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Abstract
This paper summarizes the results of a Nutrient Biomarker Study in the Women’s Health
Initiative, and its application to studies of the association between energy and protein consumption
and the risk of major cancers and cardiovascular diseases. The presentation emphasizes
measurement error modeling and related data analysis methods, since addressing measurement
issues appears to be central to these topics and to progress in nutritional epidemiology more
generally. The manner in which body mass index is modeled in disease association analysis is
particularly challenging, since it could serve as a mediator or as a confounder of the association,
and at the same time contributes valuably to energy and protein consumption assessment. A
hazard ratio parameter estimation procedure that acknowledges body mass index as a possible
mediating variable is described and applied. Some aspects of the future nutritional epidemiology
research agenda are briefly discussed, including an ongoing human feeding study to develop
biomarkers for additional dietary components.
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1. INTRODUCTION
It is a pleasure to contribute a paper in honour of our esteemed colleagues Drs. Jack
Kalbfleisch and Jerry Lawless. Jack and Jerry have each had a tremendous impact on
statistical and biostatistical research methods, and on the analysis of failure time and life
history analyses in particular. Their theoretical and applied contributions have been
recognized by many Canadian and international awards. I was fortunate to co-author two
editions of a book on failure time methods with Jack (Kalbfleisch & Prentice, 2002), which
summarized the literature on a broad range of failure time topics, with emphasis on hazard
ratio regression methods emerging from the seminal paper Cox (1972). One of those topics
was that of estimating hazard ratio coe cients when there is measurement error in some
elements of the regression variable. This topic is particularly central in the important public
health area of nutritional epidemiology, which has depended almost exclusively on self-
reported dietary consumptions, which may be a ected by complex and influential assessment
errors.

There is a pressing need for reliable information on recommended dietary and physical
activity patterns for body weight maintenance and for chronic disease risk reduction. While
sensible guidelines and recommendations are available from various organizations, these
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may lack enough specificity and force to influence individual dietary choices and the type of
societal changes that may be needed to begin to reverse the obesity epidemic in Western
societies and to achieve related public health goals.

An international expert consultation that summarized the world literature on diet, nutrition
and the prevention of chronic diseases (Diet, Nutrition and the Prevention of Chronic
Diseases 2003) does not list energy consumption among the factors that are convincingly,
probably or possibly associated with cardiovascular disease risk, though overweight is
described as convincingly associated with increased risk. Similarly an expert panel
reviewing the world literature on nutrition and cancer prevention (World Cancer Research
Fund/American Institutes of Cancer Research, 1997) writes that ‘In the view of the panel,
the effect of energy on cancer is best assessed by examining the data on related factors: rate
of growth, body mass, and physical activity’, and that the ‘significance of the data on energy
intake and cancer risk in humans is unclear’.

These summaries reflect considerable uncertainty about the reliability of nutrient
consumption estimates from self-report dietary data, upon which dietary association studies
are typically based. The food frequency questionnaire (FFQ) has been ubiquitous in
nutritional epidemiology for the past 25 years, in part because its self-administered and
machine-readable features make it practical for application to large study cohorts. The FFQ
is believed to have better measurement properties for nutrient densities than for absolute
nutrient consumption (Willett et al. 1985), and most epidemiologic studies only report
associations for nutrients having some form of energy consumption adjustment.

There are a small number of nutrients for which a well established biomarker of short-term
consumption has been developed, including a doubly-labeled water (DLW) assessment of
energy consumption over a 14 day period (Schoeller 1999), and a urinary nitrogen (UN)
assessment of protein consumption from a 24 hour urine collection (Bingham 2003). These
urinary recovery biomarkers (Kaaks et al. 2002), provide objective estimates of short-term
consumption among persons in energy balance, with measurement error that is plausibly
independent of study subject characteristics such as body mass index (BMI), defined as
weight in kg divided by the square of height in meters, age, and gender, and importantly is
plausibly independent also of dietary self-report measurement error. However, it is not
practical to obtain these biomarkers for the tens of thousands of persons in a typical
epidemiology cohort study, and application in advance of disease diagnosis is essential. It
follows that the practical study design entails biomarker application to a randomly selected
subcohort of a study cohort, in conjunction with concurrent self-report data, followed by use
of the biomarker data to produce measurement error corrected consumption estimates
throughout study cohorts for use in disease association analyses.

