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Abstract
Discovering molecular components and their functionality is key to the development of
hypotheses concerning the organization and regulation of metabolic networks. The iterative
experimental testing of such hypotheses is the trajectory that can ultimately enable accurate
computational modelling and prediction of metabolic outcomes. This information can be
particularly important for understanding the biology of natural products, whose metabolism itself
is often only poorly defined. Here, we describe factors that must be in place to optimize the use of
metabolomics in predictive biology. A key to achieving this vision is a collection of accurate time-
resolved and spatially defined metabolite abundance data and associated metadata. One
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formidable challenge associated with metabolite profiling is the complexity and analytical limits
associated with comprehensively determining the metabolome of an organism. Further, for
metabolomics data to be efficiently used by the research community, it must be curated in
publically available metabolomics databases. Such databases require clear, consistent formats,
easy access to data and metadata, data download, and accessible computational tools to integrate
genome system-scale datasets. Although transcriptomics and proteomics integrate the linear
predictive power of the genome, the metabolome represents the nonlinear, final biochemical
products of the genome, which results from the intricate system(s) that regulate genome
expression. For example, the relationship of metabolomics data to the metabolic network is
confounded by redundant connections between metabolites and gene-products. However,
connections among metabolites are predictable through the rules of chemistry. Therefore,
enhancing the ability to integrate the metabolome with anchor-points in the transcriptome and
proteome will enhance the predictive power of genomics data. We detail a public database
repository for metabolomics, tools and approaches for statistical analysis of metabolomics data,
and methods for integrating these dataset with transcriptomic data to create hypotheses concerning
specialized metabolism that generates the diversity in natural product chemistry. We discuss the
importance of close collaborations among biologists, chemists, computer scientists and
statisticians throughout the development of such integrated metabolism-centric databases and
software.

1 Introduction
The metabolome of a biological sample defines the steady-state levels of the intermediates
and end products of the metabolic networks that constitute that sample. Thus, metabolomic
data reflect the ultimate expression (output) of a genome at the metabolic level.1, 2 It
follows, therefore, that by comparing the metabolomes of two samples that differ in their
metabolic outputs, one gains insights as to the structure of the metabolic network that
supports the metabolic outcome of these samples.

Moreover, because the structure of the metabolic network is the result of the programmatic
expression of the genome, modified by environmental inputs, metabolomics data, integrated
with additional ‘omics levels datasets, can provide insights into the systems level control
and regulation of metabolic outcomes. For example, the quantitative determination of the
metabolomes of tissues/organs that express different levels of a specific metabolic end-
point, when integrated with additional –omics level expression profiles can facilitate the
identification of genes/enzymes that are components of the biosynthetic pathway supporting
that metabolic end-point. In the extreme, some specialized natural products of plant are
synthesized and accumulate in dedicated structures (e.g., trichomes, glands, laticifers).
Presupposing that there is no intercellular trafficking involved in the biosynthesis of the
targeted metabolite, the metabolomes of the cells that hyperaccumulate the target metabolite
will be populated by metabolic intermediates of its biosynthesis.

In a simple metabolic model, in which biosynthetic capacity is determined by transcriptional
regulation, one would anticipate that the relative abundance of transcripts encoding enzymes
involved in that biosynthetic pathway is proportional to the level of the product of that
pathway. In this case, it would be a statistically straightforward task to correlate transcript
levels to products of metabolism and to assign function to gene responsible to metabolism.
However, the regulatory complexity of the interrelationships among genes, gene products,
and metabolites often confounds the interpretation of multivariate datasets.

A second challenge to integrating transcriptomics and metabolomics data is the asymmetric
nature of the analytical technologies that capture these datasets. Whereas RNA-seq
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technologies have the sensitivity to determine nearly the entire transcriptome of a sample,
current metabolomics technologies are far from such capabilities. The plant metabolome has
been estimated to be as large as 200,000 compounds,3 but metabolomics datasets are likely
50 to a few thousand compounds, many of which are not chemically identified. Yet,
metabolomics data is an absolute requirement for deciphering the functionality of transcripts
and their translated protein products. Despite these limitations, the literature is replete with
the successful findings from studies that are based upon correlations among transcript
abundance data with the corresponding metabolic product.4–21 For example, the relative
abundance of transcripts encoding alkaloid biosynthetic enzymes correlate well with the
induction of benzylisoquinoline accumulation in Papaver somniferum.4, 17 Comparison of
transcriptomes and metabolomes (particularly fatty acid and lipids) of developing seeds that
accumulate “unusual” fatty acids has led to the discovery of a series of FAD2-related
enzymes6–11 that are responsible for the generation of hydroxy fatty acids,6 epoxy-fatty
acids,7, 8 conjugated fatty acids,9, 10 and acetylenic fatty acids.7, 11 These fatty acids
accumulate in taxonomically discrete clades, and they have properties that make them
attractive commodity chemicals in industrial applications (e.g., as coatings, surfactants and
varnishes).22 Hence, comparing transcriptomics and metabolomics data has enabled the
identification of a wide variety of genes.

A general framework for a metabolomics database, including the importance of data
consistency and deposition of full metadata, has been described.23 However, at present, only
a few publically accessible metabolomics databases exist; most of these contain datasets
from carefully defined samples with a common biological theme. For example, one such
database, Plant Metabolomics (http://www.plantmetabolomics.org/),24, 25 contains
metabolomics data from Arabidopsis seedlings representing 200 mutants in genes of
unknown function, and mutations in these genes do not show an obvious morphological
phenotype.24 Hence, the sole criteria for additional research on these mutants would be
metabolic differences that are revealed to the research community via this data. Such data
has enabled research on the role of novel plant lipids, such as Lipid A, a lipid that is
considered unique to gram-positive bacteria,26 the role of enzyme redundancies associated
with FAE1-like27 and ELO-like28 fatty acid elongase components of Arabidopsis, and
informed novel evolutionary and functional insights into the non-enzymatic FAP proteins.29

AtMetExpress, (http://prime.psc.riken.jp/lcms/AtMetExpress/)30 contains data and
comprehensive metadata from carefully defined organs and developmental stages of
Arabidopsis (for which microarray data is available from AtGeneExpress),31 as well as from
20 ecotypes of this species. A third example, The Medicinal Plant Metabolomics Resource
(MPMR, http://www.medicinalplantmetabolimics.org/),32, 33 presents metabolomics data for
12 species. Its companion database, Medicinal Plant Genomics Resource (http://
medicinalplantgenomics.msu.edu/) contains transcriptomics data from the same biological
samples. To date, these resources have supported the identification of metabolic
intermediates, reactions and genes from medicinal species including: identification of a gene
encoding a cytochrome P450 which catalyzes a step in the synthesis of the alkaloid 19-O-
acetylhorhammericine in Catharanthus roseus;34 identification of unusual
phloroacylglucinols in Hypericum gentianoides;33 characterization of the evolutionary
origin of different accessions of Prunellla vulgaris;32 insight into the stereospecificity of
quinoline alkaloid synthesis in Camptotheca acuminata;32 cloning of three enzymes of
cardenolide synthase, C4 sterol methyloxidase, and progesterone 5b-reductase from
Digitalis purpurea;35 and identification of genes encoding valerena-1,10-diene synthase in
Valeriana officinalis,32 and their role in the synthesis of sesquiterpenes in that species that
have biological activities in mammals.36

Here, we describe approaches to construction of a metabolomics database that is scalable,
flexible and can support researchers in deposition of metabolomics data and metadata. (In
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this context, metadata includes information detailing the growth conditions, biological
material sampled, experimental protocols, and statistical and computational methods.) We
also discuss methods for statistical analysis and visualization of metabolomics data; the
usefulness of interactivity among data and metadata in data analysis; and statistical and
technical approaches to integrate metabolomics data with other data types. We detail the
importance of involving biologists, chemists, computer scientists and statisticians at every
stage of development. These key features can enable intuitive use of the metabolomics data
by researchers, and rapid and meaningful data analysis. Such capabilities empower
researchers to create testable hypotheses concerning biological networks, energy flow in
living organisms, or the ontogeny of the specialized metabolism that generates diversity in
natural product chemistry.

