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Abstract

Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental
disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course
and severity have been described for a number of these conditions but the biological and environmental factors underlying
such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a
sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative
genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-
associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally,
we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series,
we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were
referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural
problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls.
Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased
effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females
(OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis
showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic
region between 15.49–16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm
that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a
range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes
at the 16p13.11 locus.

Citation: Tropeano M, Ahn JW, Dobson RJB, Breen G, Rucker J, et al. (2013) Male-Biased Autosomal Effect of 16p13.11 Copy Number Variation in
Neurodevelopmental Disorders. PLoS ONE 8(4): e61365. doi:10.1371/journal.pone.0061365

Editor: Chunyu Liu, University of Illinois at Chicago, United States of America

Received November 10, 2012; Accepted March 8, 2013; Published April 18, 2013

Copyright: � 2013 Tropeano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project and the BBGRE database (BBGRE.org) was funded through a strategic partnership of the South London and Maudsley Trust NIHR specialist
Biomedical Research Centre and the Guys and St Thomas Trust NIHR comprehensive Biomedical Research Centre. DAC is funded by the European Commission
Seventh Framework project PsychCNVs (http://www.psych-cnv.eu/; Grant agreement number HEALTH-2007-2.2.1-10-223423). This work was supported by the
Wellcome Trust (Wellcome Trust Case control consortium; WTCCC2) (DAC). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: DAC is a full time employee of Eli Lilly & Co. Ltd. AF and PMG
have received consultancy fees and honoraria for participating in expert panels for pharmaceutical companies including GlaxoSmithKline. This does not alter the
authors’ adherence to all the PLOS ONE policies on sharing data and materials. The other authors have declared that no competing interests exist.

* E-mail: maria.tropeano@kcl.ac.uk (MT); collier_david_andrew@lilly.com (DAC)

. These authors contributed equally to this work.

Introduction

Copy number variants (CNVs) represent one the most prevalent

types of structural variations detected in the human genome and

are a major source of human genetic variability [1–4]. Many rare

CNVs are associated with pathological conditions, including

classic ‘‘genomic disorders’’, such Williams-Beuren syndrome

(deletion at 7q11.23; OMIM 194050), as well as those with a

complex genetic aetiology such as schizophrenia and autism

spectrum disorders [5–8]. Many of these complex disorders show a

distorted sex ratio, usually with an excess of affected males. In

autism spectrum disorders the male: female ratio is usually quoted

at about 4:1, but may be higher [9], and a significant male excess

is also found in schizophrenia, albeit less pronounced at about

1.4:1 [10]. The reasons for this are unknown, but appear to be

largely autosomal in origin and could result from a variety of

factors, including imprinting, endocrine or neurodevelopmental

factors, which result in a categorical protection from expression in

females (resilience) [11]. A better understanding might provide

insight for the development of treatments. The identification and
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characterisation of specific autosomal loci showing sex-biased

effects will be an important step in this direction.

Putatively pathogenic CNVs may arise de novo or be inherited,

and many show a pleiotropic effect, with broad phenotypic

manifestations and incomplete penetrance both overall and for

specific disorders [12]. An important genomic ‘‘hotspot’’ for these

variants is the 16p13.11 locus, which is especially rich in low-copy

repeats (LCRs). These highly homologous DNA sequences are

characteristically involved in non-allelic homologous recombina-

tion (NAHR), a major source of de novo genomic rearrangements in

human [13,14]. Deletions and reciprocal duplications at the

16p13.11 locus have been associated with disorders involving

neurodevelopment, including conditions such as autism, mental

retardation, schizophrenia and epilepsies, which appear to share

overlapping genetic aetiologies [15–25]. Pathogenic genomic

variants at 16p13.11 were initially described by Ullmann et al.

[15], who identified a 1.5 Mb duplication (14.89–16.39 Mb) and a

reciprocal deletion spanning the same interval, in four severe

autistic patients from three unrelated families, and in three

unrelated intellectually disabled patients. In the affected subjects,

some of the imbalances were inherited from unaffected or mildly

affected parents, indicating incomplete penetrance [15]. In a

subsequent study, Hannes et al. identified six deletions and seven

duplications at the 16p13.11 locus in thirteen unrelated patients

affected by intellectual disability and/or multiple congenital

anomalies; five deletions and five duplications spanned approxi-

mately the same 1.5 Mb region identified in the first report, whilst

the other three patients carried atypical larger rearrangements,

including two duplications of ,3.4 Mb in size (15.1–18.5 Mb),

overlapping the typical 1.5 Mb region, and a deletion of ,1.6–

2.1 Mb (16.3–18.4 Mb), flanking the region. Of the variations

identified, one duplication occurred de novo, two deletions and two

duplications were inherited from an apparently unaffected parent,

and one duplication was inherited from a mildly affected mother

[16].

CNVs at 16p13.11 identical or similar to the variants originally

described have subsequently been identified in several cohorts of

patients affected by schizophrenia, epilepsies, attention-deficit

hyperactivity disorder (ADHD), developmental delay (DD),

dysmorphic features and multiple congenital anomalies and, most

recently, thoracic aortic aneurysms and dissections (TAAD) [15–

25]. Significant sex differences in prevalence, course and severity

have been described for a number of these conditions but the

biological and environmental factors underlying these sex-specific

features remain unclear. Among the possible biological factors, an

important role is thought to be played by sex-hormone levels,

which differ between males and females, and are particularly

relevant during fetal and neonatal development, acting on the

brain to produce sex differences in behaviour, cognition, brain

structure and function [26].

Genetic factors are likely to represent another major determi-

nant of phenotypic dimorphism [27]. A sex-specific genetic

architecture has been observed for a variety of quantitative and

disease-related traits and recent studies suggest that, together with

the well established contribution of the genes on the sex

chromosomes, natural variation within the autosomal genome

also plays an important role in the aetiology of these sexually

dimorphic features; in this context, sex could be considered as an

environmental factor that interacts with the autosomal genes and

modulates penetrance and expressivity of a number of traits [28].

Furthermore, the sex-specific autosomal effects are likely to be in

part explained by factors that are not directly associated with

nucleotide sequence changes and that operate at the interface

between the genome and the environment, such as differences in

gene-expression or epigenetic processes; these factors underlie

important phenotypic differences between the sexes, and have

therefore the potential, if perturbed, to convert such differences in

sex-specific susceptibility to disease [27,29].

