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Abstract
The increasing percentage of obese individuals in the population and its independent association
of increased risk for the development of cancer have heightened the necessity to understand the
molecular mechanisms that underlie this connection. The deregulation of adipokines in the setting
of obesity and their impact on cancer progression and metastasis is one such area of research.
Adipokines are bioactive proteins that mediate metabolism, inflammation, angiogenesis, and
proliferation. Altered levels of adipokines or their cognate receptors in cancers can ultimately lead
to an imbalance in downstream molecular pathways. Discovery of adipokine receptors in various
cancers has highlighted the potential for novel therapeutic targets. Leptin and adiponectin
represent two adipokines that elicit generally opposing molecular effects. Epidemiological studies
have highlighted associations between increased serum leptin levels and increased tumor growth,
while adiponectin exhibits an inverse correlation with cancer development. This review addresses
the current level of understanding of molecular pathways activated by adiponectin and leptin to
identify areas of intervention and facilitate advancement in the field.

Background
A strong correlation between obesity and cancer, coupled with the rising obesity epidemic,
has led to a prediction of an increase in forthcoming new cancer cases. Obesity commonly
leads to deregulation of adipokines, bioactive proteins primarily secreted from adipocytes,
which elicit their biological effects upon binding to cognate receptors. The primary role of
adipokines is to help maintain metabolic homeostasis, yet expanded roles for adipokines
have demonstrated their ability to modulate inflammation, angiogenesis, proliferation and
apoptosis. With these processes in mind, a role for adipokines in cancer progression and
metastasis has become apparent. The majority of cancer related studies have focused in vitro
on the ability of adipokines to affect the typical hallmarks of cancer including proliferation,
evasion of apoptosis, tumor cell migration and invasion, angiogenesis and vascular
stimulation, and evasion of immune detection. More pertinent are preclinical studies that
have validated the impact of adipokines on cancer progression in vivo, yet the signaling
mechanisms through which these adipokines are mediating oncogenic phenotypes still
require further elucidation. This review will address the molecular pathways of two
prominent adipokines, leptin and adiponectin, and the potential to develop novel cancer
therapeutics.
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Adipokines: Leptin and Adiponectin
Leptin is a 16kD bioactive protein encoded by the Ob gene, secreted from adipocytes as well
as other tissues, which acts as a regulator of energy to control satiety through stimulation in
the central nervous system as well as to modulate glucose and insulin homeostasis through
activation in peripheral tissues 1. Leptin typically circulates in the blood at a concentration
of 5–10ng/mL in healthy patients, yet its level increases in obese and diabetic patients
upwards of 50ng/mL 2. Leptin stimulates a specific set of receptors from the extended class I
cytokine-receptor family, comprising six isoforms that dimerize with each other, but lack
intrinsic kinase activity 3. Leptin receptor isoforms vary with respect to tissue and cell type
as well as with respect to ligand stimulation. Auto-regulation of receptor levels as well as
ligand-dependent activity may additionally lead to leptin resistance 4, 5.

Adiponectin is part of the complement 1q family of proteins that is primarily secreted by
adipocytes as a monomeric protein, which can further oligomerize to form low molecular
weight, high molecular weight and multimeric complexes 6. Additionally, adiponectin can
be cleaved by leukocyte elastase to generate a globular oligomeric complex 7. Adiponectin
is generally maintained between 7–15ug/mL in the plasma of healthy humans and exhibits a
negative correlation with body mass index as well as percent body fat 8, 9. Adiponectin
activates two main seven transmembrane receptors, adiponectin receptor 1 (adipoR1) and
adiponectin receptor 2 (adipoR2) 10. AdipoR1 has a greater affinity for globular adiponectin
while adipoR2 binds full length and multimeric adiponectin more avidly 10. Stimulation of
either receptor leads to regulation of metabolic effects through the activation and
phosphorylation of AMPK, ACC as well as p38 MAPK 10. Knockout of each receptor
resulted in an opposition of effects on locomotor activity and metabolism where adipoR1
was shown be associated with increased adiposity and decreased glucose tolerance while
adipoR2 is resistant to diet induced obesity 11, 12.

Antagonistic Signaling Between Leptin and Adiponectin
Leptin and adiponectin generally affect cellular behavior in an opposing manner. Highlights
of these studies suggest that adiponectin administration in vivo has been shown to decrease
growth and proliferation, increase apoptosis, decrease invasion, and decrease vessel density
in murine cancer models 13–17. Leptin has been shown to increase proliferation, migration
and invasion of cancer cells 18–25 as well as contribute to release of VEGF26. The ratio of
leptin to adiponectin was recently described to be a potential key for outcome when
assessing plasma levels 27. An important aspect of this consideration is that adiponectin can
antagonize the actions of leptin. The molecular mechanisms through which adiponectin and
leptin affect cancer cell behavior still require further elucidation. Figure 1 illustrates the
dynamic signaling pathways for leptin and adiponectin, which we have combined to
ascertain common mediators as potential key components for therapeutic intervention.