2 Development of standardized, public, metabolomics databases
To best enable the use of metabolomics data by researchers worldwide, it is important to
house them in public databases that provide a venue for researchers to deposit and analyze
metabolomics data and metadata, and other data types. In planning a database and its
associated user interface and software, the intended uses of the deposited data need to be
kept in mind. Programming a database that will effectively house and efficiently retrieve
data growing number of species, sample conditions, genotypes, analytical platforms, and
metadata types, and also provide a user-friendly, adaptable interface by which biochemists,
chemists and biologists can analyze the data, requires careful design and implementation. In
general, a more flexible and generalizable database is more difficult to design and
implement than a hard-coded database, however, flexibility and generalizability for
metabolomics is important because it can better adapt to the rapid pace of technological
improvements in data analysis and computation.

As a result of these considerations, the combined expertise of computer scientists, analytic
chemists and biologists/biochemists is required in the planning stage and thereafter. Also
important are iterative cycles of alpha-testing by a wide variety of intended users, followed
by improvements by the designers/programmers. However, there are almost always large
gaps in understanding of concepts and terminology used by different disciplines. Thus,
developing a useful database requires considerable investment of time in careful planning
and mutual understanding of aims and capabilities among computer scientists, biologists,
statisticians and chemists, as well as constant communication among these groups during
implementation.

Another aspect that is critical to a useful database is data and metadata quality. A database
can only be as good as the quality of data and metadata it contains. To maximize the utility
of the database, such that researchers most benefit by analysis of metabolomics data at a
systems level, the members of each research group that contribute data must be responsible
for ensuring submission of complete and clear data and metadata. One possible solution,
which would require a bit more from reviewers, would be to require entry of metabolomics
data and metadata prior to publication in a database; the entry would be cleared for
completeness and released to the public at the time of acceptance of the manuscript for
publication.

3 Approaches and innovation in metabolomics data storage and
visualization
3.1 Metabolomics data storage

Combining metabolomics data from targeted and non-targeted analytical platforms is often a
good approach for evaluating the composition of biological material.24, 25 GC-MS platforms
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are typical for targeted metabolomic analyses because of the existing established protocols
and the simplicity of chemical interpretation. LC-TOF MS, LC-QTOF MS and FT-ICR MS
platforms are widely used for non-targeted metabolomics, as they provide data for large
numbers of metabolites that can be concurrently evaluated in a scan. Storing data derived
from multiple platforms requires additional considerations regarding the formats of the
metadata and the metabolomics data itself.23, 37

Typically, metabolomics databases use generic file systems and/or Structured Query
Language (SQL)-based database systems for storing and analyzing processed data and/or
raw data. Several existing web resources enable researchers to store data, share data, and/or
retrieve data in a flat file format. For example, researchers can download plant
metabolomics data derived from a variety of analytical platforms from Data Resources Of
Plant Metabolomics (DROP Met, http://prime.psc.riken.jp/?action=drop_index)(which
includes the AtMetExpress datasets)) stores metabolomics data and any associated metadata
on a file server, and provides links to a variety of files, including raw GC/MS data (ANDI-
MS/NetCDF file (*.cdf)), excel files (*.xlsx), and simple text files (*.txt). Researchers can
also submit their own metabolomics data to DROP Met.30 The recently constructed
MedPITranscriptome38 stores metabolomics data, from two analytical platforms, of 23
medicinal plant species as simple text and excel files.

MetabolomeExpress (https://www.metabolome-express.org/) is a data resource for GC/MS,
GC/Quadrupole MS, and GC/TOF MS platforms that uses a File Transfer Protocol (FTP)
repository to store experimental data and enables virtual data exchange, combined with an
SQL-based database which stores metadata and metabolite response statistics.39 A
significant feature is that researchers can upload the data as raw GC/MS files and/or
processed data to the FTP repository. When a user uploads raw data, MetabolomeExpress is
able to process it, using MSRI (Mass-spectral and retention-index) Library Matching
algorithm.39 The user can also download metabolomics data in several data formats.

SetupX (http://fiehnlab.ucdavis.edu:8080/m1/) stores experimental data and its metadata in
SQL-based database systems (MySQL, Oracle DB and native XML DB).40 According to the
report by SetupX, this resource contains data from 75 species and provides annotated
compounds that have been identified by BinBase,41 which it utilizes for automated
metabolite annotation. Furthermore, SetupX allows the sharing of files, such as documents,
metadata, and image files uploaded by researchers. Researchers are able to download
metabolomics data as raw GC/MS and GC/TOF MS files from the site. A significant feature
is that after installing the SetupX program (https://code.google.com/p/setupx), researchers
can use it to analyze their private data and its metadata.

Plant Metabolomics data is linked to phenotypic information and data concerning gene
function24 To store data and its metadata, Plant Metabolomics employs an SQL-based
database, MySQL. This resource contains data from 9 experiments and 8 analytical
platforms (Ceramide; Fatty Acids; Amino Acids; Phytosterols; Isoprenoids; Lipidomics;
Non-targeted GC-TOF; CE-MS). Researchers can download the data and metadata in a flat
file format.

Initial metabolomics datasets were somewhat limited in size, containing information on tens
to a few thousand of metabolites (only some of which were chemically identified), thus
relatively little storage was required and conventional flat file or SQL-based storage was
sufficient to store and retrieve the data. With the acceleration of metabolomics technologies
and the increased accessibility of these technologies, metabolomics datasets are capturing
information on thousands to tens of thousands of known and unknown compounds. In
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addition, if metabolomics and transcriptomics data (obtained from the same biological
materials) are to be integrated, further increases in storage and access capacity are needed.

Because metabolomics and transcriptomics have different types of metadata (for example,
molecular mass and structural metadata versus sequence metadata), it is conceptually a
challenge to design and implement a schema for an integrated database.

