizes in the chiral space group P21. However, its absolute configuration cannot be objectively determined because the absence of the heavy (Z > 14) atoms within the molecule.

In the crystal, the molecules of I are bound by the weak intermolecular C—H···O hydrogen bonding interactions (Table 1) into layers parallel to ab> plane (Figure 3).

Experimental

Ammonium acetate (5.0 g, 65 mmol) was added to a solution of 1,5-bis(2-formylphenoxy)-3-oxapentane (1.57 g, 5.0 mmol) and 1-benzyl-4-ethoxycarbonylpiperidin-3-one (1.48 g, 5.0 mmol) in ethanol (30 ml) – acetic acid (2 ml). The reaction mixture was stirred at 293 K for 3 days. At the end of the reaction, the formed precipitate was filtered off, washed with ethanol and chromatographically purified on the column filled with silica gel. A re-crystallization from hexane:ethylacetate (3:1) mixture gave 0.83 g of light-yellow crystals of I.Yield is 30.0%. M.p. = 373–376 K. IR (KBr), ν/cm-1: 1599, 1644, 3297, 3374, 3453. 1H NMR (CDCl3, 400 MHz, 300 K): δ = 1.29 (t, 3H, J = 7.2 and 6.8, CH2CH3), 2.26 and 2.78 (both m, 1H and 3H, correspondingly, NCH2CH2), 3.50 and 3.85 (both d, 1H each, J = 13.2 each, NCH2Ar), 3.73–4.15 (m, 9H, OCH2CH2OCH2CH2O and CH2CH3), 4.83 (s, 1H, N—H25), 6.05 (s, 1H, H1), 6.73 (dd, 2H, J = 7.7 and 1.6, H6 and H16), 6.8 (broad t, 2H, J = 8.9, H4 and H18), 6.97–7.09 (m, 5H, Harom), 7.28–7.32 (m, 2H, Harom), 7.47 (dd, 2H, J = 7.6 and 1.6, H3), 7.87 (dd, 2H, J = 7.6 and 1.2, H19), 8.61 (s, 1H, N—H24). Anal. Calcd for C33H35N3O5: C, 71.59; H, 6.37; N, 7.59. Found: C, 71.53; H, 6.22; N, 7.37.

Refinement

The absolute structure of I cannot be objectively determined by the refinement of Flack parameter because the absence of the heavy (Z > 14) atoms within the molecule.

The hydrogen atoms of the amino groups were localized in the difference-Fourier map and refined isotropically with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups].

Figures

Fig. 1.

Fig. 1.

Multicomponent condensation of the 1-benzyl-4-ethoxycarbonylpiperidin-3-one with 1,5-bis(2-formylphenoxy)-3-oxapentane and ammonium acetate.

Fig. 2.

Fig. 2.

Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The intramolecular N—H···O hydrogen bonds are drawn by dashed lines.

Fig. 3.

Fig. 3.

A portion of the crystal structure showing the weak intermolecular C—H···O hydrogen bonds, which are depicted by dashed lines.