In the present study, we investigated the burden and the

possible sex-biased effect of CNVs in the 16p13.11 region in a UK

sample of 10,397 children and young adults with a childhood onset

neurodevelopmental condition, referred for clinical genetic testing

by array comparative genomic hybridisation (aCGH), using a

60 K Agilent oligonucleotide platform.

Materials and Methods

Ethics Statement
The BBGRE project was approved by the Cambridgeshire

Central Research Ethics Committee. Under common UK law all

research using identifiable personal data requires the express

consent of the individuals involved. The use of non-identifiable

information does not fall under common law, i.e. informed

consent is not necessary for research using this type of data, when

it is irreversibly anonymised. This is specified in the UK Data

Protection Act (DPA) (1998), which came into force in 2000, in an

exemption clause for research using unlinked anonymised data:

‘‘Informed consent is not necessary for research which makes use

of unlinked anonymised data’’. Since the present study uses only

unlinked anonymised data, their use was therefore in accordance

with the UK Data Protection Act (DPA) (1998). See http://www.

legislation.gov.uk/ukpga/1998/29/contents for further informa-

tion.

Clinical Diagnostic Referral Cases
The clinical cytogenetic sample consisted of patients referred to

Guy’s and St Thomas NHS Foundation Trust from regional

paediatricians and other health specialists, as well as from genetics

centres both in and outside the region (South-East Thames). Array

CGH analysis was performed to determine if there were detectable

structural genetic abnormalities that could be of aetiological

significance for a range of problems including developmental delay

(DD), intellectual disability (ID), autism spectrum disorders (ASD),

attention-deficit hyperactivity disorder (ADHD), specific develop-

mental delays such as speech or language delay, birth defects or to

confirm a clinical diagnosis of a suspected syndrome. All patient

tests were carried out as part of standard clinical care, either as

clinical referrals for array CGH testing following a normal

karyotype, or those having array CGH as a first-line test in place

of karyotyping. All data were anonymised.

Array CGH Analysis
Testing was carried out at a cytogenetics CPA accredited

laboratory. DNA samples were analyzed by array comparative

genomic hybridisation (aCGH), using a 60 K Agilent array

(designs 028469 and 017457), with a total imbalance detection

rate of 24%. Array CGH analysis was performed as described

previously [30]. In brief, DNA extracted from blood samples

(1 mg) was labelled using CGH Labelling Kit for Oligo Arrays

(Enzo Life Sciences, USA), then applied to a 60 K oligonucleotide

array (Agilent, USA). Image quantification, array quality control

and aberration detection were performed using Feature Extraction

and DNA Analytics software packages (Agilent, USA) for oligo

arrays, according to the manufacturer’s instructions. All copy

number variations in the 16p13.11 region (46/46) were confirmed

either by a second CGH array with a different comparison sample

or by a multiplex ligation-dependent probe amplification assay

(MLPA kits P064, P245 and custom probes; MRC-Holland,
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Netherlands) [30,31]. Genomic data and referral phenotype

information was recorded in a clinical database, which at the

time of analysis contained 10,397 clinical referrals (63.4% males;

October 2012), including approximately 1,400 patients referred

for ASD, 26% of whom were female. The overall ethnic

distribution (self-reported data) was 70% Caucasians, 15%

Africans and 15% other/mixed ancestry. Copy number variants

in this population are available in the Brain and Body Genetic

Resource Exchange database (BB-GRE; http://bbgre.org).

Controls
We analysed a total sample of 6,078 control individuals,

including 459 controls (281 female, 178 male) comprehensively

screened for a lifetime absence of psychiatric disorder and 5,619

controls (2,611 female, 2,668 male) from the Wellcome Trust

Case-Control Consortium Phase II (WTCCC2). Screened controls

were recruited from students and staff at King’s College London;

subjects were interviewed with a modified version of the Past

History Schedule [32] and with the Beck Depression Inventory

[33] and were included only if they demonstrated no evidence of

past or present psychiatric disorder. The WTCCC2 control cohort

consists of the UK 1958 British birth cohort (58 BC) and a cohort

derived from the UK national blood service (NBS) [34]. Both

cohorts represent population control samples. DNA samples were

derived from immortalised cell lines (58 BC cohort) and venous

blood (screened controls and NBS cohort). Screened control

samples were genotyped on the Illumina HumanHap 610-Quad

beadchip, whereas WTCCC2 samples were genotyped on a

modified Illumina 1 M beadchip. To ensure comparable CNV

detection from different array types, control CNVs were identified

using a consensus marker set between the 610 K and 1 M chips,

which mimics the Illumina HumanHap 550 beadchip (detailed

description of data analysis and quality control criteria can be

found in the Methods S1 and in Rucker et al. [34]).

Additionally, we used control data from two previously

published studies by Shaikh et al. and Cooper et al. [35,36].

The Shaikh control sample consists of 2,026 healthy children

(1,104 female, 922 male) recruited within the Children’s Hospital

of Philadelphia (CHOP) health care network, uniformly genotyped

using the Illumina HumanHap 550 beadchip, with DNA samples

obtained from whole blood, (overall precision .96% in identifying

CNVs represented by .10 probes) (http://cnv.chop.edu) [35].

The Cooper control sample originally consisted of 8,329

individuals, but we used genomic information only for the subset

of 3,173 subjects (2,148 female, 1,025 male) for which gender data

were available. DNA was obtained from cell lines (HGDP,

n = 984), and blood samples (London, n = 760; FHCRC,

n = 1,429), and genotyping was performed using the Illumina

HumanHap 550 K, 650 Y and 610-Quad beadchips, with an

overall precision .89% in identifying CNVs .100 kbp (dbVar,

nstd54) [36].

Ethnic distribution in the total control population (n = 11,277)

was 77% Caucasians, 8.5% Africans and 14.5% other/mixed

ancestry. Although the control sample was slightly enriched in

Caucasians (77% vs 70%) and had slightly fewer African

individuals (8.5% vs 15%) compared to the case sample, we

found no significant differences in the frequency of

16p13.11 CNVs in the Caucasian and African control subgroups

(OR = 1.78; p = 1.0), which suggests no potential population

stratification problems.