To address the rapidly expanding amount of data, Plant Metabolomics Resource (PMR;
http://www.metnetdb.org/pmr/), a database that is newly established for metabolomics and
transcriptomics data and associated metadata for plants and microorganisms, has been
designed and implemented. PMR incorporates a data storage system that considers
scalability of data storage and facile data integration with transcriptomics data. It also
emphasizes the analysis of data and its associated metadata, which is rich in information
concerning each sample, metabolite and transcript. PMR uses a unique hybrid storage
system that combines the SQL-based MySQL database with a NoSQL-based database
(http://nosql-database.org/).42–44 NoSQL (also called “Not only SQL”) is a new database
platform designed to address the storage and retrieval of non-relational, distributed, and
horizontally scalable data. NoSQL is schema-free, as opposed to more traditional databases
that are built primarily using tables and rely on queries in SQL. As such, NoSQL databases
are highly optimized for retrieve-and-append operations, making them ideal for large
volumes of data. NoSQL databases fall into several categories according to the way they
store the data, three of the more common being: key–value stores (schema-free and
compatible with many programming languages);45 document-oriented databases
(information is stored as a flexible “document”, and is usually encoded into JSON
(JavaScript Object Notation) or BSON (Binary JSON) format.);46, 47 and graph and network
databases (ideal for data that has strong relationships among entities).48

With the increasing quantity and variety of biological data generated by metabolomics and
transcriptomics analyses, there is a need to provide curated information from large volumes
of data with high-performance and interoperability. Therefore, in order to construct the PMR
database, we used a document-oriented NoSQL database, MongoDB (10gen Co.,
USA).49–51 Relational database models such as SQL require a given relationship model be
established among the entities. They also require, for performance reasons, organizing and
optimizing the fields and tables in the database. In contrast, document-oriented storage is
already optimized to: 1) readily integrate diverse metadata (between metabolite and
transcript entities) without considering the relationships among these entities in the database
design; 2) reduce development and design time for the programmers of the database,
analysis, and visualization; and 3) enable an expandable storage system that contains the
data (in our case, e.g., levels of metabolites, and transcripts (RNA-seq or microarray) and
metadata (sequence data, motif information, Gene Ontology(GO) annotations, pathway/
network information, regulon membership, and other data types). Consequently, a large
dataset can be quickly retrieved from PMR’s database server, and analyzed and visualized
by user-selected protocols. Fig. 1 shows the systems architecture of PMR including the
hybrid storage system for data integration. The system is primarily composed of three
components: 1) SQL-based storage system for metabolomics data and metadata; 2) a
NoSQL-based storage system for metabolomics and transcriptomics data and metadata; 3) a
portal for analysis and visualization that includes a service (iMetaTrans, detailed in Section
4.2) for co-analysis of transcriptomics data with metabolomics data.

Metabolomics data for the 18 species (34 experiments most using multiple analytical
platforms) currently in PMR can be downloaded, and the associated unprocessed raw data is
available upon request to an administrator. The integrated metabolomics and transcriptomics
(RNA-seq) data, with additional metadata for transcript sequences, (predicted) protein
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amino acid sequences, GO annotations and more, are available for two of these species
(Echinacea purpurea and Hypericum perforatum). Data that is deposited as private will be
converted to public data after publication. In its present iteration, metabolomics data, related
metadata, and (if available) associated transcriptomics data, can be submitted to PMR by
researchers in the community; soon, researchers will be able to use PMR to submit,
compare, and download transcriptomics and metabolomics data gathered from the same
samples for all species.

3.2 Processing and statistical analysis of metabolomics data
Metabolomics data analysis, predominantly statistical, can be considered as encompassing
three aspects, and in some cases, a fourth: 1) The raw metabolomics data is processed and
analyzed. 2) Comparison/quality assessments are made across replicates. 3) Metabolite
levels/types are compared among samples. 4) Metabolomics data can be integrated with a
wide variety of other data types, such as transcriptomics, pathway and network annotations,
or text mining data. Because different sources of metabolomics data often use differing
scales, data normalization is an essential step for analysis of the data.52, 53 Normalization
also helps to reduce the noise of variability induced by sources other than biological
variability.54

Often, raw metabolomics data is semi-manually processed; however manual analysis is
time-consuming, impractical for large datasets, and unwieldy for non-specialists. Thus, the
need for user-friendly software for raw data processing is immense. Recently, a web-based
platform to automate processing and to some extent analysis of non-targeted LC/MS data,
XCMS online (https://xcmsonline.scripps.edu/), has been developed.37 The software includes
MetAlign,55, 56 Mzmine,57 and XCMS,58 all of which are widely accepted by the
metabolomics community. XCMS Online allows researchers to upload data, compare several
samples using Principal Component Analysis (PCA) or Multidimensional Scaling (MDS),
and thus obtain an overview of the variances among samples or to identify potential outliers
in replicates, and to visualize the results. A meaningful tool for analysis is the mirror plot for
comparing metabolites between two samples and it represents up- or down-regulated
compounds between two samples.37

MetabolomeExpress, which also processes raw data, contains a variety of data analysis
methods for the GC/MS, GC/Quadrupole MS, and GC/TOF MS platform, including
combined statistics with more than two samples.39 One feature allows analysis of
metabolite-metabolite correlations within GC/MS datasets and creation of its correlation
network graphs using Cytoscape (http://cytoscape.org/).59

Chromatoplots60 is a very different approach for analyzing raw metabolomics data.
Designed for GC/MS data, it combines visualizations from several different Graphic User
Interface (GUI) toolkits and the XCMS package with an LC/MS based data analysis
approach in R (http://www.r-project.org/) to assist the user's understanding of the data.

It would be extremely informative to compare the results derived from various processing
methods for raw data, using a variety of molecular (and synthetic) materials, including:
experimental data from biological material; simulated data; data derived from biological
material that has been “spiked” with known levels of standard metabolites; and data derived
from a set of known levels of define metabolite standards. Although such types of
comparisons are rare for ‘omics data, they are important both for processing data and for
analysis of processed data, because they enable a better understanding of how the data and
its distribution might affect the analysis and results.
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Our focus here is on statistical approaches to analysis. Statistical considerations for
comparisons of metabolite patterns across biological materials, and of metabolomics data to
other data types are addressed in Section 4.1.

3.3 Metabolomics data visualization: comparison of two samples
Visualization of metabolomics data is distinct from its analysis, in that it deals with the way
each type of analysis is displayed and how the user can interact with the data, but it is also
used to extract information from the data. Data visualization is a well-developed area for
multivariate statistical analysis for small data display. However, visualization of large
‘omics datasets requires more consideration.61–63

Visualizing complex, multidimensional datasets is extremely challenging, even when only
two samples are being compared. Researchers often use ratio plots (Fig. 2) in order to
visualize metabolite differences between two samples.24, 25 In ratio plots, the x-axis shows
the mean fold-change of the relative abundance of each metabolite between the two samples
that the user selected. Metabolites that have a relatively low fold-change between these two
samples are close to the central vertical y-axis; metabolites that have a higher fold-change
are farther from the central vertical y-axis.

An alternate visualization is a volcano plot (Fig. 3).63–66 Volcano plots are sometimes used
for visualization of statistical results of omics data such as differential expression of genes
measured through microarrays. The interactive volcano plot has the power to show at a click
of a mouse button which metabolites show a stronger combination of fold change and
statistical significance. They represent significance from a statistical test (such as a p-value)
on the y-axis and fold-change on the x-axis. They can also compare metabolite levels with
different experimental conditions. As a consequence, metabolites in the volcano plot that
have a relatively low fold-change between the two samples appear near the center and
metabolites that have significant p-values are found in the upper-right or upper-left.

