Skip to main content
. Author manuscript; available in PMC: 2014 Mar 5.
Published in final edited form as: Structure. 2013 Mar 5;21(3):476–485. doi: 10.1016/j.str.2013.01.013

Table 1.

Thermodynamic and kinetic parameters of CRABP1 variantsa

Variant Locationb ΔΔGU-N (kcal/mol)c ln kUd mU (kcal/mol·M)d ΔΔG‡-N (kcal/mol)e φ-valuef
wild typeg n/a −11.0 ± 0.1 0.64 ± 0.02 n/a n/a
F3I+ h Strand 1 −3.6 ± 0.2 −6.5 ± 0.1 0.80 ± 0.03 −2.6 ± 0.1 0.26 ± 0.05
W7Y Strand 1 −2.2 ± 0.2 −9.7 ± 0.2 0.68 ± 0.02 −0.8 ± 0.1 0.65 ± 0.07
M9A+ Strand 1′ −1.8 ± 0.2 −11.5 ± 0.2 0.87 ± 0.02 0.3 ± 0.2 1.17 ± 0.09
S12G+ Strand 1′ −1.8 ± 0.2 −10.38 ± 0.08 0.706 ± 0.008 −0.34 ± 0.08 0.82 ± 0.05
F15A Helix I −2.9 ± 0.2 −8.5 ± 0.2 0.65 ± 0.01 −1.25 ± 0.08 0.57 ± 0.04
L18A+ Helix I −3.5 ± 0.2 −9.5 ± 0.4 0.88 ± 0.05 −0.9 ± 0.2 0.75 ± 0.07
L19A i Helix I −3.3 ± 0.2 −7.58 ± 0.07 0.547 ± 0.005 −2.00 ± 0.09 0.39 ± 0.05
L22A+ Helix I −2.7 ± 0.2 −10.43 ± 0.02 0.859 ± 0.002 −0.31 ± 0.08 0.88 ± 0.03
R29A Helix II −0.8 ± 0.3 −9.17 ± 0.04 0.458 ± 0.003 −1.06 ± 0.08 n/a
V31A Helix II −0.6 ± 0.3 −10.6 ± 0.2 0.587 ± 0.008 −0.2 ± 0.1 n/a
V33A Helix II −0.4 ± 0.3 −9.9 ± 0.5 0.54 ± 0.05 −0.6 ± 0.3 n/a
I43V Strand 2 −1.6 ± 0.2 −8.9 ± 0.1 0.61 ± 0.05 −1.2 ± 0.1 0.3 ± 0.1
F50I Strand 3 −1.7 ± 0.2 −8.51 ± 0.04 0.66 ± 0.01 −1.45 ± 0.08 0.1 ± 0.1
V58A Turn II −0.2 ± 0.2 −10.9 ± 0.2 0.642 ± 0.002 0.0 ± 0.1 n/a
K66A Turn III −1.8 ± 0.3 −7.85 ± 0.07 0.48 ± 0.01 −1.84 ± 0.09 0.0 ± 0.2
V67A Turn III −3.3 ± 0.2 −6.5 ± 0.2 0.70 ± 0.03 −2.7 ± 0.1 0.18 ± 0.06
G68A Turn III −2.6 ± 0.2 −6.9 ± 0.2 0.50 ± 0.03 −2.4 ± 0.2 0.06 ± 0.09
E69A Turn III −1.3 ± 0.2 −9.02 ± 0.07 0.51 ± 0.01 −1.15 ± 0.09 0.1 ± 0.1
G70A Turn III 0.7 ± 0.2 −11.9 ± 0.1 0.69 ± 0.01 0.6 ± 0.1 0.2 ± 0.2
T75A Turn IV −2.4 ± 0.3 −9.0 ± 0.1 0.54 ± 0.05 −1.2 ± 0.1 0.51 ± 0.08
V76A Turn IV −1.5 ± 0.3 −10.3 ± 0.1 0.675 ± 0.007 −0.4 ± 0.1 0.74 ± 0.08
D77A Turn IV −1.0 ± 0.3 −9.56 ± 0.07 0.529 ± 0.001 −0.83 ± 0.09 0.2 ± 0.2
G78A Turn IV −2.5 ± 0.4 −9.53 ± 0.04 0.547 ± 0.009 −0.85 ± 0.08 0.66 ± 0.06
R79A Turn IV −3.1 ± 0.3 −8.6 ± 0.2 0.46 ± 0.02 −1.4 ± 0.1 0.55 ± 0.06
W87F Strand 6 −2.6 ± 0.4 −7.7 ± 0.1 0.59 ± 0.02 −1.9 ± 0.1 0.2 ± 0.1
I93V Strand 7 −1.8 ± 0.2 −8.49 ± 0.05 0.567 ± 0.004 −1.46 ± 0.08 0.2 ± 0.1
W109I Strand 8 −2.9 ± 0.2 −7.6 ± 0.1 0.37 ± 0.02 −2.0 ± 0.1 0.31 ± 0.07
L113V Strand 8 −0.8 ± 0.2 −10.48 ± 0.02 0.66 ± 0.01 −0.28 ± 0.08 n/a
L118V+ Strand 9 −2.3 ± 0.4 −9.9 ± 0.2 0.79 ± 0.03 −0.7 ± 0.2 0.72 ± 0.08
C129A Strand 10 −0.6 ± 0.2 −9.8 ± 0.1 0.55 ± 0.01 −0.68 ± 0.09 n/a
Q131A Strand 10 −2.0 ± 0.2 −8.15 ± 0.02 0.516 ± 0.006 −1.66 ± 0.08 0.17 ± 0.09
Y133S+ Strand 10 −4.8 ± 0.2 −9.32 ± 0.02 0.950 ± 0.001 −0.97 ± 0.08 0.80 ± 0.02
R135G+ Strand 10 −3.9 ± 0.3 −8.7 ± 0.1 0.71 ± 0.01 −1.34 ± 0.09 0.66 ± 0.04
a

The average values from at least two independent measurements and the standard deviation are reported; all values reported are extrapolated to 0 M denaturant

b

Secondary structural location of the selected variant residue

c

The energetic effect of mutations on the free energy of the unfolded state (U) with respect to the native state (N) calculated as ΔΔGU-N = ΔGU-NWT−ΔGU-Nmut where ΔGU-NWT was determined to be 10.0 ± 0.2 kcal/mol, and ΔGU-N values were obtained by fitting equilibrium urea unfolding curves using meq = −2.0 kcal/mol·M (Fig. 2A,C)

d

Obtained from linear extrapolation of ln kU versus [urea] (Fig. 2B,D)

e

The energetic effect of mutation on the free energy of the transition state (‡) with respect to the native state (N), calculated as ΔΔG‡-N = −RT ln (kUWT/kUmut)

f

Calculated as φF = 1 − φU

g

His-tagged CRABP1 with a stabilizing R131Q mutation was used as WT

h

Designates variants with mU > 0.7 kcal/mol·M (mU+)

i

Designates variants with mU < 0.57 kcal/mol·M (mU−)