Leptin binding to all four forms of the short leptin receptor (Ob-Ra, Ob-Rc, Ob-Rd and Ob-
Rf), elicits activation of Janus Kinase (JAK)2 and subsequent phosphorylation of insulin
receptor substrates (IRS), initiating activation of the PI3-K/Akt pathway 3. The long form of
the receptor (Ob-Rb) contains an intracellular carboxy terminal extension that provides an
additional three tyrosine residues (Tyr985, Tyr1077, and Tyr1138), necessary to confer
binding and activation of signal transducer and activator of transcription (STAT)3 and
STAT5 3, 28, 29. Additionally, a secreted isoform lacking the intracellular signaling domains
(Ob-Re) 30, functions to sequester and block leptin induced STAT3 activation 31.

Leptin dependent activation of JAK2 additionally confers phosphorylation of both Tyr985
and Tyr1138 as well as activation of IRS1/2. Phosphorylation of Tyr985 is essential for
phosphorylation of Tyr1138 which promotes Src mediated activation of STAT3 28.
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Additionally, phosphorylation of Tyr985 promotes recruitment of SHP2, a protein
phosphatase, and SOCS3, an inhibitor of STAT3 32. Leptin mediated SHP2 binding leads to
activation of ERK33, 34 as well as attenuation of p62Dok35, a RasGTPase, leading to
activation of Ras and subsequent proliferation. SOCS3 and PPARgamma are upregulated
via activation of STAT5 at Tyr1077 subsequent to leptin stimulation 32. Leptin mediated
upregulation of SOCS3 is thought to be involved during chronic leptin stimulation, which
then acts as a negative regulator to directly bind and block Ob-Rb signaling and well as
JAK2 activity 36, 37. Additionally, adiponectin can increase PTP1B, protein tyrosine
phosphatase 1B, which then dephosphorylates STAT3 as well as JAK2, further antagonizing
leptin signaling 38.

Adiponectin binding can occur through either receptor 1 (AdipoR1) or receptor 2
(AdipoR2), which homodimerize or heterodimerize 6. While gAdN preferentially binds to
adipoR1, HMW adiponectin preferentially stimulates adipoR2 10. Knockout studies suggest
that adipoR1 is necessary for AMPK activity while adipoR2 is necessary for PPARalpha
activity, yet both receptors have been shown to be able to increase phosphorylation of
AMPK 11, 12. APPL1, a pleckstrin homology adaptor protein, binds to the intracellular
portion of the adiponectin receptors and participates in AMPK activation leading to GLUT4
membrane translocation, p38 MAPK activation and phosphorylation of acetyl-CoA
carboxylase, ACC 39. AMPK activation inhibits the mTOR complex via Raptor in the
mTorc1 complex as well as activating TSC2, an inhibitor of mTOR 40. Phosphorylation of
AMPK further activates TP5341 and pro-apoptotic pathways as well as the activation of
PP2A, protein phosphatase 2A, which can negatively regulate Akt in response to
adiponectin stimulation42 and therefore antagonize leptin induced Akt. Adiponectin
stimulation of APPL1 alternately activates Akt to enhance mTOR in the absence of PTEN43,
phosphatase and tensin homolog deleted on chromosome ten, which normally inhibits PI3K
activation of Akt. Therefore, crosstalk between leptin and adiponectin as well as the
activation of multiple pathways keep proliferative signaling in balance.

Leptin and Leptin Receptors in Cancer
Tumor associated leptin receptor levels are thought to contribute to tumor growth and
progression. Increased detection of ObR in ovarian cancers was correlated with decreased
survival 44. Leptin receptor expression is enhanced in 83% of human breast cancers, and
34% of patients with high leptin receptor level and high ligand level had detectable distant
metastases 45. In the murine MMTV-TGF-alpha model, deficiency in the long form of the
leptin receptor (Db/Db) resulted in failure of mammary tumor formation 46. Knockdown of
the ObR through siRNA in MCF-7 breast cancer cells resulted in suppression of tumor
volume in a mouse xenograft model 47. Knockdown of the long form of the leptin receptor
can abolish integrin dependent migration of chondrosarcoma cells through involvement of
IRS-1/PI3K-dependent activation of Akt 48. In addition, pancreatic tumors grown in leptin
receptor mutant mice (LepDB) had larger tumors and more metastases when compared to
wildtype mice 49. Additionally, mutational status may affect receptor function. Three single
nucleotide polymorphisms in the leptin receptor gene (K109R, K656N, and Q223R) showed
an association with increased basal-like breast cancer risk 50. These results suggest that
tumor leptin receptor levels directly influence growth and progression.