The volcano plot provided by PMR (Fig. 3) illustrates a powerful implementation of
interactive visualization and improved interpretation capabilities. To implement the
interactive volcano plot, we employed HighCharts software (Highsoft Solutions AS, USA)
written in JavaScript. It has high performance and easier to implement the volcano plot than
software based on browser plugin technologies, such as Silverlight (Microsoft, USA)67 and
Adobe Flash (Adobe, USA)68. The plots can be interactively manipulated by researchers,
and a variety of information such as p-values, fold-change, chemical formulae, and chemical
classifications can be integrated.

3.4 Metabolomics data visualization: interactive display and comparison of multiple
samples

When analyzing data from more than two biological samples, it is important to integrate data
interactively with existing metadata and chemical information. Researchers require
visualization tools for extracting specific information from their data analysis and improving
the data interpretation. Some web-based platforms, such as XCMS online37 and
AtMetExpress,30 mostly provide results as an image file. Others, like MetabolomeExpress,39

provide a variety of interactive visualizations such as heatmaps, Chromatogram viewers for
GC/MS data, and 3D PCA plots. It also gives image files of the results: 2D PCA score plots
for the first two dimensionless Principal Components (PC), screen plots for the Eigen values
of the covariance matrix, and loading plots for each vector. However, in order to easily and
efficiently access massive, multiplatform metabolomics data with many types of metadata,
simple and intuitive design with interactive visualization is important.
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Recent advances in informatics using open source platforms have resulted in the
development of many tools to implement interactive visualization. One of them, D3js (http://
d3js.org), is a framework to create interactive plots with great functionality. This increases
the visibility of data, and users ability to interoperate complex data. Hur el at. introduced a
wide variety of approaches for visualizing complex and large datasets, in this case FT-ICR
MS analysis of 20 petroleum samples and its correlation with chemical and physical
properties69, 70 with Circos71 diagrams (http://circos.ca/). Because Circos diagrams support
an image that allows linkable and clickable images,72 they could be applied within a web-
based application for the visualization of metabolomics and transcriptomics data. Hive plots
(http://www.hiveplot.net/)71, 73 have been used to provide a framework for the interactive
visualization of a network relationship or the correlation among datasets, for example, Hive
plots designed to show quantitative comparisons of metabolomics and transcriptomics data.
Large-scale metabolomics studies could also benefit by visualization with Circos diagrams
and Hive plots. Both tools could help a user recognize and identify significant biological
features when comparing metabolomics data or transcriptomics data.

Implementing software that enables interactive visualization of integrated data provide a
technical challenge. Several analysis platforms, including PMR, XCMS online, SetupX, and
MetabolomeExpress, have developed tools that combine interactive visualization of
metabolomics and transcriptomics data. However, these platforms are limited by the fact
that they only allow the display of relatively small datasets (under several thousands data
points). In order to display larger amounts of data, a plot program that allows interactive
visualization could be combined with a browser plugin based technologies such as
Silverlight (Microsoft, USA)67 and Adobe Flash (Adobe, USA)68.

3.5 Emergent technologies for data storage, retrieval, and analysis of metabolomics data
The technology used for storing and analyzing metabolomics data can be critical to the
utility of the data. Until recently, conventional storage systems such as SQL-based databases
and FTP file systems have been used for storage and web-based analysis platforms. Newer
types of storage and informatics technologies like NoSQL, as is used in PMR, can enable
more rapid and efficient storage, retrieval, and analysis of very large metabolomics and
other ‘omics datasets. For example, Hadoop,74 a document-oriented NoSQL system that has
been integrated with the statistical analysis software R (http://www.r-project.com), can be
used directly to statistically analyze metabolomics and transcriptomics data.75, 76 Another
example is Neoj4,77 a graph and network based NoSQL system with a high-performance
database, a flexible network structure, and a graph database. Discovering natural plant
products and understanding of how these products are integrated into the overall network of
metabolism and its regulation, analyze and visualize many relationships among different
types of data and its metadata. Consequently, the variety of NoSQL-based approaches can
facilitate data integration between metabolomics and other types of data, including high
performance real-time data analysis. Thus, utilizing this type of technology will inform
systems biology investigations.

4 Correlation as a measure of association between biomolecules
Systems-level data, and a systems-level approach to its analysis can enrich our
understanding of all aspects of world around us.78 There are a wide number of systems-level
approaches for analysis of biological data. Here, we focus on the development and
implementation of an interactive statistical approach to metabolomics and transcriptomic
data.
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4.1 Statistical co-analysis of different ‘omics data types: metabolomics and
transcriptomics

Among the many considerations in the integrated statistical analysis of different data types
(e.g., fluxomics, metabolomics, transcriptomic networks, proteomics) and analytical
platforms (GC-MS, QTOF, etc.), we address three that pertain specifically to co-analysis of
transcriptomics (measured either by microarrays or Next Generation Sequencing) and
metabolomics. These are: a) different scales of measurement, for instance microarrays,
proteomics, and metabolomics have continuous scales of measurements whereas transcripts
measured through Next Generation Sequencing come in total count of short reads, i.e. a
discrete scale; b) arbitrary scales of measurement that require normalization procedures in
order to make measurements comparable; and c) data heteroskedasticity (a term used in
statistics to describe variances that are not constant across measurements) that is present
across omics data and includes induced technical and biological variability components that
differ across different platforms.

Normalization procedures can be used to convert data that are collected on arbitrary scales,
enabling data types to be compared to each other. Typical biological examples include
quantile and scale normalization for microarray data,79 and RPKM and FPKM for RNA-seq
data,80 both of which make measurements that are independent of total counts in the
samples analyzed. Because FPKM and RPKM normalization overcome the problem of
mixing discrete and continuous scales, they enable an integrated analysis across
metabolomics and transcriptomics without the requirement of developing specific methods
for mixing continuous/discrete scales. Unlike transcriptomics data, metabolomics data lacks
a “gold” standard for data normalization. Van den Berg et al.81 analyzed 10 types of
normalization procedures for metabolomics data, and reported that the conclusions of which
metabolites were most abundant/important depended on the normalization method used.

Understanding data variability is a fundamental step that can guide the choice of the right
statistical model for data analysis and inference. The appropriate statistical model will
reduce variance estimates and thus provide more accurate inferences. Heteroskedasticity of
microarray data has been extensively studied.82–85 For instance, variances in microarray
data are proportional to gene expression levels for transcripts that are near average in their
level of accumulation. Because of this, a log transformation stabilizes variances of
microarray data for such mid-range values. Technical variance of raw counts of short
sequences in RNA-seq data have a linear relationship with transcript expression, whereas
biological variance displays a larger, non-linear, and increasing relationship with the
measured level of transcript accumulation.86–88

Heteroskedasticity of many metabolomics measurements shows a similar pattern to the one
observed for microarray data, in which there seems to be a proportional relationship between
variances and measured abundances of metabolites (the larger the abundance, the larger the
variance). But this is not the case for metabolite abundances close to the detection limits.
Our experience with the data in the MPMR database32 was that log transformations
stabilized variances of abundances that were not close to the detection limit. However,
metabolomic data contrasts to transcriptomic data in that for metabolomic, the variability
among biological replicates is more erratic. This can be seen in the scatterplots of Fig. 4,
where metabolites detected in only one of a pair of biological replicates are represented as
circles parallel to the x- or the y-axis. The Spearman correlation coefficients between
pairwise combinations of biological replicates in scatterplot matrix of Fig. 4 also show that
biological (and/or extraction) variation of metabolites present at levels above the detection
limit is considerably larger than the variability that would be expected from microarray or
RNA-seq biological variation (e.g., Marioni et al.)89. The Venn diagram (Fig. 4) illustrates
this point numerically: a total of 449 metabolites were above detection limit across 3
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biological replicates of Atropa belladonna flower-buds, but only 222 of these metabolites
were above detection limit in all three biological replicates.