These estimates can be obtained by simple linear regression of log-transformed biomarker
values on corresponding log-FFQ values and other study subject characteristics, including
BMI and age. They arise from a measurement model (Prentice et al. 2002)

(1)

where the biomarker W (e.g. log DLW energy) is assumed to adhere to a classical
measurement model with error e, where Z is the targeted consumption (e.g., logarithm of
average daily energy consumption over a certain time period); Q is the corresponding log
FFQ energy consumption; V is a vector of characteristics that may also relate to Q, for
example through systematic biases in the FFQ assessment; a0, a1, a2 are parameters to be
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estimated, and ε is a random error term that could include a random effect component. A
joint normality assumption for (Z, V, ε) then gives

and therefore

under the crucial assumption that the biomarker and self-report errors e and ε are
statistically independent. It follows that regression of W on the self-report Q and pertinent
characteristics V, as in Table 1, yields an estimate of Z that has been corrected for
assessment error under model 1. This ‘calibrated’ consumption estimate is readily calculated
from (Q, V) values for all members of the study cohort. Note from Table 1 that the FFQ
provides only a weak signal for energy estimation, with a coe cient of 0.062 rather than a
coe cient near 1 as would be expected from an accurate and precise consumption estimate.
Note also that these calibrated estimates can be obtained under the less restrictive
assumption of joint normality of (Z, ε) given V.

2. NUTRITIONAL BIOMARKER STUDY IN THE WOMEN’S HEALTH
INITIATIVE

We pursued this strategy by conducting a Nutrient Biomarker Study (NBS) among 544 post-
menopausal women enrolled in the Women’s Health Initiative (WHI) Dietary Modification
Trial, during 2004-2005 (WHI Study Group 1998). The NBS involved DLW and UN
biomarkers, a concurrent FFQ and some additional questionnaire information. The
randomized controlled DM trial was conducted among 48,835 postmenopausal women in
the age range 50–79 when enrolled during 1993–1998. It tested whether a low-fat dietary
pattern (40% of women) would reduce cancer risk compared to a usual diet comparison
group (60% of women). Weight-stable women without a diagnosis of cancer or
cardiovascular disease during trial follow-up were randomly selected for NBS participation
at a representative 12 of the 40 participating WHI clinical centers, 50% from the
intervention and 50% from the comparison group. A 20% reliability subsample repeated the
entire NBS protocol about 6 months after the original data collection.

Additional detail on the NBS is given in Neuhouser et al. (2008), where calibration
equations for the assessment of energy, protein, and protein density (percent of energy from
protein) are also given, a reduced form of which are provided here in Table 1.

In fact, FFQ energy consumption estimates exhibit strong systematic biases, with
overweight and obese women underestimating to a much greater extent than normal weight
women, and with younger postmenopausal women underestimating to a greater extent than
older postmenopausal women. The full calibration equations included also some moderate
dependencies on income and socioeconomic factors (Neuhouser et al. 2008). Note also from
Table 1 that the FFQ assessment appears to have better measurement properties for protein
density than for absolute protein or energy, as expected.
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3. ENERGY AND PROTEIN ASSOCIATION WITH CANCER AND
CARDIOVASCULAR DISEASE