Crystal data

C33H35N3O5 F(000) = 588
Mr = 553.64 Dx = 1.290 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5715 reflections
a = 10.5304 (5) Å θ = 2.5–31.8°
b = 12.6363 (5) Å µ = 0.09 mm1
c = 10.7246 (5) Å T = 100 K
β = 92.865 (1)° Prism, yellow
V = 1425.29 (11) Å3 0.30 × 0.24 × 0.21 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 8289 independent reflections
Radiation source: fine-focus sealed tube 6878 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −14→14
Tmin = 0.974, Tmax = 0.982 k = −17→17
18837 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: difference Fourier map
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.123P] where P = (Fo2 + 2Fc2)/3
8289 reflections (Δ/σ)max < 0.001
377 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22606 (12) 0.22945 (12) 0.85547 (12) 0.0266 (3)
H1 0.1992 0.2950 0.8090 0.032*
C2 0.16248 (12) 0.22544 (12) 0.97887 (12) 0.0271 (3)
C3 0.13663 (14) 0.13054 (13) 1.03713 (13) 0.0310 (3)
H3 0.1570 0.0660 0.9974 0.037*
C4 0.08137 (14) 0.12737 (14) 1.15267 (14) 0.0347 (3)
H4 0.0644 0.0615 1.1912 0.042*
C5 0.05172 (14) 0.22147 (15) 1.21021 (14) 0.0376 (3)
H5 0.0148 0.2200 1.2892 0.045*
C6 0.07508 (15) 0.31771 (14) 1.15432 (14) 0.0365 (3)
H6 0.0533 0.3819 1.1942 0.044*
C7 0.13097 (13) 0.31993 (13) 1.03861 (13) 0.0312 (3)
O8 0.15789 (13) 0.41119 (10) 0.97691 (11) 0.0441 (3)
C9 0.16598 (16) 0.50775 (12) 1.04698 (14) 0.0360 (3)
H9A 0.2106 0.4957 1.1292 0.043*
H9B 0.0799 0.5356 1.0607 0.043*
C10 0.23872 (16) 0.58408 (13) 0.97119 (14) 0.0367 (3)
H10A 0.2017 0.5874 0.8846 0.044*
H10B 0.2362 0.6558 1.0081 0.044*
O11 0.36498 (10) 0.54650 (9) 0.97231 (10) 0.0380 (3)
C12 0.43821 (16) 0.59053 (13) 0.87902 (14) 0.0372 (3)
H12A 0.4594 0.6651 0.8995 0.045*
H12B 0.3899 0.5889 0.7975 0.045*
C13 0.55719 (15) 0.52654 (12) 0.87280 (14) 0.0338 (3)
H13A 0.6134 0.5571 0.8108 0.041*
H13B 0.6039 0.5252 0.9552 0.041*
O14 0.51863 (10) 0.42183 (9) 0.83650 (11) 0.0372 (2)
C15 0.61093 (14) 0.35024 (12) 0.81031 (13) 0.0298 (3)
C16 0.74063 (14) 0.37340 (13) 0.81731 (15) 0.0361 (3)
H16 0.7694 0.4404 0.8472 0.043*
C17 0.82748 (14) 0.29860 (14) 0.78062 (15) 0.0388 (4)
H17 0.9156 0.3150 0.7847 0.047*
C18 0.78697 (14) 0.20051 (13) 0.73815 (15) 0.0367 (4)
H18 0.8465 0.1499 0.7114 0.044*
C19 0.65764 (14) 0.17656 (13) 0.73505 (14) 0.0325 (3)
H19 0.6300 0.1085 0.7075 0.039*
C20 0.56790 (13) 0.25002 (12) 0.77133 (12) 0.0273 (3)