The integrated analysis of metabolomics and transcriptomics involves the following three
types of interrelated associations: metabolite vs. metabolite, transcript vs. transcript, and
metabolite vs. transcript. Since its introduction as a tool to measure co-expression in
microarray studies by Spelman et al, Pearson Correlation Coefficients have been a popular
method for estimating associations between transcript expression vectors.90 Pearson
correlation coefficients owes popularity to its ability to detect similarity between genomic
elements that have different absolute values of expression levels. Because it is a parametric
measure (it assumes that the data is normally distributed), it provides more accurate results if
the parameters are met. Alternative non-parametric approaches such as Jackknife91 and
Spearman correlation92 have also been used in order to overcome the issue of outliers and to
avoid relying on strong assumptions about the statistical distribution of the data.

Pearson and Spearman correlation coefficients are also common tools used for exploring
metabolite-metabolite associations.93 Spearman rank correlation is preferred by some in
analyzing metabolomics data because the very high dynamic range of metabolomics data
has a greater tendency to produce outliers.94 Steuer et al. hypothesized that the
experimentally observable patterns of correlation between metabolites result from biological
fluctuations of metabolic levels caused by the changing environment and the regulatory
steps of the metabolic network.95 The fluctuations propagate and ultimately create the
observable patterns of correlation. This is not always the case, for example, in samples of
Arabidopsis shoots harvested diurnally, the topology of the metabolite correlation network
was different from the KEGG96 biochemical pathways, indicating correlations among
metabolites do not always reflect a shared functionality.21, 97 Metabolomics data from yeast
exposed to varied conditions have shown high correlation of metabolites to genes that are
part of related biological processes, although the nature and extent of the correlations
depended on the metabolites involved and the physiological conditions.98

Interpretation of correlations, or the lack thereof, between metabolites and their function is
confounded because of incompleteness (or incorrectness) of data. For example, typically
both the metabolic and regulatory pathway data and the metabolomics data are incomplete.
Furthermore, studies comparing ‘omics data types involve biological material that is
compartmentalized (i.e., the data is derived from a mixture of different cell types, different
organellar compartments, and/or cells at different conditions of development).

Even though the specific mechanisms that impact the correlations among accumulation of
metabolites and transcripts are not completely understood under any environmental,
developmental, or genetic perturbation, a correlation analyses can be very useful in
identifying novel metabolite-metabolite and metabolite-transcript interactions. As detailed in
the introduction, parallel analysis of transcriptome and metabolome has successfully
identified small molecules and genetic elements involved in their metabolism.4–21

We give here a method for integrated ‘omics analysis using correlation coefficients as a
measure of similarity between transcript-metabolite profiles across samples under various
biological conditions (its implementation to create interactive software is described in
Section 4.2). A correlation coefficient equal to 1 would describe the ideal situation of perfect
similarity between metabolite/transcript profiles. Therefore, it can be argued that a
metabolite-transcript pair showing similar profiles would be affected in similar ways by the
biological processes taking place across various conditions. The task of finding which
transcripts have similar profiles to the one observed for a metabolite of interest is illustrated
in Fig. 5.
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Briefly, given the profile of a chosen metabolite (it could also be a transcript) the algorithm
estimates Pearson correlation coefficients between profiles of the chosen metabolite and all
transcripts present in the database. We used the Pearson correlation coefficient between log-
transformed metabolite abundance and transcript expressions (normalized as RPKM)
because an exploratory analysis of the data revealed that a log transformation stabilized
variances and caused the data to be fairly normally distributed. We obtained statistical
significance of correlation coefficients by testing the hypothesis Ho: ρ=0 through the

statistics t (r) = r / δr, where  corresponds to the standard deviation of
the Pearson correlation coefficient r. Under the specific conditions of the null hypothesis
Ho: ρ=0, only one of the variables in the correlated pair is required to be normally
distributed so that t(r) follows a Student’s t distribution with (n−2) d.f..99 The task of
finding transcripts and metabolomics with similar profiles involves tens of thousands of
statistical tests; the multiple tests problem has a high impact on the statistical significance of
the analysis. Therefore, we correct for multiple tests and report pFDR-values for each of the
pairwise comparisons. For example, a p-value cut-off of 0.05 allows 5% false positives, and
therefore a set of 1000 simultaneous tests will contain on average 50 false positives. This is
where calculation of False Discovery Rate (FDR) becomes relevant. The FDR is the
expected fraction of significant tests that are false positives. If we further consider that 200
of the 1000 tests in the example above are identified as statistically significant results, a
tolerance of 5% FDR will result in only 10 false discoveries. Several multiple testing
correction methods have been proposed in the literature, and the FDR correction proposed
by Benjamin and Hochberg100 is very popular. However, the FDR method has been found to
be too conservative for genome wide studies.101 Hishikawa et al. introduced a quantity
called pFDR which is defined as pFDR = E[F/S|S>0] where F is the number of False
Positives and S is the expected number of true Positives. Storey101, 102 defined a new
quantity called q-value, which is the minimum pFDR at which the given feature can be
called significant.

In order to check if our parametric approach suited the integrated analysis of metabolomics
and transcriptomics data, we performed a computer experiment where non-parametric null
distributions were generated for 35,992 randomly selected metabolite/transcripts correlation
coefficients, by randomly re-labelling the samples 5000 times and estimating the Pearson
correlation coefficient between randomly scrambled metabolite and transcript
measurements. Statistical significances of correlation coefficients obtained through the
parametric and non-parametric methods were compatible in 95% of cases, which
corroborates the validity of a parametric approach for the combined analysis of
metabolomics and transcriptomics data. Furthermore, the parametric approach overcomes
extensive computational time and storage requirements of the re-labelling method. Similar
comparisons between parametric and non-parametric approaches have been done for
transcript-transcript103 and metabolite-metabolite comparisons,94 both resulting in the same
conclusions as our experiment.

A bootstrap-based method has been used to create a null distribution for the correlation data
of metabolite to microarray data.104 However, to the best of our knowledge, a comparison of
parametric and non-parametric approaches had not been previously used for metabolite-
RNA-seq data.

4.2 Implementation of a co-analysis database and software for ‘omics data
Several challenges lie in implementing software to visualize and co-analyze metabolomics
data with other ‘omics data. For example, consider co-analysis of metabolomics data with
transcriptomics data. First, a well-structured schema for the database is essential.
Metabolomics and transcriptomics data and their metadata have complex interdependencies,
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which causes difficulty in data integration. One design solution is to utilize a schema-free
database system such as NoSQL, allowing for flexibility and more rapid redesign.