Despite 33% of DNA samples in our control population were

derived from immortalized cell lines (58 BC and HGDP cohorts),

the CNV QC measures used in both the WTCCC2 and Cooper

et al. control cohorts were designed to account for potential cell

line mosaicism and artefacts (Methods S1) [34,36,37]. Moreover,

in order to further test for DNA source effects, we also split the

total control sample and compared the frequency of samples with

16p13.11 CNVs in the whole blood (0.14%) and cell line (0.20%)

subgroups, but we found no significant differences (OR = 1.39;

p = 0.498), which suggests that cell-line artefacts are not a major

contributor to our estimates of CNV burden.

Association Analysis
Pearson’s chi-square test or Fisher’s exact test, as appropriate,

were used to compare frequencies of NAHR-mediated CNVs in

cases and controls and to compare interval copy number

frequencies in case and control CNVs. All data analysis was

performed using the R language and environment for statistical

computing (http://www.r-project.org/).

Despite the platform heterogeneity in CNV detection, numer-

ous studies have shown that, whereas for small variations the CNV

detection power is dependent on the array used [38], different

array platforms have comparable sensitivity and specificity for the

detection of large CNVs (.500 kbp in size), and ten probes are

typically sufficient to detect such events [37,39,40]. Since the

16p13.11 duplications and deletions are large NAHR-mediated

variations with size .800 kbp, and given that the different array

platforms used for their detection in cases and controls have an

adequate probe coverage for the 16p13.11 region (Methods S1),

platform-specific differences in detection are unlikely to represent

a major confounding factor in our analyses.

DECIPHER Database Search
We performed a search in the DECIPHER database (https://

decipher.sanger.ac.uk), in order to identify additional cases with

CNVs in the 16p13.11 region. DECIPHER (Database of

Chromosomal Imbalance and Phenotype in Humans Using

Ensembl Resources) is an interactive web-based database that

collects clinical phenotype information and copy number change

data from a sample of .18,000 patients suffering from

developmental disorders, enabling clinical scientists worldwide to

maintain records for their patients and to share this information

with the clinical research community [41]. At the time of analysis

(October 2012), the DECIPHER database contained 18,451

clinical referrals, 54% of whom were male.

Evolutionary Genetic Analysis
Ohnologs in the 16p13.11 region were defined as described by

Makino and McLysaght [42]. Ohnologs were syntenic genes

located on paralogous chromosomal regions and derived from

whole genome duplication (WGD). A list of ohnologs in the region

was provided for the maximal CNV interval described in the

present study (Chr16:14.66–18.70 Mb, GRCh37/hg19), blind to

the coordinates of individual CNVs and to interval-based analyses

(Makino and McLysaght, personal communication).

Results

In the case series of 10,397 individuals, we identified 46 patients

with copy number variants of variable size at the 16p13.11 locus,

including 28 duplications (all NAHR-mediated) and 18 deletions

(16 NAHR-mediated and 2 non-NAHR mediated), all contained

within the region between 14.66 and 18.70 Mb (Human Genome

Build 37), where the previously reported copy number variants

have been described [15–25].

Given the high number of variable sized CNVs, for their

classification we referred to the study by Ingason et al. [19], who

subdivided the 16p13.11 region into three single copy sequence

Male-Biased Effect of 16p13.11 CNVs
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intervals called interval I, II and III, each flanked by sequences

rich in low copy repeats (LCRs). We identified seven distinct

categories of NAHR-mediated CNVs in the region, including nine

deletions and sixteen reciprocal duplications of intervals I and II,

one deletion and one duplication of intervals I, II and III, one

duplication of interval II, six deletions and ten duplications of

intervals II and III (Figure 1, Table 1, Table S1); furthermore, we

identified two cases carrying identical, non-NAHR mediated

23 kbp microdeletions encompassing the NTAN1 gene, and these

were excluded from the analyses (Figure S1, Table S1).

Within our two control groups, 348 screened controls and 4,828

unscreened controls passed quality control criteria and were thus

included in the analysis. We did not detect any 16p13.11 copy

number variation in the screened controls, whereas we identified

twelve NAHR-mediated CNVs in the WTCCC2 control groups,

including three deletions and nine duplications; additionally, three

NAHR-mediated duplications were identified in the Shaikh

controls, while one deletion and one duplication were identified

in the Cooper control group, with a total control CNV count of

17 CNVs and four distinct CNV categories (Figure 1, Table 1,

Table S2).

Association analysis showed a significant enrichment of NAHR-

mediated CNVs in cases compared with controls (OR = 2.59;

p = 0.0005), with the effect coming mostly from deletions

(OR = 4.00; p = 0.007), that were present in 0.15% of cases versus

0.04% of controls; duplications were also more common in the

cases, being identified in 0.27% of cases versus 0.12% of controls

(OR = 2.15; p = 0.019) (Table 2). Interestingly, performing a post

hoc sex-specific analysis, we observed a significant enrichment of

CNVs (OR = 5.62; p = 0.0002), coming from duplications

(OR = 3.40; p = 0.018) and, particularly, from deletions (OR = ‘;

p = 0.001), only in the male subgroup of cases, but not in females

(All CNVs: OR = 1.19, p = 0.673; Del: OR = 1.16, p = 1.00; Dupl:

OR = 1.21, p = 0.708), in line with our preliminary hypothesis of a

possible sex-biased effect for the 16p13.11 CNVs. Finally, since

some of the cases with a 16p13.11 CNV also harboured a second

potentially pathogenic chromosomal imbalance, we performed a

post hoc analysis, excluding cases (7/44) and controls (3/17)

carrying additional very rare second-hit CNVs .500 kpb in size

(comparable sensitivity and specificity between aCGH and SNP

arrays) (Table S1, Table S2). This additional analysis confirmed all

the results described above, both overall (OR = 2.64; p = 0.0013),

and in the male (OR = 6.35; p = 0.00048) and female subgroups

(OR = 1.13; p = 0.794).

In an attempt to further confirm our findings, we next tested for

a sex-biased prevalence of the variations also in the DECIPHER

sample. The DECIPHER database search identified 101 patients

with NAHR-mediated CNVs at the 16p13.11 locus, including 61

duplications and 40 deletions, with nine distinct CNV categories

(Figure S2, Table S3, Table S4). Overall, we observed a significant

enrichment of CNVs in the cases compared with controls

(OR = 3.35; p = 9.861027), with the effect coming from both

deletions (OR = 5.63; p = 0.0002) and duplications (OR = 2.64;

p = 0.0009). Sex-specific analysis confirmed a significant overrep-

resentation of deletions (OR = ‘; p = 0.0003) and duplications

(OR = 3.60; p = 0.0098) only in the male subgroup of cases but not

in females (Dupl: OR = 2.09, p = 0.051; Del: OR = 1.91, p = 0.26).