C21 0.43077 (12) 0.22008 (12) 0.76601 (12) 0.0269 (3)
C22 0.37341 (13) 0.17558 (12) 0.66288 (13) 0.0272 (3)
C23 0.24979 (13) 0.12495 (11) 0.66886 (12) 0.0255 (3)
N24 0.19281 (12) 0.13681 (10) 0.78031 (11) 0.0289 (3)
H24 0.1137 (17) 0.1140 (14) 0.7817 (16) 0.035*
N25 0.36503 (11) 0.22816 (11) 0.87544 (11) 0.0278 (2)
H25 0.3951 (16) 0.2792 (14) 0.9247 (16) 0.033*
N1' 0.43614 (11) 0.17458 (10) 0.54726 (10) 0.0272 (2)
C4' 0.20023 (13) 0.06475 (12) 0.57082 (12) 0.0280 (3)
C5' 0.27720 (14) 0.04519 (14) 0.45751 (13) 0.0353 (3)
H5A 0.2425 0.0885 0.3869 0.042*
H5B 0.2699 −0.0302 0.4331 0.042*
C6' 0.41709 (14) 0.07292 (12) 0.48401 (13) 0.0306 (3)
H6A 0.4575 0.0165 0.5364 0.037*
H6B 0.4602 0.0747 0.4041 0.037*
C7' 0.39864 (15) 0.26627 (13) 0.46972 (15) 0.0357 (3)
H7A 0.3881 0.3282 0.5248 0.043*
H7B 0.3151 0.2514 0.4269 0.043*
C8' 0.49217 (14) 0.29427 (11) 0.37288 (13) 0.0301 (3)
C9' 0.44865 (17) 0.34402 (13) 0.26331 (15) 0.0399 (4)
H9 0.3599 0.3525 0.2462 0.048*
C10' 0.5333 (2) 0.38131 (15) 0.17872 (17) 0.0510 (5)
H10 0.5024 0.4164 0.1049 0.061*
C11' 0.6611 (2) 0.36766 (15) 0.20134 (18) 0.0542 (5)
H11 0.7189 0.3930 0.1431 0.065*
C12' 0.70637 (18) 0.31703 (15) 0.30879 (18) 0.0474 (4)
H12 0.7952 0.3070 0.3239 0.057*
C13' 0.62174 (15) 0.28063 (13) 0.39512 (15) 0.0366 (3)
H13 0.6531 0.2464 0.4693 0.044*
C14' 0.07571 (14) 0.01805 (12) 0.57658 (13) 0.0298 (3)
O1' 0.00688 (10) 0.02090 (9) 0.66562 (9) 0.0342 (2)
O2' 0.03869 (11) −0.03237 (11) 0.46902 (11) 0.0452 (3)
C15' −0.08813 (17) −0.07689 (17) 0.46202 (18) 0.0507 (5)
H15A −0.1111 −0.1000 0.5462 0.061*
H15B −0.0901 −0.1397 0.4068 0.061*
C16' −0.1818 (2) 0.0022 (2) 0.4129 (3) 0.0858 (9)
H16A −0.2654 −0.0313 0.4006 0.129*
H16B −0.1548 0.0298 0.3330 0.129*
H16C −0.1871 0.0605 0.4727 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0254 (6) 0.0334 (7) 0.0211 (6) 0.0014 (6) 0.0027 (5) −0.0038 (5)
C2 0.0213 (6) 0.0390 (7) 0.0210 (6) 0.0017 (6) 0.0012 (5) −0.0044 (6)
C3 0.0274 (7) 0.0388 (8) 0.0271 (7) 0.0060 (6) 0.0032 (5) −0.0015 (6)
C4 0.0281 (7) 0.0466 (9) 0.0299 (7) 0.0044 (6) 0.0053 (6) 0.0039 (6)
C5 0.0307 (7) 0.0566 (10) 0.0262 (7) 0.0022 (7) 0.0087 (5) −0.0027 (7)
C6 0.0354 (8) 0.0456 (9) 0.0295 (7) 0.0015 (7) 0.0089 (6) −0.0103 (7)
C7 0.0298 (7) 0.0385 (8) 0.0257 (7) −0.0007 (6) 0.0045 (5) −0.0063 (6)
O8 0.0656 (8) 0.0368 (6) 0.0311 (6) −0.0050 (6) 0.0139 (5) −0.0102 (5)