The second important issue is the ever-increasing need for computing speed to enable real-
time analysis of large and larger datasets. NoSQL methods provide solutions that address
this issue as well. As previously mentioned, in order to accelerate the co-analysis time
between metabolomics and transcriptomics data, PMR uses a document-oriented NoSQL
system, which has advantages in flexibility, scalability and performance, to reduce the time
to retrieve data from storage.50 The iMetaTrans service uses an internally-developed
application server to quickly calculate correlation coefficient values, p-values (using the
alglib library), and pFDR values.102

Fig. 5 shows a flowchart of co-analysis by PMR. First, the appropriate transcriptomic
samples are matched to the metabolomics data. Co-analysis is then performed and p-values
are calculated; if the data includes large numbers of metabolites/transcripts, pFDR values are
computed. The co-analysis is then loaded into PMR. From the resulting co-analysis table (an
example in shown in Fig. 6), researchers can view the sequences, sort the table, and interact
with detailed information by clicking the sequence ID.

These features integrate sequence and gene ontology information, permit real-time statistical
analysis and visualization, and thus allow interactive comparisons between large amounts of
metabolomics data and associated transcriptomics data. Using these approaches, analysis of
high dimensional data (e.g., 500 metabolites correlated pairwise with 20,000 genes, see
Section 3.1) can be addressed computationally. The asymmetry of the completeness (or lack
thereof) of metabolomics datasets, due to technical limitations of the analytical technology
remains a constraint on the ability of co-analysis of metabolomics data with transcriptomics
data.

5 Case study: Utilization of a metabolomics database to understand
biochemical function and gene redundancy - Insights into the FAE
Elongation (ELO) genes of Arabidopsis

Advances in whole genome sequencing have revealed the extent to which gene paralogs
exist within a genome.105–108 Deducing the biochemical function of each gene paralog and
obtaining insight into why this redundancy is retained within the genome becomes an
interesting yet complex problem. This case study illustrates how the PMR database can be
used to integrate metabolic profiling data with reverse genetics to provide insight and
testable hypothesises about gene redundancy within the Arabidopsis fatty acid elongase
(FAE) system. FAE is a complex system of integral membrane proteins that elongates pre-
existing saturated and unsaturated fatty acids of 16 and 18 carbon chain lengths to fatty acids
of greater than 18 carbons in length (VLCFA). This system is composed of four enzyme
components that act in an iterative cycle of Claisen condensation, reduction, dehydration
and a second reduction. Ketoacyl-CoA synthases (KCS) have been biochemically shown to
catalyse the Claisen condensation reaction. There are 21 KCS-coding genes in the
Arabidopsis genome.109, 110 In mammalian and yeast systems, the enzymes that catalyses
these Claisen condensation reactions are termed ELO.28, 111–115 The KCS enzymes share no
sequence similarity to the ELO enzymes, thus two apparently unrelated proteins occur able
to catalyse this Claisen condensation reaction. An unanticipated finding that genome
sequences have revealed is that plants contain ELO-like and KCS genes. Four such ELOs
are in Arabidopsis: AT3G06460 (AtELO1), AT4G36830 (AtELO2, HOS3), AT3G06470
(AtELO3), and AT1G75000 (AtELO4)116, 117 (and Cahoon unpublished work). These two
types of condensation enzymes are both located in the endoplasmic reticulum, which
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indicates that Arabidopsis ELO enzymes may provide a plant-specific FAE Claisen
condensation reaction functionality.

The role of the ELOs in plant VLCFA biosynthesis has yet to be confirmed, although it has
been hypothesized that the fatty acid products synthesized by ELO-containing FAE systems
are utilized in sphingolipid and phospholipid biosynthesis.116, 117

An Arabidopsis knock-down series was generated from three of the Arabidopsis ELO
(Atelo) knock-out lines, as part of the mutant lines evaluated by the Plant Metabolomics
2010 Consortium.25 These lines, generated by Dietrich and Cahoon (unpublished), exploit a
reverse genetic approach and use publically available Arabidopsis single knockout ELO T-
DNA lines (SALK_075185, Atelo2; SALK_109405, Atelo3; and SALK_083029, Atelo4).
The detailed metabolite profile produced for this knock-down series, includes data24 from
the three single knock-out lines; three double knock-out lines Atelo2∷Atelo3;
Atelo2∷Atelo4; Atelo3∷Atelo4; and the triple knock-out line Atelo2∷Atelo3∷Atelo4.
Integrating these metabolomics datasets with the statistical power and tools on PMR is
enabling a deeper understanding of the roles of enzyme and gene redundancy in the FAE
metabolic network.

In this study, each individual Atelo knock-out line, the double knock-out lines, the triple
knock-out line, and the wild-type Columbia control were compared against each other
interactively, and the data visualized by volcano plot. PMR enables t-test options (estimate
of variance and one/two tailed analysis); for this analysis the default settings were used
(Estimate of Variance using Auto-select and Two tails), a p-value cut-off of 0.05, and
detection limit values were ignored for non-detected metabolites. Using the knowledge that
ELO proteins in non-plant systems function as the condensing enzymes of FAE to inform
our computational research, we postulated that metabolites in fatty acid and its derivatives
would be the most affected in the mutant lines. Examining the entire set of nearly 1500
identified and unidentified metabolites that are profiled by the six platforms in the plant
metabolomics analysis of the ELO mutant lines, we determined that FAE-related
compounds were the main class of metabolites whose level was affected significantly across
the mutants lines. The investigation was thus focused on the analytical platforms that
specifically detect the FAE-related compounds. These platforms are: fatty acids, cuticular
waxes (data generated within Dr. Basil Nikolau’s research group), and lipidomics (data
generated within Dr. Ruth Welti’s research group, Kansas State University).25

The volcano plot for all pairwise comparisons of the Atelo knock-out lines indicates that
fatty acid accumulation for each of the three single gene knock-out lines are generally
unaffected; however, knocking down ELO activity further via double and triple knock-outs
decreases fatty acid accumulation significantly (Fig. 7). Presupposing that ELO activity is
decreased as more elo mutant alleles are combined, these data indicate that as ELO activity
is knocked-down, the impact on the plant’s metabolome, specifically fatty acid metabolism,
becomes more acute.

Volcano plots of all pairwise combinations of all reverse genetic lines and all analytical
platform data (shown in Fig. 8 for the pairwise comparison of WT versus double knock-out
Atelo2∷Atelo4) revealed that of the approximately 1,500 metabolites detected across the
platforms, virtually all of the metabolites that are differentially accumulated are fatty-acid-
derived metabolites. Volcano plots of all pairwise combinations of all reverse genetic lines
and all analytical platform data also revealed the knock-out line with the most severe
chemical phenotype (chemotype) is the double knock-out Atelo2∷Atelo3. This indicates that
when the third mutation (Atelo4) is introduced some type of recovery mechanism is induced
which lessens the numbers and types of metabolites affected.
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A comparison of each Arabidopsis line to the wild type control reveals a unique chemical
profile with defining metabolite characteristics. For example, analysis of the cuticular
VLCFA derivatives reveals an interesting trend. These metabolites were generally increased
in the ELO knock-out lines, indicating that FAE KCS may be upregulated and ‘over-
producing’ cuticular wax components as a consequence of the decreased ELO-type FAE
activity (Fig. 10).