These calibration equations were applied to FFQ assessments and other study subject
characteristics (Q, V) obtained early in WHI follow-up, and calibrated consumption
estimates were associated with the subsequent incidence of invasive cancers and
cardiovascular diseases in WHI cohorts. The WHI cohorts included the comparison group in
the Dietary Modification Trial, and the companion WHI Observational Study, a prospective
cohort study among 93,676 postmenopausal women drawn from the same catchment
population with much commonality in data collection and outcome ascertainment with the
clinical trial (WHI Study Group 1998). Table 2 shows estimated hazard ratios for a 20%
consumption increment, with and without biomarker calibration of the FFQ consumption
estimates, for several chronic disease categories, from Prentice et al. (2009a) and Prentice et
al. (2011). These hazard ratio estimates arise from Cox models with log-hazard ratios that
are linear in the estimated log-nutrient consumption, so that the hazard ratio for a fractional
increase in consumption is assumed to be constant across the consumption distribution. A
bootstrap procedure was used to estimate variances and confidence intervals for
corresponding hazard ratio parameter estimates. Without calibration there was little evidence
of association of any of the cancer or cardiovascular disease categories listed with energy,
protein, or protein density. In contrast, calibrated energy consumption was positively
associated with breast, colon, and total invasive cancer risk and with coronary heart disease,
and was marginally inversely associated with stroke incidence. Calibrated protein
consumption was also positively associated with breast and total cancer, while there was
some evidence of an inverse association between calibrated protein density and total cancer
incidence. These analyses did not include BMI in the disease risk model, and BMI was
highly correlated (0.81) with biomarker log-energy consumption in the NBS, less so with
log-protein consumption (0.46) and only weakly correlated (0.12) with log-protein density.
Table 2 also gives hazard ratio estimates for calibrated energy in analyses that included BMI
in the log-hazard ratio regression model (‘BMI adjusted’ analyses). The positive energy
associations essentially disappear with this addition, while an inverse association with stroke
becomes more pronounced.

4. BODY MASS INDEX & THE INTERPRETATION OF ENERGY & PROTEIN
ASSOCIATION ANALYSES

The analyses of Table 2 present a rare look at absolute energy and absolute protein
consumption in relation to the risk of important chronic diseases. However the interpretation
of these associations is complicated by the multiple possible roles and influences of BMI.
First, dietary consumption patterns tend to track over many years, and body fat deposition
and an increasing BMI is an expected consequence of an excessive energy consumption.
Hence a disease association with energy may be substantially mediated by body fat
accumulation, and it would represent over-control to include BMI in the hazard ratio
regression analyses in assessing the full dietary association. On the other hand overweight
and obese persons expend relatively more energy carrying out routine tasks of daily living
and it is possible that there is some confounding associated with BMI, and its exclusion
from the disease risk model may yield hazard ratio estimates that are biased away from the
null. These mediating and confounding possibilities would exist even if energy consumption
was measured without error. Here, however, BMI also serves as an important component of
the energy calibration procedure, with possible further complexity in the interpretation of the
calibrated energy association analysis.
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Dr. Laurence Freedman (Gertner Institute, Tel Aviv, Israel) has pointed out to us (personal
communication) that calibrated association analyses of the type shown in Table 2 without
BMI adjustment may incorporate some bias due to the inclusion of BMI in the calibration
equations. Furthermore, in his ongoing work with collaborators in the US National Cancer
Institute it seemed that biases of this type could be substantially mitigated by obtaining
association parameter estimates for the dietary variables from the BMI-adjusted analyses.

To examine this issue in the present context consider the BMI adjusted analysis of the type
shown in Table 2. These arise from an underlying Cox model hazard rate model that can be
written

(2)

where U is BMI and X is comprised of the unmeasured dietary variable Z of interest (first
element) along with other variables V involved in developing the calibrated estimate ( ) of
Z, and other variables included in the disease risk model to control confounding (the
elements of β2 for factors involved in V that are not included in the disease rate model are
set to zero).

Data on (U, X) and disease incidence times, which may be subject to independent right
censoring (e.g., Kalbfleisch & Prentice 2002), do not allow one to distinguish mediating
from confounding roles for U(1 ≠ 0). The induced hazard ratio model for X alone can be
written

which under a rare disease assumption and a joint normality assumption for (U, X) is well
approximated by

(3)

where β* = β2 + (varX)−1cov(X, U)β1. Hence we may consider the first element of β* as our
target of estimation for the full dietary effect of Z on the hazard ratio. If Z, and hence X,
were directly measurable one could reliably estimate β* from estimates of β1 and β2 using
the sample covariance of X and U and the sample variance for X. This idea has been
proposed by Freedman and colleagues in a draft paper they shared with us entitled ‘Using
regression calibration equations that combine self-reported intake and biomarker measures
to obtain unbiased estimates and more powerful tests of dietary associations.’