Circulating levels of leptin have been investigated to determine the correlation with cancer
and progressive disease. Elevated leptin levels in cancer patients compared to normal or
preoperative levels have been reported in hepatocellular carcinoma and prostate cancer,
while levels are relatively equivocal in breast cancer patients 51–55. Yet, in pancreatic cancer
and colon cancer patients, leptin levels were generally found to be decreased 56–59.
Complications such as pancreatic dysfunction, advanced progression of disease, weight loss
and/or cachexia might be underlying factors for decreased leptin levels. Leptin produced by
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adjacent adipose might provide a local increased level of stimulation to tumors 60–62,
suggesting the presence of tumor associated adipose represents an important
microenvironmental influence. Although normally secreted from adipose, self-sufficiency
for leptin has recently been shown to be secreted from glioblastoma and breast cancer
cells 63, 64. Further, intra-tumoral mRNA leptin levels in patients with high leptin receptor
levels correlated with decreased relapse-free survival 55.

Adiponectin and Adiponectin Receptors in Cancer
Epidemiologic studies show low levels of adiponectin have an inverse association with risk
for the development of multiple cancers as well as advanced progression of disease 65. Two
adiponectin single nucleotide polymorphisms have been shown to increase prostate, colon
and breast cancer risk 66–68. Adiponectin deficiency through the use of knockout mice has
shown accelerated hepatic tumor formation 69 and increased colon polyp formation 70, yet it
delayed tumor growth in a mammary MMTV-PyV-mT model due to decreased
vascularization and increased apoptosis in early stages of disease 71, 72. Tumor promoting
effects are likely secondary to initiation, but no clear studies have implicated adiponectin as
an initiator of cancer development.

The adiponectin receptors have been detected in gastric, colon, prostate, breast, pancreatic
and many other cancers 16, 56, 73–75. Adiponectin receptors detection in gastric cancers was
associated with longer overall survival 76. Two single nucleotide polymorphisms of
adiponectin receptor 1 associate with prostate cancer risk and one with breast cancer
risk 67, 68. Six genetic associations in the adipoR1 and adipoR2 genes have been detected in
diabetic patients 77. Deletion of the adipoR1, but not adipoR2, resulted in a promotion of
epithelial cell proliferation and increased number of aberrant crypt foci in a murine
model 70. Future studies addressing the functional role of each adiponectin receptor in
cancer initiation and progression will add a substantial contribution to our understanding and
the importance of adiponectin signaling in these diseases.

Clinical-Translational Advances
Preclinical Advances

Currently, preclinical advances modulating adipokines have been limited for cancer
therapeutics. Recombinant leptin treatment increased MDA-MB-231 breast tumor xenograft
growth22 as well as melanoma 78. In an animal study, female mice in the MMTV-TGF-alpha
breast cancer model fail to develop tumors when crossed with leptin deficient mice 46.
Conversely; leptin antagonist treatment was shown to decrease the growth of triple negative
breast tumors in mice79 as well as decrease 4T1 mouse mammary tumor growth in vivo
through reduced VEGF, pSTAT3 and Cyclin D1 80. Recent evidence suggests that C
reactive protein as well as soluble leptin receptor can act to bind circulating leptin and
attenuate its activity 81, 82. This provides insight into novel mediators of leptin action that
may mediate its activity in cancer patients. Anti-leptin therapy could potentially be used to
decrease circulating levels of leptin or to alter the adiponectin:leptin ratio in cancer patients,
although additional preclinical studies will be needed to test the impact of altered leptin and
adiponectin signaling in vivo.

Adiponectin treatment decreases the number of polyps especially those larger in size, in the
ApcMin intestinal tumor model 83. Adiponectin treatment induced apoptosis of gastric
cancer cells in vitro while in vivo its infusion into mice led to decreased metastasis 16.
Additionally, liver tumor growth and lung metastases were lowered by adiponectin
overexpression 14. Interestingly, rosiglitazone treatment increased adiponectin serum
concentrations84 as well as adiponectin receptor expression 85. Additionally, hypocaloric
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diet and exercise led to an altered oligomeric distribution of adiponectin as well as it
increased adipoR1 and adipoR2 expression 86.

Clinical Advances
The administration of leptin, adiponectin, or direct antagonists of either of these adipokines
has not been reported in the literature for the treatment of human cancers. Leptin therapy
was shown ineffective for patients with Type II diabetes, yet it did improve insulin
sensitivity in leptin deficient patients 87. Currently, clinical applications of adiponectin and
leptin therapeutics are more likely to address metabolic disorders, obesity, and diabetes than
cancer therapeutics. Yet, the application of anti-leptin therapy or administration of
adiponectin could both provide straightforward treatment options in cancer therapeutics
through direct interactions in cancer cells or indirectly by reducing obesity and metabolic
disorders which have been associated with increased risk for cancer.