In addition, VLCFA containing phospholipids and in some cases glycoglycerolipids are
significantly affected across the knock-out lines (figure not shown). Each Atelo knock-out
causes a distinct fingerprint of change in the accumulation of particular VLCFA-containing
phospholipids. For example, Atelo2 knock-out causes an increase in 36:1 species of
phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS)
while decreasing PS 40:1 and PS 42:1. In contrast, the major effect within the Atelo3 knock-
out line is decreased accumulation of phosphatidylinositol (PI) and PE metabolites and an
increase in C40 species of PC. Although the fatty acid profiles in the different ELO knock-
out lines have major differences, many VLCFA derivatives are unaffected by decreased
ELO gene expression.

One possible explanation is that as ELO-type FAE activity is knocked-down, the remaining
ELO, (i.e., AtELO1) and/or KCS-type FAE activity compensates for the decrease in ELO
functionality, but collectively these changes cannot fully recover the diverse fatty acid
profile expressed in the wild-type. An alternate explanation is that ELO proteins have a
unique role in VLCFA synthesis. A cursory examination of transcript expression profiles for
the ELO-like and KCS genes across multiple biological conditions visualized on the
MetaOmGraph database (http://www.metnetdb.org/MetNet_MetaOmGraph.htm)118–122,
shows that KCS transcripts appear generally more abundant than ELO-like transcripts (Fig.
8); RNA-seq data for a more limited number of biological conditions bears out this
observation quantitatively (Li and Wurtele, unpublished). Further, the accumulation of the
three ELO-like transcripts reveals very diverse patterns of accumulation for each gene
across multiple conditions. For example, ELO1 is more abundant in roots, whereas ELO2 is
relatively more abundant in hypocotyl and cotyledons. ELO3 accumulates to a higher level
and is abundant under most other conditions. It will be interesting to experimentally assay
transcript abundance of the ELO encoding gene(s) and the KCS encoding genes across the
knock-down series to better understand how the remaining VLCFAs are synthesized. This
research will be facilitated because the collections of biological material from the mutant
seedling of the Plant Metabolomics Consortium also includes biological material for
analysis of transcriptomics; thus, RNA-seq can be analyzed for the same samples used for
metabolomics analysis.

Collectively, these metabolomics analyses were greatly facilitated by having the
metabolomics data in a metabolomics database with software that enables highly interactive
analyses. The analysis indicate that ELO paralogs affect VLCFA accumulation, each
providing different substrate specificities, and that they likely function similarly to their
yeast and mammalian orthologs as condensing enzymes for FAE. Further, the ELO-
dependent FAE products appear to contribute to the pool of phospholipids and neutral
glycoglycerolipids, but do not appear to contribute to cuticular wax accumulation. Other
VLCFA-derived molecules, such as ceramides, wax esters (not targeted in the analytical
platforms of Plant Metabolomics) would be strong candidates for further investigation into
the additional roles of the ELO proteins.
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6 Conclusion
Considerable resources in effort and monetary expenditures are used in obtaining natural
product and other metabolomics data. Deposition of this data into a flexible database with a
user-friendly interface enables members of the research community to leverage this data on
a global scale for a variety of purposes. Such databases enable researchers to intuitively and
quickly assess data quality, compare metabolite levels across samples, annotations, evaluate
redundancies among different platforms in metabolite identification, or compare
metabolomics to other data types.

Biological systems, even at the cellular level, are complex and dynamic; existing models
capture only a small proportion of behavior. However, despite these limitations, current
approaches to systems-level studies are enabling extensive biological discovery. Bringing
metabolomics more intimately into the mix will further these advances.

By aggressively incorporating interactive visualization capabilities, the statistical analysis of
metabolomics data and its associated complex chemical information can be more easily
understood and placed in context. Co-analysis of metabolomics data with transcriptomics
data enables users to develop hypotheses that associate metabolites with genes that maybe
involved in their synthesis or regulation. The problems associated with the asymmetry
between the size of metabolomics and transcriptomics datasets can be prevailed with
appropriate statistical analysis. PMR provides an example of a metabolomics database with
data-dependent statistical analysis, interactive links among metadata, the genome and
metabolome and enables researchers to extract novel information concerning genes and
markers of natural compound biosynthesis.

Several key computational, biological and technical challenges have been discussed.
Analysis of high dimensional data can be addressed computationally for example using
NoSQL-type distributed approaches. However, interactive real-time computations of
relationships such as pFDR, pairwise value comparisons for large datasets, and various
network analyses with integrated data require significant computing resources, thus
computing speed needs to be further optimized. Models for co-analysis of combined data
types and for exploring data in the context of metabolic and regulatory networks are
conceptually challenging. To develop models that can be used to strengthen biological
understanding requires the combined effort for domain experts (biologists/biochemists/
chemists) and computer scientists. Interactive visualization using graphs, tables, Circos
diagrams, and Hive plots provide powerful ways to understand large-scale biological data.
These capabilities must be adapted to the data types, and much additional research is needed
to better visually represent the multidimensional nature of the data such that a researcher can
grasp salient features.

Other factors are due to current technological limitations. One of the greatest challenges,
which is due to limitations in analytical technologies, is that metabolomics analyses can
identify and measure only a small proportion of the metabolites in a biological material. For
example, in the case of natural products, many precursors are present in only very low
concentrations. Another example is that of unstable metabolites, which are often degraded
before their detection. Even more pervasive is current inabilities to identify detected
compounds. Thus, we are left with an incomplete picture of the metabolome. Another major
issue is that current methodologies of ‘omics analyses cannot decipher data on a
compartmental basis.

A user-friendly database with associated analysis capabilities is critical to the accessibility
and use of metabolomics data. As an expanding public resource, this capability can lead to
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discovery and development of testable hypotheses. In the future, new innovations will
further extend these capabilities and facilitate the road to predictive biology.
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Fig. 1.
System architecture of the hybrid data-storage for PMR. NoSQL-based storage for
integrated data contains transcriptomics and metabolomics data and metadata. This NoSQL-
based storage system works with the iMetaTrans services for the integrative co-analysis of
metabolomics, transcriptomics and metadata. SQL-based storage contains targeted and non-
targeted metabolomics data and its metadata. The PMR portal provides quality control
methods, comparison analyses and co-analysis.
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Fig. 2.
Log-ratio plot of metabolomics data. The x-axis is the mean ratio fold-change (plotted on a
log 2 scale) of the relative abundance of each metabolite between the two samples that the
user has selected. The y-axis represents each metabolite that has been analyzed. Metabolites
whose abundance is unchanged between the two samples will plot at the x-axis origin (the
green vertical line; ratio fold-change=1). Metabolites that hyper-accumulate in one of the
two samples under analysis will plot either to the left or right of the x-axis origin.