Now suppose that Z is measured by W and Q with error according to (1), including possible
systematic bias related to V. One can write

(4)

where  is the calibrated estimate of Z. Under the natural assumption that  is unrelated to
disease risk given (X, U) one has that (t; U, X, ) equals (2) from which
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where  equals X except that  is substituted for Z, and β21 is the corresponding (first)
element of β2. Under the measurement model (1) e is independent of (U, ) and the
residuals  are uncorrelated with (U, ) (assuming that all pertinent confounding factors are
included in the calibration equation that generates ). Hence, under a rare disease
assumption

(5)

to a good approximation. It follows that the hazard ratio estimators from analyses of the
calibrated estimator that include BMI should be approximately unbiased for the parameters
of model (2) under our modeling assumptions.

The induced hazard ratio model for  from (5) is approximately

(6)

where . This parameter  is expected to agree closely with that
based on application of the Cox model directly to  and potential confounding factors, as
led to the calibrated consumption hazard ratio estimators (without BMI adjustment) shown
in Table 2.

However  may differ somewhat from the desired target β* in (3). Specifically, even though
cov( , U) would differ trivially from cov(X, U) for a su ciently large biomarker sample, and
is readily estimated by the sample covariances with W in place of Z, the variance matrix

 may differ from varX in (3), depending on the comparative magnitudes of the
variances of e and  in (4). Specifically, one can estimate varX by using sample variances
and covariances for all elements except those in the first row and column. Except for the
(1,1) element, varZ, once can estimate the first row and column of varX by biomarker study
sample covariances between W and X. The estimation of varZ, however, is a more delicate
issue that forces us to be specific about the time period that is intended to be covered by the
dietary variable.

As noted above the NBS included a reliability subsample among 111 women, with primary
and reliability subsamples separated by about 6 months. If one defines the targeted dietary
variables as that pertaining to the recent diet, say over the past 6 months, then it will be
plausible for the measurement errors e1 and e2 that attend the two biomarker assessments
W1 and W2 for women in the reliability subsample to be approximately uncorrelated in
which case varZ can be estimated by the sample variance of W in the biomarker study,
minus 0.5 times the sample variance of (W1 – W2) in the reliability subsample. On the other
hand, relative to a dietary variable that pertains to consumption over the preceding years or
decades that may be relevant to disease risk and to body fat accumulation, the reliability
biomarker measurement errors can be expected to have a correlation ρ that is positive, in
which case varZ can be estimated by the sample variance of W minus 0.5 (1 − ρ)−1 times the
sample variance of (W1 – W2). Replicate biomarker data over the long period of time that
may be relevant to those dietary associations would be needed to directly assess the
temporal patterns of biomarker measurement error correlation. Here, instead, we provide
sensitivity analyses for some choices of ρ ranging from ρ = 0, as may be appropriate for
recent diet, to positive values as may be relevant to long-term dietary patterns. The
sensitivity analyses target the coe cient of Z (first element of X) in β* in (3).
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5. APPLICATION TO CARDIOVASCULAR DISEASE ASSOCIATION
ANALYSES

In Table 3 we provide energy and protein analyses using the methods of the previous section
for the full range of cardiovascular disease outcomes considered in Prentice et al. (2011)
where details of the variables included for confounding control for each outcome category
and of the stratification of the Cox model can be found. The left column of Table 3 shows
hazard ratios for a 20% consumption increment and estimated 95% confidence intervals
from 500 bootstrap samples, as given in Prentice et al. (2011). The second column shows
corresponding estimates based on the approximation (6). In applying this approximation

 was estimated as described in the preceding section, with  estimated by its sample
variance. good agreement the columns The between two for each of energy, protein, and
protein density attests to the adequacy of this approximation in this context, where about 5%
of study subjects experienced the most global cardiovascular disease outcome (total CHD
plus total stroke plus coronary artery bypass graft plus percutaneous coronary intervention).
The following Table 3 columns present corresponding hazard ratio estimates based on the
estimated β* in (3), for certain specific biomarker measurement error correlations in the
NBS reliability subsample, with confidence intervals again based on 500 bootstrap samples.