All the results were confirmed when we excluded from the analysis

cases (18/101) and controls (3/17) harbouring additional rare

second-hit CNVs .500 kpb in size (Overall: OR = 3.34,

p = 9.461026; Males: OR = 7.97, p = 3.261025; Females:

OR = 1.84, p = 0.082).

Given the very variable size of the genomic variations identified,

we next decided to perform a post hoc interval-based analysis,

comparing the frequencies of the three single copy sequence

intervals contained in our region of interest in case and control

CNVs, in order to identify a possible core pathogenic region,

harbouring the dosage-sensitive genes responsible for the delete-

rious phenotypes observed in our cases.

Interval-based analysis revealed a significant enrichment of case

CNVs containing interval II (OR = 2.59; p = 0.0005), which is

located in the 0.83 Mb genomic region between 15.49 and

16.32 Mb (Human Genome Build 37) and encompasses a core set

of 9 genes (MPV17L, C16orf45, KIAA0430, NDE1, MIR484,

MYH11, C16orf63, ABCC1, ABCC6); the interval II overrepre-

sentation was observed for both case deletions (OR = 4.00;

p = 0.007) and duplications (OR = 2.15; p = 0.019). In line with

the sex-specific analysis results described above, performing the

analysis in the male and female subgroups, we found a significant

enrichment of CNVs containing interval II (OR = 5.62;

p = 0.0002), coming from both deletions (OR = ‘; p = 0.001) and

duplications (OR = 3.40; p = 0.018), only in the male subgroup of

cases, but not in females (OR = 1.19; p = 0.673). The same pattern

of results was also observed in the DECIPHER sample, both

overall (Dupl: OR = 2.60, p = 0.001; Del: OR = 5.49, p = 0.0003)

and in the two subgroups (Male: Dupl: OR = 3.60, p = 0.0098;

Del: OR = ‘, p = 0.0004. Female: Dupl: OR = 2.01, p = 0.066;

Del: OR = 1.91, p = 0.26).

Finally, we applied an evolutionary genetic approach, and tried

to identify the disease-causing genes in the 16p13.11 region

through the mapping of ohnologs, genes retained after ancestral

whole genome duplication events, that are inferred to be

particularly enriched in dosage-sensitive genes [42]. We identified

a total of five ohnologs in the region, including NDE1, MYH11,

ABCC1, ABCC6 and XYLT1 (Figure 1, Table 3); interestingly,

four of the ohnologs (NDE1, MYH11, ABCC1, ABCC6) were

part of the core set of genes located in interval II, most

overrepresented in our case CNVs and are thus likely to represent

dosage-balanced ohnologs, involved in the aetiology of the

pathological phenotypes associated with the 16p13.11 copy

number variants.

16p13.11 CNVs in Neurodevelopmental Disorders
Phenotypic information was available for 41 of the 46 patients

with a copy number variation at 16p13.11, identified in the clinical

referral series (Table S1). Of them, the only patient not diagnosed

with a neurodevelopmental condition was a ten months old male

carrying a deletion of intervals II and III, who was referred for

testing as part of developmental screen and documented as having

a bullous skin condition (‘scalded-skin syndrome’). However, given

the very young age at referral (,1 year), and since the deletion was

inherited from a father with learning difficulties, it is possible that a

neurodevelopmental disorder will later manifest also in this

patient.

We were able to investigate the inheritance pattern of the

variations within the family trio (father, mother and affected child)

for twenty-six of the carrier patients. One duplication (male

proband) and four deletions (three males and one female) arose de

novo, whereas twenty-one variations were inherited from a parent,

including fourteen duplications (six maternal and eight paternal)

and seven deletions (five maternal and two paternal).

We identified two patients carrying identical non-NAHR

mediated microdeletions of NTAN1; both the variations arose de

novo and have been identified in a ten years old male referred for

autism spectrum disorder (ASD) and learning difficulties, and in a

five years old male referred for attention difficulties, delayed

speech and language skills and dysmorphic features. The deletions

involve a 23 kbp genomic interval (chr16:15,131,723–15,154,746)
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and encompass the entire NTAN1 gene, one of the strongest

candidate genes in the 16p13.11 region (Figure S1). NTAN1

encodes the asparagine-specific N-terminal amidase, an enzyme

involved in the regulation of the in vivo half life of proteins;

inactivation of the NTAN1 gene in mice has been associated with

abnormal neurological features such as altered social behaviour

and impaired spatial and non-spatial learning and memory [43–

45]. Interestingly, whilst the patient referred for attention

difficulties, speech delay and dysmorphic features also harboured

a maternally inherited, putatively pathogenic duplication, affecting

part of the IL1RAPL1 gene (Xp21.2), the patient with a specific

diagnosis of ASD and learning difficulties did not carry any

additional genomic imbalance, which could suggest the involve-

ment of the NTAN1 gene in the aetiology of the neurodevelop-

mental disorder.

Patients with NAHR-mediated duplications, the larger group

identified, presented with a wide range of abnormal phenotypes.

Consistent with the ascertainment criteria, we observed develop-

mental delay (DD) (12/24) and dysmorphic features (n = 11) in

most cases; importantly, the majority of patients older than 2 years

(14/18) presented with a specific neurologic/neuropsychiatric

phenotype, including autism spectrum disorder (ASD) (n = 4),

speech and language delay (n = 5), learning difficulties (n = 3),

behavioural problems (n = 2), microcephaly (n = 2), epileptic

seizure (n = 1) and attention deficit hyperactivity disorder (ADHD)

(n = 1). Other relevant clinical features included cardiac anomalies

(n = 2), motor delay (n = 1) and obesity (n = 1) (Table 4, Table S1).

We also identified a mildly affected carrier mother with speech

delay. There were no notable phenotypic differences among

carriers of duplications with different size. Additional genomic

imbalances were identified in six of the 28 probands, including a

male patient referred for ASD, harbouring an additional

maternally inherited duplication at 6q21, a region with reported

linkage to schizophrenia and bipolar disorder [46,47], a female

patient diagnosed with DD and microcephaly carrying an

additional duplication at 22q11.22q11.23, recently associated with

DD, hyperactivity, and epilepsy [48], and a proband harbouring

an additional paternally inherited deletion of uncertain signifi-

cance at 6p22.2. The other three duplication carriers with an

additional genomic imbalance included a male patient referred for

DD and physical dysmorphisms, harbouring an additional

duplication at 7q11.23, the Williams-Beuren Syndrome critical

region, recently associated with autism [49], a female patient

referred for DD, microcephaly and physical dysmorphisms

presenting with a complex chromosome 7 rearrangement, and a

male patient diagnosed with ASD or Asperger syndrome carrying

a duplication of uncertain significance at Xp22.33, flanking the

SHOX gene.