C9 0.0405 (8) 0.0359 (8) 0.0317 (7) 0.0062 (6) 0.0044 (6) −0.0091 (6)
C10 0.0431 (9) 0.0337 (8) 0.0329 (8) 0.0110 (7) −0.0015 (6) −0.0025 (6)
O11 0.0395 (6) 0.0419 (6) 0.0330 (5) 0.0087 (5) 0.0049 (5) 0.0092 (5)
C12 0.0484 (9) 0.0305 (7) 0.0327 (8) 0.0005 (7) 0.0014 (7) 0.0052 (6)
C13 0.0386 (8) 0.0323 (8) 0.0306 (7) −0.0076 (6) 0.0026 (6) 0.0011 (6)
O14 0.0305 (5) 0.0331 (6) 0.0484 (7) −0.0034 (4) 0.0060 (5) −0.0088 (5)
C15 0.0286 (7) 0.0345 (7) 0.0267 (7) −0.0018 (6) 0.0049 (5) 0.0024 (5)
C16 0.0315 (8) 0.0398 (9) 0.0370 (8) −0.0073 (6) 0.0027 (6) 0.0032 (7)
C17 0.0251 (7) 0.0517 (10) 0.0399 (8) −0.0032 (7) 0.0043 (6) 0.0146 (7)
C18 0.0283 (7) 0.0469 (10) 0.0353 (8) 0.0096 (6) 0.0059 (6) 0.0089 (7)
C19 0.0322 (7) 0.0368 (8) 0.0288 (7) 0.0029 (6) 0.0035 (6) 0.0033 (6)
C20 0.0252 (6) 0.0358 (8) 0.0211 (6) −0.0013 (5) 0.0034 (5) 0.0027 (5)
C21 0.0244 (6) 0.0309 (7) 0.0257 (6) −0.0001 (6) 0.0046 (5) −0.0027 (6)
C22 0.0266 (7) 0.0336 (7) 0.0220 (6) −0.0012 (6) 0.0070 (5) −0.0004 (5)
C23 0.0260 (6) 0.0287 (7) 0.0220 (6) 0.0024 (5) 0.0026 (5) −0.0005 (5)
N24 0.0261 (6) 0.0375 (7) 0.0237 (5) −0.0049 (5) 0.0061 (5) −0.0066 (5)
N25 0.0242 (5) 0.0367 (6) 0.0229 (5) −0.0029 (5) 0.0039 (4) −0.0067 (5)
N1' 0.0292 (6) 0.0331 (6) 0.0197 (5) 0.0018 (5) 0.0057 (4) 0.0014 (4)
C4' 0.0285 (7) 0.0341 (8) 0.0216 (6) 0.0000 (6) 0.0020 (5) −0.0031 (5)
C5' 0.0343 (8) 0.0487 (9) 0.0230 (6) −0.0027 (7) 0.0043 (6) −0.0086 (6)
C6' 0.0305 (7) 0.0380 (8) 0.0236 (6) 0.0027 (6) 0.0058 (5) −0.0037 (6)
C7' 0.0349 (8) 0.0405 (8) 0.0323 (7) 0.0109 (6) 0.0092 (6) 0.0078 (6)
C8' 0.0372 (8) 0.0272 (7) 0.0265 (7) 0.0017 (6) 0.0064 (6) 0.0013 (5)
C9' 0.0499 (9) 0.0385 (9) 0.0311 (7) 0.0039 (7) 0.0001 (7) 0.0061 (6)
C10' 0.0774 (14) 0.0410 (10) 0.0352 (9) −0.0028 (9) 0.0092 (9) 0.0128 (7)
C11' 0.0757 (14) 0.0426 (10) 0.0466 (10) −0.0157 (9) 0.0262 (10) 0.0039 (8)
C12' 0.0409 (9) 0.0468 (10) 0.0555 (10) −0.0095 (8) 0.0138 (8) −0.0014 (9)
C13' 0.0377 (8) 0.0378 (8) 0.0346 (8) 0.0006 (6) 0.0047 (6) 0.0034 (6)
C14' 0.0307 (7) 0.0312 (7) 0.0273 (7) −0.0001 (6) −0.0015 (5) −0.0019 (6)
O1' 0.0327 (5) 0.0388 (6) 0.0314 (5) −0.0058 (4) 0.0052 (4) −0.0018 (4)
O2' 0.0381 (6) 0.0640 (8) 0.0335 (6) −0.0157 (6) 0.0017 (5) −0.0158 (5)
C15' 0.0457 (10) 0.0629 (12) 0.0430 (10) −0.0233 (9) −0.0026 (8) −0.0109 (9)
C16' 0.0484 (12) 0.113 (2) 0.0931 (19) −0.0321 (13) −0.0237 (12) 0.0484 (17)