The fact that the underlying dietary variable has positive variance limits the possible values
of the biomarker measurement error correlation to be <0.69 for energy, <0.59 for protein,
and <0.53 for protein density. In fact the substantial local variation in protein over time
presumably leads to measurement error correlations that are relatively small for both protein
and protein density, even if Z is defined as the logarithm of dietary consumption over a
period of time as short as 6 months or a year. The local temporal variations in energy
consumption are likely to be much smaller, however. Energy biomarker measurement error
correlations may be close to zero, if (log) consumption over the short biomarker
ascertainment period of two weeks is compared to average (log) consumption over a time
period as short as a few months. In contrast biomarker measurement error correlations
relative to a long-term average consumption over some years or decades are likely to be
positive and sizeable, since the reliability sample assessments at two close points in time can
be expected to have commonalities arising from age-related changes in energy consumption
and to other dietary changes during adulthood. With these thoughts in mind we present
results in Table 3 for ρ = 0 and ρ = 0.375 for all three dietary variables, and also for ρ = 0.5
for energy. The interpretation of the protein and protein density analyses is rather insensitive
to biomarker measurement error correlation. The energy association analyses are more
sensitive. At a value of ρ = 0.5, that we think to be plausible for energy in this setting for
long-term energy consumption, the hazard ratio estimates agree closely with our published
values given in the first column, though confidence intervals are somewhat wider. Hence,
these analyses provide some support for positive associations between long-term energy
consumption and the risk of coronary heart disease, and the risk of total cardiovascular
disease including coronary artery bypass graft and percutaneous coronary intervention, with
those associations largely attributable to related temporal increases in BMI; and supportive
of an inverse association between protein consumption, over the short or long term, and the
risks of stroke.

6. ASPECTS OF THE FUTURE RESEARCH AGENDA FOR NUTRITIONAL
EPIDEMIOLOGY

Developments of the type described above can help to define the future research agenda in
nutritional epidemiology. It is clear that association studies of energy and protein
consumption require a careful account of measurement error in dietary assessment for
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reliable inferences. Studies using suitable biomarkers seem to provide the logical next step
to enhancing the reliability of dietary association studies, especially for studies involving the
absolute intake of nutrients or foods. The issues described in the preceding section imply a
need for biomarker reliability studies that take place over some months or years, along with
concurrent dietary and physical activity assessment data, to elucidate the complex issues
related to diet, physical activity, energy balance, body fat deposition, and chronic disease
risk.

A major limitation in pursuing the biomarker approach to nutritional epidemiology arises
from the rather few nutrients or dietary components for which there is an established
biomarker that plausibly adheres to a classical measurement model, as in (1). We have
recently initiated a human feeding study among 150 WHI participants in Seattle as an
attempt to develop and evaluate additional such biomarkers. A human feeding study
provides the possibility of directly assessing short-term nutrient consumption by providing
food and drink to each participant over the feeding period. We will employ a two week
feeding period in which each woman will be provided a diet that approximates her usual diet
so that blood and urine measures stabilize quickly, and so that the dietary variation in the
study population is retained. Food and drink having well characterized nutrient composition
will be used in diet formulation. Our plan is to examine the extent to which variation in the
provided diet can be ‘explained’ by relevant urine and blood measures and individual
characteristics, with regression equations that may explain 50% or more of the actual
variation considered as potential biomarkers. Both candidate biomarkers and biomarker
discovery e orts will be included. Some additional detail on these plans is given in Prentice
et al. (2009b).

Acknowledgments
This work was partially supported by grants from the US National Cancer Institute, and by contract from the
National Heart, Lung and Blood Institute for the Women’s Health Initiative.

REFERENCES
Bingham SA. Urine Nitrogen as a Biomarker for the Validation of Dietary Protein Intake. Journal of

Nutrition. 2003; 133:921S–924S. [PubMed: 12612177]

Cox DR. Regression models and life tables (with discussion). Journal of the Royal Statistical Society,
Series B. 1972; 34:187–220.

Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases. Diet,
Nutrition and the Prevention of Chronic Disease:. Report of a joint WHO/FAO expert consultation.
WHO Technical Report Series. 2003; 2003; 916:88.

Kaaks R, Ferrari P, Ciampi A, Plummer M, Riboli E. Uses and limitations of statistical accounting for
random error correlations, in the validation of dietary questionnaire assessments. Public Health
Nutrition. 2002; 5:969–976. [PubMed: 12638598]

Kalbfleisch, JD.; Prentice, RL. The statistical analysis of failure time data. Second edition. Wiley; New
York: 2002.

Neuhouser ML, Tinker L, Shaw PA, Schoeller D, Bingham SA, Horn LV, Beresford SA, Caan B,
Thomson C, Satterfield S, Kuller L, Heiss G, Smit E, Sarto G, Ockene J, Stefanick ML, Assaf A,
Runswick S, Prentice RL. Use of recovery biomarkers to calibrate nutrient consumption self-reports
in the Women’s Health Initiative. American Journal of Epidemiology. 2008; 167:1247–1259.
[PubMed: 18344516]

Prentice RL, Huang Y, Kuller LH, Tinker LF, Van Horn L, Stefanick ML, Sarto G, Ockene J, Johnson
KC. Biomarker-calibrated energy and protein consumption and cardiovascular disease risk among
postmenopausal women. Epidemiology. 2011; 22:170–179. [PubMed: 21206366]

PRENTICE and HUANG Page 8

Can J Stat. Author manuscript; available in PMC 2013 April 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Prentice RL, Huang Y, Tinker LF, Beresford SA, Lampe JW, Neuhouser ML. Statistical Aspects of
the Use of Biomarkers in Nutritional Epidemiology Research. Statistics in BioSciences. 2009b;
1:112–123. [PubMed: 19841649]

Prentice RL, Shaw PA, Bingham SA, Beresford SA, Caan B, Neuhouser ML, Patterson RE, Stefanick
ML, Satterfield S, Thomson CA, Snetselaar L, Thomas A, Tinker LF. Biomarker-calibrated energy
and protein consumption and increased cancer risk among postmenopausal women. American
Journal of Epidemiology. 2009a; 169:977–989. [PubMed: 19258487]

Prentice RL, Sugar E, Wang CY, Neuhouser M, Patterson R. Research strategies and the use of
nutrient biomarkers in studies of diet and chronic disease. Public Health Nutrition. 2002; 5:977–
984. [PubMed: 12633522]

Schoeller DA. Recent advances from application of doubly labeled water to measurement of human
energy expenditure. Journal of Nutrition. 1999; 129:1765–1768. [PubMed: 10498745]

Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE.
Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal
of Epidemiology. 1985; 122:51–65. [PubMed: 4014201]

The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial
and observational study. Controlled Clinical Trials. 1998; 19:61–109. [PubMed: 9492970]

World Cancer Research Fund & American Institute for Cancer Research. Food, Nutrition and the
Prevention of Cancer: a global perspective. American Institute for Cancer Research; Washington,
DC.: 1997. p. 371

PRENTICE and HUANG Page 9

Can J Stat. Author manuscript; available in PMC 2013 April 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

PRENTICE and HUANG Page 10

Table 1

Regression calibration coefficients for log-transformed total energy, total protein, and protein density
(Neuhouser et al. 2008).

Characteristic

Total Energy (kcal)
Coefficient
(Std. Error)

Protein (gm)
Coefficient
(Std. Error)

Protein Density
Coefficient
(Std. Error)

Intercept 7.61 (0.013) 4.28 (0.024) 2.66 (0.011)

(Log) FFQ 0.062(0.018) 0.211(0.032) 0.439(0.058)

Body Mass Index 0.013(0.001) 0.012(0.002) −0.004(0.002)

Age (yrs) −0.005(0.001) −0.008(0.002) −0.005(0.002)
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