Alternately, targeting downstream adipokine signaling mediators are likely to be an
advantageous choice. Downstream targeting of the adiponectin with Metformin can lead to
activation of AMPK. Metformin is gaining wide attention for its role as an anti-diabetic as
well as its anti-tumor effects for breast, prostate, lung, colon, ovarian cancers 88. Metformin
therapy preceding cancer diagnosis was associated with better survival in diabetic as well as
non-diabetics 89. Use of metformin and thiazolidinediones among a defined patient
population of diabetics with either stage 2 to advanced HER2+ breast cancer or those with
prostate cancer associated with decreased mortality 90, 91. Thiazolidinediones, which are
PPAR gamma agonists and include pioglitazone and rosiglitazone, increase the secretion of
HMW adiponectin from adipocytes 92. Recent data from randomized controlled trials
indicated that thiazolidinedione use provides a modest decrease in the risk for lung,
colorectal and breast cancers 93. Additionally, administration of a cholesterol reducing drug,
fenofibrate, increased plasma adiponectin concentration 94. Mechanisms to target the leptin
pathway include the use of common pathway inhibitors such as STAT3 inhibitors95, Akt
inhibitors 96, and RAF inhibitors 97. Novel mechanisms of adipokine modulation through
PTP1B and PP2A may additionally be used to inhibit the leptin receptor. Dual targeted
therapies directed toward decreasing response from leptin stimulation and increasing the
response from adiponectin pathways have the potential for more efficacious cancer therapy.

Conclusions
Obesity is a growing clinical problem and is independently associated with multiple
cancers 98. This review illustrates that adipokines contribute to multiple aspects of cancer
progression and elicit a broad range of effects in normal as well as transformed cells.
Adipokine stimulation appears not to follow a straightforward direct pathway, but instead
contributes to a highly integrated cellular response. Determining circulating levels of
adipokines as well as their receptors is equally important in determining which pathways are
active and dominant. Additionally, cancers acquire genetic mutations and epigenetic
modifications that can result in activation of oncogenes such as Ras, RAF, ERK and Akt or
that can result in inactivation of tumor suppressors such as p53 and PTEN. In the future, we
will likely have to consider individualized mutational status for cancer as well as in cancer
cell lines in order to understand the impact these alterations have on adipokine signaling
pathways. Integration of these aspects will then allow for targeted therapeutics and
manipulation of adipokine pathways in cancer.
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Figure 1.
Leptin and adiponectin activate signaling components that integrate PI3K/Akt, RAS/MAPK,
and pAMPK/mTor pathways. Green arrows indicate activation of target protein, while red
lines indicate inhibitory effects. Leptin stimulation of the long receptor isoform leads to
JAK2 phosphorylation and subsequent phosphorylation of tyrosine residues 985 and 1138,
which confer PI3K/Akt and STAT3 pathway activation. Leptin stimulation can be prevented
with c-reactive peptide, soluble leptin receptor (Ob-Re) or leptin antagonists. Chronic
stimulation leads to an increase in SOCS3 which negatively regulates leptin signaling by
inhibiting JAK2 activities. Additionally, leptin receptor stimulation activates SHP2 leading
to increased Ras/RAF/ERK signaling. Adiponectin receptor 1 (AdipoR1) and receptor 2
(AdipoR2) are preferentially stimulated by the globular (gAdn) and high molecular weight
(HMW Adn) oligomers of adiponectin respectively, although both receptors respond with
lower affinity to other adiponectin oligomers. Serum levels of adiponectin can be increased
through thiazolidinediones or fenofibrates, while the receptor levels can be increased with
rosiglitazone or exercise. Adiponectin receptors associate with adaptor protein APPL1 to
activate AMPK and PPAR alpha. Adiponectin can antagonize leptin mediated proliferation
through activation of phosphatase PTP1B, leading to inhibition of JAK2, dephosphorylation
of STAT3, and dephosphorylation of ERK1/2; as well as phosphatase PP2A to decrease
phosphor-Akt. Adiponectin also inhibits leptin action through increased AMPK inhibition
on mTORC1 directly as well as indirectly through TSC2. Metformin additionally
antagonizes leptin action through activation of AMPK. Adiponectin activation also leads to
modulation of NFkB, TP53, eNOS, ACC, and ceramidase activity; yet direct antagonism of
leptin through these mediators is unclear. Ultimate outcome for a particular pathway in
cancer is highly dependent upon genetic integrity and deficiencies in key regulatory
mediators will dictate which pathway will dominate.
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