Geometric parameters (Å, º)

C1—N24 1.4542 (18) C21—C22 1.3556 (19)
C1—N25 1.4685 (17) C21—N25 1.3957 (16)
C1—C2 1.5135 (17) C22—N1' 1.4338 (17)
C1—H1 1.0000 C22—C23 1.4548 (19)
C2—C3 1.386 (2) C23—N24 1.3721 (17)
C2—C7 1.403 (2) C23—C4' 1.3790 (19)
C3—C4 1.396 (2) N24—H24 0.882 (18)
C3—H3 0.9500 N25—H25 0.883 (18)
C4—C5 1.383 (2) N1'—C6' 1.4620 (19)
C4—H4 0.9500 N1'—C7' 1.4687 (19)
C5—C6 1.383 (3) C4'—C14' 1.442 (2)
C5—H5 0.9500 C4'—C5' 1.5144 (19)
C6—C7 1.400 (2) C5'—C6' 1.527 (2)
C6—H6 0.9500 C5'—H5A 0.9900
C7—O8 1.366 (2) C5'—H5B 0.9900
O8—C9 1.4334 (18) C6'—H6A 0.9900
C9—C10 1.497 (2) C6'—H6B 0.9900
C9—H9A 0.9900 C7'—C8' 1.509 (2)
C9—H9B 0.9900 C7'—H7A 0.9900
C10—O11 1.4114 (19) C7'—H7B 0.9900
C10—H10A 0.9900 C8'—C13' 1.384 (2)
C10—H10B 0.9900 C8'—C9' 1.390 (2)
O11—C12 1.4079 (18) C9'—C10' 1.386 (2)
C12—C13 1.495 (2) C9'—H9 0.9500
C12—H12A 0.9900 C10'—C11' 1.367 (3)
C12—H12B 0.9900 C10'—H10 0.9500
C13—O14 1.4322 (18) C11'—C12' 1.382 (3)
C13—H13A 0.9900 C11'—H11 0.9500
C13—H13B 0.9900 C12'—C13' 1.395 (2)
O14—C15 1.3672 (18) C12'—H12 0.9500
C15—C16 1.395 (2) C13'—H13 0.9500
C15—C20 1.402 (2) C14'—O1' 1.2279 (17)
C16—C17 1.386 (2) C14'—O2' 1.3578 (17)
C16—H16 0.9500 O2'—C15' 1.448 (2)
C17—C18 1.381 (2) C15'—C16' 1.482 (3)
C17—H17 0.9500 C15'—H15A 0.9900
C18—C19 1.394 (2) C15'—H15B 0.9900
C18—H18 0.9500 C16'—H16A 0.9800
C19—C20 1.394 (2) C16'—H16B 0.9800
C19—H19 0.9500 C16'—H16C 0.9800
C20—C21 1.4912 (18)
N24—C1—N25 106.41 (11) N25—C21—C20 117.99 (11)
N24—C1—C2 110.67 (12) C21—C22—N1' 120.23 (12)
N25—C1—C2 110.68 (11) C21—C22—C23 120.64 (12)
N24—C1—H1 109.7 N1'—C22—C23 119.09 (12)
N25—C1—H1 109.7 N24—C23—C4' 123.99 (12)
C2—C1—H1 109.7 N24—C23—C22 114.94 (12)
C3—C2—C7 118.32 (12) C4'—C23—C22 120.95 (12)
C3—C2—C1 121.92 (13) C23—N24—C1 117.85 (12)
C7—C2—C1 119.74 (13) C23—N24—H24 115.7 (11)
C2—C3—C4 121.69 (14) C1—N24—H24 117.0 (11)
C2—C3—H3 119.2 C21—N25—C1 114.25 (11)
C4—C3—H3 119.2 C21—N25—H25 112.2 (11)
C5—C4—C3 119.02 (15) C1—N25—H25 113.9 (11)
C5—C4—H4 120.5 C22—N1'—C6' 110.52 (11)
C3—C4—H4 120.5 C22—N1'—C7' 111.12 (11)
C4—C5—C6 120.91 (13) C6'—N1'—C7' 113.80 (11)
C4—C5—H5 119.5 C23—C4'—C14' 120.22 (12)
C6—C5—H5 119.5 C23—C4'—C5' 120.30 (12)
C5—C6—C7 119.57 (14) C14'—C4'—C5' 119.46 (12)
C5—C6—H6 120.2 C4'—C5'—C6' 111.30 (11)
C7—C6—H6 120.2 C4'—C5'—H5A 109.4
O8—C7—C6 123.56 (14) C6'—C5'—H5A 109.4
O8—C7—C2 115.95 (12) C4'—C5'—H5B 109.4
C6—C7—C2 120.49 (14) C6'—C5'—H5B 109.4
C7—O8—C9 118.22 (11) H5A—C5'—H5B 108.0
O8—C9—C10 106.41 (12) N1'—C6'—C5' 113.37 (12)
O8—C9—H9A 110.4 N1'—C6'—H6A 108.9
C10—C9—H9A 110.4 C5'—C6'—H6A 108.9
O8—C9—H9B 110.4 N1'—C6'—H6B 108.9
C10—C9—H9B 110.4 C5'—C6'—H6B 108.9
H9A—C9—H9B 108.6 H6A—C6'—H6B 107.7
O11—C10—C9 106.62 (12) N1'—C7'—C8' 114.11 (12)
O11—C10—H10A 110.4 N1'—C7'—H7A 108.7
C9—C10—H10A 110.4 C8'—C7'—H7A 108.7
O11—C10—H10B 110.4 N1'—C7'—H7B 108.7
C9—C10—H10B 110.4 C8'—C7'—H7B 108.7
H10A—C10—H10B 108.6 H7A—C7'—H7B 107.6