Hur et al. Page 23

Nat Prod Rep. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Volcano plot of metabolomics data. The x-axis is the mean ratio fold-change (plotted on a
log 2 scale) of the relative abundance of each metabolite between the two samples that the
user has selected (identical to the ratio plot, Figure 2). The y-axis represents the statistical
significance p-value of the ratio fold-change for each metabolite. Metabolites whose
abundance is unchanged between the two samples will plot at the x-axis origin (the green
vertical line; ratio fold-change=1). Metabolites that hyper-accumulate in one of the two
samples under analysis will plot either to the left or right of the x-axis origin. The order of
the metabolites on the y-axis is determined by the statistical significance p-value of the ratio
fold-change. The chemical nature of each metabolite is indicated by the color and shape of
each data-point.
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Fig. 4.
Reproducibility of abundance data for individual metabolites compared across biological
replicates. The figure illustrates the relative abundance of metabolites measured in 3
biological replicates of Atropa belladonna flower buds. Left panel (bar charts): the log
transformation of metabolite abundances shows that the data fits a normal distribution. The
number of metabolites that are above the analytical detection limit in each biological
replicate is shown at the upper right corner of the histograms. Scatterplots indicate the
reproducibility of the abundance data for individual metabolites across pairs of biological
replicates; each circle data-point represents an individual metabolite. Metabolites with
similar abundances in both replicates are located near the diagonal line. Metabolites detected
in only one biological replicate are indicated as data-points parallel to the x- and y-axis.
Spearman correlations estimate overall data reproducibility across each pair of replicates.
The number of metabolites above detection limit in each pair of biological replicates is
given below the Spearman correlation coefficient. Right panel. Venn diagram shows the
number of metabolites (above analytical detection limit) measured in the 3 biological
replicates. Although the total number of distinct metabolites detected across the three
biological replicates is 449 (upper right corner of the plot), only 222 metabolites were
detected in all 3 biological replicates.
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Fig. 5.
Flow-chart for parametric-based statistical approach to identify which the transcripts that
have similar expression profiles as compared to the abundance of a user-selected metabolite
(pFDR value). This approach has been implemented into iMetaTrans services in PMR. The
user selects a metabolite within an experiment, and the unique metadata is used to retrieve
the associated transcriptomic data. Metabolomic and transcriptomic data are integrated, and
correlation coefficients and p-values are calculated. Finally, pFDR values are computed
from the estimated p-values. The statistical approach to the co-analysis is details in section
4.1.
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Fig. 6.
Interactive co-analysis table showing the correlation between the abundance of a user-
selected metabolite with abundances of all transcripts in a dataset, as implemented in PMR.
The table in the upper panel exemplifies the correlation between the abundance of the
bioactive molecule hyperforin to the abundances of all transcripts obtained from RNAseq
analysis of reproductive and vegetative organs of Hypericum perforatum. The results
include Pearson correlation coefficients, p-values and pFDR values. This table contains all
transcripts (12,818) whose accumulation is correlated to hyperforin with a pFDR value of <
0.05 (a user-determined parameters). The list is ordered by most significant pFDR values;
thus, of the 30,000 transcripts detected by RNAseq analysis in H. perforatum, hyperforin
accumulation four Hyp-1 like transcripts (red arrows) are among the 10 most tightly
correlated. The experimental data used in these analysis are from the Medicinal Plants
Genomics Consortium; biological materials and metabolomics analysis32, 33 were from Matt
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Crispin, Iowa State University. Clicking on Sequence ID row for UDP-glucuronosyl
transferase (green arrow) brings the user to detailed information for that sequence (lower
panel). This latter page provides GO annotations, external links associated with the selected
Sequence ID, and interactive comparisons between transcriptomics data and metabolomics
data. Red represents transcriptomic data and blue represents user-selected data.
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Fig. 7.
Exemplary use of interactive volcano plots comparing fatty acid accumulation in ELO
mutants; visualized using PMR. These data are chosen by selecting a species (Arabidopsis
thaliana) and “Experiment 2” labeled as “A. thal 2010 (E2)”. These plots compare the fatty
acid data for each Atelo knock-out to wild-type (E2-2 E2) generated by the Fatty Acid
analytical platform. a) Atelo2-KO against wild-type; b) Atelo3-KO against wild-type; c)
Atelo4-KO against wild-type; d) Atelo2∷Atelo3-KO against wild-type; e) Atelo2∷Atelo4-
KO against wild-type; f) Atelo3∷Atelo4-KO against wild-type and g)
Atelo2∷Atelo3∷Atelo4-KO against wild-type. Blue data-points represent relative
abundances of individual metabolites. Statistical significance is indicated within the pale-
pink shaded regions on the plots, as defined by p-value of <0.05. Metabolites to the left of
the green x-axis origin (×1 fold change line) are less abundant in the knock-out mutant lines,
whereas metabolites to the right of this origin are more abundant in the knock-out lines. h)
clicking on any metabolite data-point on these panels (e.g., clicking on the metabolite in
Panel e) brings the user to the associated statistical information for that metabolite
(compound assignment, ratio, fold-change, t-test results, p-value, pFDR [in this case 5 ×
10−5]. In this case, its level is 30-fold more in the wild type control. i) Clicking on
metabolite name in panel h) leads the user to a bar plot, which reveal that each of the double
and triple ELO mutants express lower levels of this putative fatty acid.
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Fig. 8.
Exemplary use of interactive volcano plots comparing the metabolite accumulation patterns
from six analytical platforms in Atelo2∷Atelo4-KO mutant versus wild-type control (E2-2
E2); visualized using PMR. The plot represents all available metabolite data (1407
metabolites). Individual metabolites are plotted according to classification, and unclassified
metabolites appear in blue. Significance is indicated within the pale-pink shaded regions on
the plot, and p-value of < 0.05 was used during the analysis. Mousing over a metabolite
brings up its identity and statistics. The table at the right (sorted by pFDR value) shows
metabolites whose level is significantly altered. Metabolites to the left of the green ×1 fold
change line are less abundant in the knock-out, whereas metabolites to the right are more
abundant in the knock-out. Almost every metabolite whose accumulation is altered in an
ELO mutant is a known or suspected fatty-acid derived compound.
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Fig.9.
Exemplary use of volcano plots comparing cuticular wax accumulation; visualized using
PMR. These plots compare the data generated by the Cuticular Wax analytical platform for
each Atelo knock-out line to the wild-type lines (E2-2 E2). a) Atelo2-KO against wild-type;
b) Atelo3-KO against wild-type; c) Atelo4-KO against wild-type; d) Atelo2∷Atelo3-KO
against wild-type; e) Atelo2∷Atelo4-KO against wild-type; f) Atelo3∷Atelo4-KO against
wild-type and g) Atelo2∷Atelo3∷Atelo4-KO against wild-type. Blue data-points represent
relative abundances of individual metabolites. Statistical significance is indicated within the
shaded regions on the plot. Metabolites to the left of the green x-axis origin (×1 fold change
line) are less abundant in the knock-out mutant lines, whereas metabolites to the right of this
origin are more abundant in the knock-out mutant lines.
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Fig. 10.
Accumulation of 21 KCS and three ELO-like transcripts (ELO1, ELO2, ELO3) across
multiple conditions. Each point on the x-axis represents an mRNA transcriptomics profiling
data for the mean of the replicates for a given experimental sample. Samples are derived
from publicly available 956 Affymetrix ATH1 chip transcriptomic experiments (Mentzen
and Wurtele, 2008). The y-axis represents the normalized expression level for the user-
selected genes. The average transcript accumulation level for each chip is normalized to a
value of 100 (arrow pointed). These data are visualized using MetaOmGraph software (Feng
et al., 2012; http://www.metnetdb.org). a) Most of the 21 KCS transcripts are more abundant
than the three ELO-like transcripts, and all are diversely expressed across different
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conditions. b) Three ELO genes have distinct expression patterns. ELO4 (AT1G75000)
transcript is not represented in the ATH1 chip.
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