The majority of patients with NAHR-mediated deletions

presented with developmental delay (8/14); importantly, all

patients older than 2 years (8/8) manifested a specific neurolog-

ic/neuropsychiatric phenotype, including learning difficulties

(n = 6), speech and language delay (n = 3), behavioural problems

(n = 3), microcephaly (n = 3), autism spectrum disorder (n = 2) and

epilepsy (n = 2). Other relevant abnormal phenotypes included

dysmorphic features (n = 5), motor delay (n = 3) and cardiac

anomalies (n = 1) (Table 4, Table S1). We also identified a carrier

father mildly affected with learning difficulties. There were no

notable phenotypic differences among carriers of deletions with

different size. Additional genomic imbalances were identified in

five of the 16 probands, including a male patient referred for

motor delay, harbouring an additional maternally inherited

deletion at 17q23.3, encompassing the Silver-Russell syndrome

candidate gene CSH1, a male patient diagnosed with DD and

microcephaly carrying an additional deletion at 7q11.22, involving

the entire autism susceptibility candidate 2 (AUTS2) gene, a

Figure 1. NAHR-mediated duplications and deletions of 16p13.11. NAHR-mediated duplications (blue) and deletions (red) identified in the
16p13.11–p12.3 region (Chr16:14.66–18.70 Mb, GRCh37/hg19) in cases and controls; case and control IDs refer to Table S1 and Table S2. Black solid
bars indicate the three single copy sequence intervals in the region. Red and blue gene symbols represent ohnologs and other genes respectively.
Segmental duplications and low copy repeats (LCRs) in the region are also shown.
doi:10.1371/journal.pone.0061365.g001

Table 1. NAHR-mediated duplications and deletions of 16p13.11 identified in the BB-GRE referral cases.

Total Sample Male only Female only

CNV Cases (N = 10,397)* Controls (N = 10,375) Cases (N = 6,595) Controls (N = 4,474) Cases (N = 3,802) Controls (N = 5,901)

All Dupl 28 13 20 4 7 9

All Del 16 4 13 0 3 4

Dupl I 0 0 0 0 0 0

Dupl I+II 16 8 11 3 5 5

Dupl I+II+III 1 1 0 0 0 1

Dupl II 1 0 1 0 0 0

Dupl II+III 10 4 8 1 2 3

Del I 0 0 0 0 0 0

Del I+II 9 4 7 0 2 4

Del I+II+III 1 0 1 0 0 0

Del II 0 0 0 0 0 0

Del II+III 6 0 5 0 1 0

Abbreviations: Dupl, duplication; Del, deletion.
*The sex of one of the cases carrying a duplication of intervals I, II and III was unknown, consequently, we were unable to include him/her in the male or female
subgroup.
doi:10.1371/journal.pone.0061365.t001
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female patient referred for ASD, motor delay, microcephaly and

physical dysmorphisms harbouring a maternally inherited deletion

of uncertain significance at 17q21.32, encompassing part of the

C17orf57 gene, and a male patient diagnosed with DD, motor

delay and speech delay carrying a duplication of uncertain

significance at 4q13.3. The other deletion carrier presenting with

an additional genomic imbalance was the male proband referred

for scalded-skin syndrome, who harboured an additional mater-

nally inherited deletion at 13q12.12, encompassing the

TNFRSF19 gene, in a region with reported linkage to epilepsy

[50] (Table S1).

16p13.11 CNVs in DECIPHER
Performing a search in the DECIPHER database (https://

decipher.sanger.ac.uk) [41], we identified 101 subjects with

NAHR-mediated CNVs at the 16p13.11 locus, including 61

duplications and 40 deletions (Figure S2, Table S4). Phenotypic

information was available for 78 of the 101 patients (49

duplication carriers and 29 deletion carriers), and between them,

seven cases (patients 250947, 250061, 1230, 249225, 993, 4598,

250436) were not diagnosed with a neurodevelopmental disorder,

but were referred for physical dysmorphism and congenital

anomalies. Information about the inheritance pattern of the

variations was available for seventy-one family trios. Five

duplications (3 males, 1 female, and 1 unknown sex) and seven

deletions (6 males and 1 female) arose de novo, whereas fifty-nine

variations were inherited from a parent, including forty duplica-

tions (24 maternal, 11 paternal, and 5 unknown sex) and nineteen

deletions (8 paternal, 6 maternal, and 5 unknown sex). Twenty-

seven of the 101 patients (19 duplication carriers and 8 deletion

carriers) harboured one or more additional genomic imbalances,

either clinically significant (37%) or of uncertain clinical

significance (63%) (Table S4).

Notably, the DECIPHER database search also identified two

patients (250140 and 265264) carrying non-NAHR mediated

23 kbp microdeletions encompassing the NTAN1 gene

(chr16:15,131,723–15,154,746) identical to those we found in

two cases of the referral series (Figure S1). Phenotypes of the

patients and inheritance pattern of the variations were unknown,

and both probands harboured a second genomic imbalance of

uncertain significance (dupl 2q13 and del 12q13.3) (Table S4).

Patients with duplications mostly presented with developmental

delay (43/49) and physical dysmorphism (n = 24). In line with our

clinical referral cases, the majority of patients older than 2 years

(29/35) were also diagnosed with a neurologic/neuropsychiatric

phenotype, including speech and language delay (n = 20), learning

difficulties (n = 19), autism spectrum disorder (n = 6), behavioural

problems (n = 6), ADHD (n = 5), microcephaly (n = 4) and seizures

(n = 3). Other important phenotypic features observed in more

than one duplication carrier included motor delay (n = 14),

congenital anomalies (n = 14) and obesity (n = 6) (Table 4).

Seventeen carrier parents (9 mothers, 7 fathers, and 1 unknown

sex) were also mildly affected with developmental delay and speech

delay, while one carrier mother was severely affected with speech

delay and learning difficulties. Twenty-two parents (14 mothers, 4

fathers, and 4 unknown sex) harbouring the duplications were

apparently unaffected (Table S4).

The majority of patients with deletions presented with

developmental delay (25/29); neurologic/neuropsychiatric pheno-

types observed in patients older than 2 years (15/20) included

speech and language delay (n = 8), seizures (n = 7), learning

difficulties (n = 5), microcephaly (n = 5), autism (n = 3), macro-

cephaly (n = 2) and behavioural problems (n = 1). Other relevant

abnormal phenotypes included physical dysmorphism (n = 12),

congenital anomalies (n = 12) and motor delay (n = 9) (Table 4).

Seven carrier parents (3 mothers and 4 fathers) were also mildly

affected with developmental delay and speech delay, while twelve

parents (3 mothers, 4 fathers, and 5 unknown sex) with the same

deletions were apparently unaffected (Table S4).

Discussion

In the present study, we report evidence for a male-biased

autosomal effect of 16p13.11 duplications and deletions in a

sample of 10,397 individuals with a neurodevelopmental condi-

tion, analysed by whole-genome array comparative genomic

hybridisation (aCGH). The CNVs identified included 28 duplica-

tions with size ranging from 0.8 Mb to 3.29 Mb and 18 deletions

with size between 0.02 Mb and 3.26 Mb (2 non-NAHR mediat-

ed), each encompassing one or more of the three genomic intervals

(I, II and III) previously identified at this locus [19]. The male-

biased prevalence of the 16p13.11 variations was also confirmed in

the DECIPHER sample, where we identified 101 patients with

NAHR-mediated CNVs at the 16p13.11 locus, including 61

duplications and 40 deletions.

Both duplications and deletions were associated with a wide

range of phenotypic manifestations. Consistent with the ascertain-

ment criteria, the most common phenotypes observed were

Table 2. Frequency of NAHR-mediated 16p13.11 duplications
and deletions in BB-GRE cases and controls.

16p13.11 CNV Cases (%) Controls (%) OR (95% CI) p-value

All 44 (0.42) 17 (0.16) 2.59 (1.48–4.53) 0.0005

Duplications 28 (0.27) 13 (0.12) 2.15 (1.11–4.16) 0.019

Deletions 16 (0.15) 4 (0.04) 4.00 (1.34–11.96) 0.007

Abbreviations: CNV, copy number variant; OR, odds ratio; CI, confidence
interval.
doi:10.1371/journal.pone.0061365.t002

Table 3. Ohnologs in the 16p13.11–p12.3 region.

Ensembl id Gene symbol Full name

ENSG00000072864 NDE1 NudE nuclear distribution gene E homolog 1

ENSG00000133392 MYH11 Myosin heavy chain 11

ENSG00000103222 ABCC1 ATP-binding cassette, sub-family C, member 1

ENSG00000091262 ABCC6 ATP-binding cassette, sub-family C, member 6

ENSG00000103489 XYLT1 Xylosyltransferase 1

doi:10.1371/journal.pone.0061365.t003
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developmental delay/learning disability and physical dysmor-

phism, however, the majority of patients older than 2 years also

presented with a specific neurologic/neuropsychiatric phenotype,

including autism spectrum disorders, speech and language delay,

seizures, behavioural problems, microcephaly and attention deficit

hyperactivity disorder. Notably, in line with previous reports,

seizures were most commonly observed among deletion carriers

(32.1% vs 7.5%) [20–22], while ADHD was only present in

duplication carriers (11.3%) [23].

Information about the inheritance pattern of the variations was

available for twenty-six families of our clinical referral series and

seventy-one DECIPHER families; overall, 17.5% of the probands

harboured a de novo event, while 82.5% inherited the variation

from a carrier parent. Interestingly, we observed an enrichment of

de novo duplications and deletions in affected males (13 de novo

events in affected males vs 3 de novo events in affected females, p

value = 0.0004), consistent with purifying selection and thus higher

penetrance of the variations in the male gender. Phenotypic

information was available for sixty-one carrier parents; of them,

one mother harbouring a duplication, was severely affected with

developmental delay, speech delay and learning difficulties, while

the remaining carrier parents were only mildly affected (n = 26), or

completely unaffected (n = 34). The present data thus suggest that

duplications and deletions at chromosome 16p13.11 represent

pathogenic variants with incomplete penetrance, a pattern

frequently observed for CNVs associated with complex genetic

disorders [51]. Notably, we also observed a trend toward a parent-

of-origin effect, with carrier mothers being more likely than fathers

to transmit a CNV to an affected proband (31 carrier mothers vs

20 carrier fathers, p value = 0.029).

Twelve patients of the referral series (26.1%) and twenty-seven

DECIPHER patients (26.7%) also harboured a second genomic

imbalance that was either clinically significant or of uncertain

clinical significance. These additional CNVs might act in concert

in a ‘‘two-hit’’ model with the 16p13.11 variants to increase

penetrance or severity; notably, the ‘‘double-hit’’ model was first

proposed for patients with deletions at 16p12.1, a region located in

close proximity to the 16p13.11 locus, and the frequency of cases

with a second-hit CNV in the present study is very similar to that

observed in the original report [40].

Association analysis showed a significant enrichment of NAHR-

mediated CNVs in the cases compared with controls, with the

strongest overrepresentation coming from deletions. In line with

our preliminary hypothesis, we observed a sex-biased effect, with a

significant enrichment of CNVs only in the male subgroup of

cases, also confirmed in the DECIPHER sample. All the findings

also held after excluding from the analysis cases and controls with

rare second-hit CNVs .500 kpb in size. Assuming an equal

incidence of the 16p13.11 imbalances in males and females, our

data clearly suggest a male bias in the penetrance of the

neurodevelopmental phenotypes at the 16p13.11 locus. Impor-

tantly, in re-examining the data reported in the literature, we

found a trend toward a male-specific prevalence of 16p13.11

duplications also in schizophrenia-affected patients [19], which

provides further support for our findings.