C12—O11—C10 114.21 (12) C13'—C8'—C9' 118.85 (14)
O11—C12—C13 107.93 (12) C13'—C8'—C7' 121.60 (13)
O11—C12—H12A 110.1 C9'—C8'—C7' 119.27 (14)
C13—C12—H12A 110.1 C10'—C9'—C8' 120.77 (16)
O11—C12—H12B 110.1 C10'—C9'—H9 119.6
C13—C12—H12B 110.1 C8'—C9'—H9 119.6
H12A—C12—H12B 108.4 C11'—C10'—C9' 120.05 (17)
O14—C13—C12 106.55 (12) C11'—C10'—H10 120.0
O14—C13—H13A 110.4 C9'—C10'—H10 120.0
C12—C13—H13A 110.4 C10'—C11'—C12' 120.14 (16)
O14—C13—H13B 110.4 C10'—C11'—H11 119.9
C12—C13—H13B 110.4 C12'—C11'—H11 119.9
H13A—C13—H13B 108.6 C11'—C12'—C13' 120.06 (17)
C15—O14—C13 118.19 (12) C11'—C12'—H12 120.0
O14—C15—C16 123.66 (14) C13'—C12'—H12 120.0
O14—C15—C20 115.89 (12) C8'—C13'—C12' 120.10 (15)
C16—C15—C20 120.43 (14) C8'—C13'—H13 119.9
C17—C16—C15 119.99 (15) C12'—C13'—H13 119.9
C17—C16—H16 120.0 O1'—C14'—O2' 121.26 (13)
C15—C16—H16 120.0 O1'—C14'—C4' 126.49 (13)
C18—C17—C16 120.57 (14) O2'—C14'—C4' 112.25 (12)
C18—C17—H17 119.7 C14'—O2'—C15' 116.83 (12)
C16—C17—H17 119.7 O2'—C15'—C16' 110.61 (17)
C17—C18—C19 119.21 (14) O2'—C15'—H15A 109.5
C17—C18—H18 120.4 C16'—C15'—H15A 109.5
C19—C18—H18 120.4 O2'—C15'—H15B 109.5
C20—C19—C18 121.60 (15) C16'—C15'—H15B 109.5
C20—C19—H19 119.2 H15A—C15'—H15B 108.1
C18—C19—H19 119.2 C15'—C16'—H16A 109.5
C19—C20—C15 118.12 (13) C15'—C16'—H16B 109.5
C19—C20—C21 119.28 (13) H16A—C16'—H16B 109.5
C15—C20—C21 122.59 (12) C15'—C16'—H16C 109.5
C22—C21—N25 119.80 (12) H16A—C16'—H16C 109.5
C22—C21—C20 121.84 (12) H16B—C16'—H16C 109.5
N24—C1—C2—C3 30.99 (17) C21—C22—C23—N24 6.9 (2)
N25—C1—C2—C3 −86.73 (16) N1'—C22—C23—N24 −175.27 (12)
N24—C1—C2—C7 −150.56 (13) C21—C22—C23—C4' −169.29 (14)
N25—C1—C2—C7 91.72 (15) N1'—C22—C23—C4' 8.5 (2)
C7—C2—C3—C4 −0.4 (2) C4'—C23—N24—C1 −157.44 (13)
C1—C2—C3—C4 178.09 (13) C22—C23—N24—C1 26.47 (18)
C2—C3—C4—C5 0.0 (2) N25—C1—N24—C23 −55.37 (16)
C3—C4—C5—C6 0.6 (2) C2—C1—N24—C23 −175.67 (12)
C4—C5—C6—C7 −0.8 (2) C22—C21—N25—C1 −24.73 (19)
C5—C6—C7—O8 −179.74 (15) C20—C21—N25—C1 162.10 (13)
C5—C6—C7—C2 0.4 (2) N24—C1—N25—C21 53.10 (16)
C3—C2—C7—O8 −179.70 (13) C2—C1—N25—C21 173.39 (12)
C1—C2—C7—O8 1.80 (18) C21—C22—N1'—C6' 139.13 (14)
C3—C2—C7—C6 0.1 (2) C23—C22—N1'—C6' −38.69 (17)
C1—C2—C7—C6 −178.37 (13) C21—C22—N1'—C7' −93.54 (16)
C6—C7—O8—C9 19.4 (2) C23—C22—N1'—C7' 88.65 (16)
C2—C7—O8—C9 −160.75 (13) N24—C23—C4'—C14' 6.2 (2)
C7—O8—C9—C10 160.67 (13) C22—C23—C4'—C14' −177.91 (13)
O8—C9—C10—O11 −68.86 (15) N24—C23—C4'—C5' −172.46 (14)
C9—C10—O11—C12 163.21 (13) C22—C23—C4'—C5' 3.4 (2)
C10—O11—C12—C13 −167.25 (13) C23—C4'—C5'—C6' 15.1 (2)
O11—C12—C13—O14 62.76 (15) C14'—C4'—C5'—C6' −163.57 (13)
C12—C13—O14—C15 172.76 (12) C22—N1'—C6'—C5' 57.81 (15)
C13—O14—C15—C16 0.2 (2) C7'—N1'—C6'—C5' −68.03 (15)
C13—O14—C15—C20 −177.99 (12) C4'—C5'—C6'—N1' −46.07 (17)
O14—C15—C16—C17 −175.38 (15) C22—N1'—C7'—C8' 158.26 (13)
C20—C15—C16—C17 2.7 (2) C6'—N1'—C7'—C8' −76.22 (16)