A male biased sex ratio is typical of several neurodevelopmental

disorders including attention deficit hyperactivity disorder, Tour-

ette syndrome, dyslexia, language delay and, particularly, autism

and Asperger syndrome [52]. The specific factors responsible for

the higher male prevalence remain unclear; however, prenatal

androgens and, in particular, the exposure to high maternal

intrauterine testosterone levels, are thought to play a key role,

being putatively responsible for the unusually hypermasculinized

traits observed in individuals affected by different male-based

neurodevelopmental disorders, such as autism or ADHD

[26,52,53]. Genetic factors are also likely to be determinant, and

recent studies suggest that stronger genetic perturbations are

required to trigger an autistic phenotype in females than males,

including CNVs encompassing a larger number of genes or CNVs

affecting genes that produce a more deleterious impact when

disrupted [54,55]; the specific compensatory mechanisms behind

this greater resistance in females are currently unknown, although

the well-established sexual differences in cognition, neuroanatomy

and neural function observed in males and females across

development, are likely to play an important role [26]. A

decreased or impaired interhemispheric connectivity, for example,

has been associated with different neurodevelompmental disor-

ders, including autism and schizophrenia [56,57], and interesting-

ly, despite smaller brain size in females than in males, females

generally show larger corpora callosa and increased interhemi-

spheric connectivity compared to males [26], which might reflect a

Table 4. Frequency of phenotypic features in individuals with 16p13.11 duplications and deletions.

Phenotypes Duplications Deletions

BB-GRE Decipher Overall % BB-GRE Decipher Overall %

Developmental delay 12/24 43/49 55/73 75.3% 8/14 25/29 33/43 76.7%

Dysmorphic features 11/24 24/49 35/73 47.9% 5/14 12/29 17/43 39.5%

Speech delay* 5/18 20/37 25/55 45.4% 3/8 8/20 11/28 39.3%

Learning difficulties* 3/18 19/35 22/53 41.5% 6/8 5/19 11/27 40.7%

Psychiatric/Behavioural problems 6* 7/18 17/35 24/53 45.3% 5/8 4/19 9/27 33.3%

Seizures* 1/18 3/35 4/53 7.5% 2/8 7/20 9/28 32.1%

Microcephaly* 2/18 4/35 6/53 11.3% 3/8 5/20 8/28 28.6%

Congenital anomalies 4/24 14/49 18/73 24.7% 2/14 12/29 14/43 32.6%

Motor delay* 1/18 14/35 15/53 28.3% 3/8 9/21 12/29 41.4%

Obesity* 1/18 6/35 7/53 13.2% - 1/20 1/28 3.6%

6 This phenotype includes the diagnosis of behavioural problems, ADHD and autism spectrum disorder.
ADHD was present only in duplication carriers (11.3%), but not in deletion carriers.
*Not evaluated in very young cases.
doi:10.1371/journal.pone.0061365.t004
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higher robustness that offers females protection. Furthermore,

another major determinant of the higher threshold of liability

observed in females could be represented by dynamic factors that

operate above and beyond the generally stable DNA sequence

variations, such as sex-specific differences in gene regulation or

sexually dimorphic epigenetic processes. Intriguingly, recent

findings suggest that the amygdala, a major component of the

‘‘social brain’’, exhibits sex differences on multiple epigenetic

factors during brain development, and specifically, in neonatal

males the amygdala shows a decreased expression of both enzymes

involved in DNA methylation and factors essential for reading the

methylation marks that alter gene expression; this novel observa-

tion is thought to reflect an increased window of differentiation for

the male amygdala, which could in turn put males at higher risk

for developing altered social behaviour and mental health

problems later in life, if any perturbation occurs during this

extended period of neuronal differentiation [29].

Performing a search for the disease-causing genes in the 16p13.11

region, we observed a significant enrichment of case duplications and

deletions containing interval II, which is located between 15.49

and 16.32 Mb and encompasses a core set of nine genes

(MPV17L.ABCC6). This particular interval has shown to be

exquisitely dosage-sensitive, because pathogenic when either dupli-

cated or deleted and is thus likely to represent the core pathogenic

region at the 16p13.11 locus, harbouring the dosage-sensitive genes

responsible for the deleterious phenotypes observed in our cases.

Finally, we also applied an evolutionary genetic approach and tested

for the presence of ohnologs in the 16p13.11 region.

Vertebrate evolution has been characterized by two whole

genome duplication (WGD) events; many of the duplicated copies

(‘‘ohnologs’’) have been lost during the evolution, but some of them

have been retained in the vertebrate genome. Over 60% of retained

ohnologs seem to be refractory to small-scale duplication (SSD) and

copy number variation (CNV) in human populations and are

significantly enriched in human disease genes, consequently, they

are thought to represent ancient dosage-balanced genes (dosage-

balanced ohnologs, DBOs), resistant to copy number change

because it leads to deleterious phenotypes under negative genetic

selection [42,58]; ohnologs at the 16p13.11 locus, therefore, may be

more likely than other genes to play an important role in the

aetiology of the pathological phenotypes associated with the

16p13.11 copy number variants. Consistent with this hypothesis

we found that four of the five ohnologs identified at 16p13.11

(NDE1, MYH11, ABCC1 and ABCC6) were contained in the core

pathogenic region significantly overrepresented in our case CNVs,

and we therefore suggest that they represent important candidates

for the observed deleterious phenotypes.

The MYH11 gene encodes the smooth muscle cell (SMC)-

specific isoform of b-myosin heavy chain, a major specific

contractile protein produced in SMC, and represents the most

important candidate gene in the 16p13.11 region for the

predisposition to thoracic aortic aneurysm and dissection (TAAD)

[25]; heterozygous mutations in the MYH11 gene have been

identified in individuals with familial TAAD and are thought to be

able to disrupt SMC contractile function, leading to an early and

severe decrease in the elasticity of the aortic wall [59].

ABCC1 and ABCC6 encode the multidrug resistance-associated

proteins 1 and 6, two members of the ATP-binding cassette (ABC)

transporters superfamily [60]. These two genes have not so far been

associated with neurodevelopmental conditions; however, muta-

tions in ABCC6 are responsible for pseudoxanthoma elasticum

(OMIM 264800), a multisystem genetic disorder characterised by

dystrophic mineralisation of soft connective tissues in a number of

organs, including skin, eyes and arterial blood vessels [61].

Finally, the NDE1 gene represents the strongest candidate for

the neurodevelopmental phenotypes associated with the

16p13.11 CNVs. It encodes the nuclear distribution protein nudE

homolog 1, a centrosomal protein which plays a crucial role in the

process of mammalian encephalisation and human cerebral cortex

growth, because of its involvement in mitosis, neuronal migration

and microtubule organization during brain development [62].

Loss of NDE1 in mouse models causes profound defects in

cerebral corticogenesis and neuronal proliferation and migration,

and mutations in NDE1 have been associated with extreme

microlissencephaly in humans [63,64]. NDE1 and its homolog

NDEL1 (Nuclear distribution protein nudE-like 1) physically

interact with LIS1 (Lissencephaly 1), the first lissencephaly gene

identified, and form a complex involved in neuronal proliferation,

differentiation, and migration within the brain [65]. Importantly,

the NDE1/LIS1/NDEL1 complex is part of the disrupted in

schizophrenia-1 (DISC1) pathway, one of the most relevant

pathways underlying psychosis, and directly binds the DISC1

gene; furthermore, NDE1 subcellular localization and protein-

protein interactions are modulated through phosphorylation by

the cAMP-activated protein kinase A (PKA), and DISC1 is able to

modulate the PKA phosphorilation of NDE1 via regulation of the

activity of PDE4, a cAMP-hydrolyzing enzyme which creates a co-

complex with DISC1 and NDE1/LIS1/NDEL1 [66,67].

Interestingly, several studies have reported evidence of sex-

specific associations of sequence variations in the DISC1 gene and

a number of neuropsychiatric disorders, including schizophrenia,

bipolar disorder, major depression, autism and Asperger syn-

drome, as well as with a variety of neurocognitive endophenotypes

[68–73]. The most robust association has been observed for a two-

marker haplotype (HEP3) spanning a 62 kbp genomic region from

intron 1 to exon 2 of the DISC1 gene, which was originally found

to confer significant risk of schizophrenia only to male probands in

a sample of Finnish families [68], and has subsequently been

associated to the neurocognitive measure of visual working

memory only in males [69]. Notably, a later study in the same

sample of Finnish families also found sex-dependent evidence of

association between a tag-haplotype in the NDE1 gene and risk of

schizophrenia only in females [74].

Further support for a possible sex-specific effect of the DISC1

pathway in conferring risk for mental illness, also comes from

animal studies. Using a new transgenic mouse model, Pletnikov

et al. found that the expression of a mutant human truncated

DISC1 protein (hDISC1) in forebrain areas of the mouse brain

produces sex-dependent behavioural effects, with male mice

showing increased spontaneous locomotor activity and attenuated

social behaviour and female mice exhibiting impaired spatial

memory and depression-like behaviour [75,76]. These evidences

suggest the possible involvement of the NDE1 gene and, more

generally, of the DISC1 risk pathway, in the sex-biased effect

observed for the 16p13.11 copy number variants, however,

additional studies will be needed to explore the possible molecular

mechanisms mediating such an effect.

Recently, the specific role of NDE1 as disease-causing candidate

gene at 16p13.11 has been investigated in a preliminary study by

Liu et al. [77], examining surgically resected brain tissues from

two patients with mesial temporal lobe epilepsy (MTLE), carrying

identical heterozygous 16p13.11 deletions encompassing the

NDE1 gene. The authors did not find any detectable structure

alteration in the brain tissues with the methods employed, which

might suggest that, at least in the two cases examined, the deletion

of NDE1 could not represent the key contributor to the patients

phenotype, or that it could act at a different level than the one

examined in the study [77]; despite the very small clinical sample,
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the study highlights the importance of deep phenotyping analysis

for the interpretation of the present genetic findings, outlining a

crucial direction for future work.

There are potential limitations in the case-control analysis

performed in the present study, which arise because of the

different CNV detection methods used for the generation of the

data in cases (Agilent CGH array) and controls (Illumina SNP

genotyping arrays). Platform heterogeneity in CNV detection may

produce false CNV enrichment signals, as a function of different

probe density and distribution (gene-centric probes on array

CGH, especially focussed on known disease variants), different

analysis methods, etc. This means that not all regions of the

genome will be directly comparable, and some CNV identified by

array CGH may be missed by Illumina genotyping arrays and

vice-versa. Platform heterogeneity, however, is unlikely to

represent a major confounding factor in the present study, as

platform-specific differences in sensitivity and specificity have been

found to largely disappear for large CNVs (.500 kbp in size) [37–

40], and the 16p13.11 locus is a known CNV region harbouring

NAHR-mediated variations with size .800 kbp, and is adequately

covered by both our array CGH probes and Illumina genotyping

array probes for the detection of such events.

In summary, we studied the impact of duplications and

deletions at chromosome 16p13.11 in a clinical sample of children

and young adults with a range of neurodevelopmental disorders,

analysed by array comparative genomic hybridisation (aCGH).

While phenotype-led studies have recently implicated these

genomic variations in different specific syndromes [15–25], we

used a CNV-led approach aiming to capture the full range of

phenotypic diversity associated with these pleiotropic variants

[12]. The male-biased effect observed in the present study for the

16p13.11 genomic imbalances is intriguing, in that it could help to

shed some light on the complex genetic and biological mechanisms

underlying the yet poorly understood male bias characteristic of a

number of neurodevelopmental disorders. Nearly all human

diseases exhibit sexually dimorphic features in prevalence, course

and severity; uncovering the bases of such differences could offer

unprecedented insights into the aetiology of complex disorders and

thus provide concrete means for the design of effective interven-

tion and treatment.

Supporting Information

Figure S1 Microdeletions of NTAN1. Microdeletions at

[chr16:15,131,723–15,154,746] identified in two cases of the

referral series (Case 1 and Case 2) and in two cases reported in the

DECIPHER database (patients 250140 and 265264) (http://

genome.ucsc.edu/).

(TIF)

Figure S2 NAHR-mediated duplications and deletions
of 16p13.11 in the DECIPHER cases. NAHR-mediated

duplications (blue) and deletions (red) identified in the 16p13.11-

p12.3 region (Chr16:14.66–18.70 Mb, GRCh37/hg19) in the

DECIPHER referral cases. Segmental duplications in the region

are also shown (http://genome.ucsc.edu/).

(TIF)

Table S1 Genotype–phenotype correlation for patients
with duplication or deletion of 16p13.11 identified in the
clinical referral series.

(PDF)

Table S2 Duplications and deletions of 16p13.11 iden-
tified in the control cohorts.

(PDF)

Table S3 NAHR-mediated duplications and deletions of
16p13.11 in the DECIPHER cases.

(PDF)

Table S4 Genotype–phenotype correlation for patients
with duplication or deletion of 16p13.11 recorded in the
DECIPHER database.

(PDF)

Methods S1 Supplementary methods.

(PDF)
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