C15—C16—C17—C18 −0.7 (2) N1'—C7'—C8'—C13' −34.0 (2)
C16—C17—C18—C19 −1.4 (2) N1'—C7'—C8'—C9' 152.10 (14)
C17—C18—C19—C20 1.4 (2) C13'—C8'—C9'—C10' −1.3 (2)
C18—C19—C20—C15 0.7 (2) C7'—C8'—C9'—C10' 172.83 (16)
C18—C19—C20—C21 179.96 (13) C8'—C9'—C10'—C11' 1.2 (3)
O14—C15—C20—C19 175.56 (13) C9'—C10'—C11'—C12' −0.3 (3)
C16—C15—C20—C19 −2.7 (2) C10'—C11'—C12'—C13' −0.6 (3)
O14—C15—C20—C21 −3.7 (2) C9'—C8'—C13'—C12' 0.4 (2)
C16—C15—C20—C21 178.04 (13) C7'—C8'—C13'—C12' −173.59 (16)
C19—C20—C21—C22 −49.5 (2) C11'—C12'—C13'—C8' 0.6 (3)
C15—C20—C21—C22 129.79 (16) C23—C4'—C14'—O1' −4.2 (2)
C19—C20—C21—N25 123.54 (15) C5'—C4'—C14'—O1' 174.51 (14)
C15—C20—C21—N25 −57.19 (19) C23—C4'—C14'—O2' 175.85 (13)
N25—C21—C22—N1' 174.95 (13) C5'—C4'—C14'—O2' −5.5 (2)
C20—C21—C22—N1' −12.2 (2) O1'—C14'—O2'—C15' 3.5 (2)
N25—C21—C22—C23 −7.3 (2) C4'—C14'—O2'—C15' −176.51 (15)
C20—C21—C22—C23 165.62 (13) C14'—O2'—C15'—C16' 88.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N24—H24···O1′ 0.882 (18) 2.015 (18) 2.6928 (16) 132.8 (15)
N25—H25···O14 0.882 (18) 2.441 (17) 2.9744 (17) 119.3 (13)
C6—H6···O1′i 0.95 2.42 3.3516 (19) 168
C18—H18···O1′ii 0.95 2.42 3.3613 (19) 174

Symmetry codes: (i) −x, y+1/2, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5393).

References

  1. Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589. [DOI] [PMC free article] [PubMed]
  2. Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166. [DOI] [PMC free article] [PubMed]
  3. Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387. [DOI] [PMC free article] [PubMed]
  4. Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.
  5. Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.
  6. Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.
  9. Hieu, T. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Compd, 45, 1406–1407.
  10. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307–1308.
  11. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432. [DOI] [PMC free article] [PubMed]
  12. Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849. [DOI] [PMC free article] [PubMed]
  13. Hiraoka, M. (1982). In Crown Compounds. Their Characteristic and Application Tokyo: Kodansha.
  14. Khieu, T. H., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol’yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.
  15. Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.
  16. Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.
  17. Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. pp. 35–37.
  18. Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.
  19. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813007241/cv5393sup1.cif

e-69-0o565-sup1.cif (37.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813007241/cv5393Isup2.hkl

e-69-0o565-Isup2.hkl (405.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813007241/cv5393Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES