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Abstract
Population pharmacokinetic (PK) modeling methods can be statistically classified as either
parametric or nonparametric (NP). Each classification can be divided into maximum likelihood
(ML) or Bayesian (B) approazches. In this paper we discuss the nonparametric case using both
maximum likelihood and Bayesian approaches. We present two nonparametric methods for
estimating the unknown joint population distribution of model parameter values in a
pharmacokinetic/pharmacodynamic (PK/PD) dataset. The first method is the NP Adaptive Grid
(NPAG). The second is the NP Bayesian (NPB) algorithm with a stick-breaking process to
construct a Dirichlet prior. Our objective is to compare the performance of these two methods
using a simulated PK/PD dataset. Our results showed excellent performance of NPAG and NPB in
a realistically simulated PK study. This simulation allowed us to have benchmarks in the form of
the true population parameters to compare with the estimates produced by the two methods, while
incorporating challenges like unbalanced sample times and sample numbers as well as the ability
to include the covariate of patient weight. We conclude that both NPML and NPB can be used in
realistic PK/PD population analysis problems. The advantages of one versus the other are
discussed in the paper. NPAG and NPB are implemented in R and freely available for download
within the Pmetrics package from www.lapk.org.

Keywords
Population pharmacokinetic modeling; Non-parametric; Maximum likelihood; Bayesian; Stick-
breaking; Pmetrics; RJags

Introduction
Population pharmacokinetic (PK) modeling involves estimating an unknown population
distribution based on data from a collection of nonlinear models. One important application
of this method is the analysis of clinical PK data. A drug is given to a population of subjects.
In each subject, the drug’s behavior is stochastically described by an unknown subject-
specific parameter vector θ. This vector θ varies significantly (often genetically) between
subjects, which accounts for the variability of the drug response in the population. The
mathematical problem is to determine the population parameter distribution F(θ) based on
the clinical data.

The distribution F determines the variability of the PK model over the population. From an
estimate of this distribution, means and credibility intervals can be obtained for all moments
of F and, more generally, for any functional of F such as a target serum concentration after a
given dosage regimen.

The importance of this problem is underscored by the FDA: “Knowledge of the relationship
among concentration, response, and physiology is essential to the design of dosing strategies
for rational therapeutics. Defining the optimum dosing strategy for a population, subgroup,
or individual patient requires resolution of the variability issues” [1].

Population PK modeling approaches can be classified statistically as either parametric or
nonparametric. Each can be divided into maximum likelihood or Bayesian methods. While
we focus on the nonparametric approaches in this paper, for completeness we discuss all
four approaches very briefly below.

The parametric maximum likelihood approach is the oldest and most traditional. One
assumes that the parameters come from a known, specified probability distribution (the
population distribution) with certain unknown population parameters (e.g. normal
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distribution with unknown mean vector μ and unknown covariance matrix Σ). The problem
then is to estimate these unknown population parameters from a collection of individual
subject data (the population data). The first and most widely used software for this approach
has been the NONMEM program developed by Sheiner and Beal [2, 3]. There are other
parametric maximum likelihood programs currently available, such as Monolix [4] and
ADAPT [5]. The ADAPT software also allows for parametric mixtures of normal
distributions, see [6] and [7]. Asymptotic confidence intervals can be obtained about these
population parameters. Here “asymptotic” means as the number of subjects in the population
becomes large.

The nonparametric maximum likelihood (NPML) approach was initially developed by
Lindsay [8] and Mallet [9]. In contrast to parametric approaches, NPML makes no
assumptions about the shapes of the underlying parameter distributions. It directly estimates
the entire joint distribution. This permits discovery of unanticipated, often genetically
determined, non-normal and multimodal subpopulations, such as fast and slow metabolizers.
The NPML approach is statistically consistent [10]. This means that as the number of
subjects gets large, the estimate of F given the data converges to the true F. Consequently so
are its continuous functionals such as means and covariances. The main drawback of the
NPML approach is that it is not easy to determine even asymptotic confidence intervals
about parameter estimates. For example, bootstrap methods have been used [11], but are
extremely computationally intensive.

The Bayesian approaches are much newer. In the parametric Bayesian approach, one
assumes that the population parameters (e.g. (μ, Σ) in the normal case)) are themselves
random variables with known prior distributions. The problem then is to estimate the
conditional distribution of the population parameters given the population data and the prior
distributions. The most widely used approach is based on Monte Carlo Markov Chain
(MCMC) methods.

Population PK analysis can be performed using the software packages WINBUGS [12], and
JAGS [13]. Because this method is Bayesian, rigorous credibility intervals can be obtained
for population parameters independent of the sample size. Of course, questions remain about
convergence of the MCMC sampler and sensitivity to the prior assumptions.

The nonparametric Bayesian approach is much more flexible. One can assume that the
population distribution F is totally unknown and random with a Dirichlet process prior. This
approach has only been applied to a few PK problems [14–17]. A general purpose software
package for population PK modeling has not yet been developed. This is one of the goals of
the present paper.

The nonparametric approaches
We have developed two general nonparametric (NP) algorithms for estimating the unknown
population distribution of model parameter values in a pharmacokinetic/pharmacodynamic
(PK/PD) dataset [18–20]. The first method is the NP Adaptive Grid (NPAG) algorithm,
which we have used in our USC Laboratory of Applied Pharmacokinetics for many years
[19]. This method calculates the maximum likelihood estimate of the population distribution
with respect to all distributions. Compared with most parametric population modeling
methods, NPAG calculates exact, rather than approximate likelihoods, and it easily
discovers unexpected sub-groups and outliers [21, 22].

Since NPAG is an NPML method, it cannot easily calculate confidence intervals around
parameter estimates. This motivated us to develop the second NP method described here.
We used an NP Bayesian (NPB) algorithm with a stick-breaking process [23], to construct a
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Dirichlet process prior. More details are given below. The NPB algorithm provides a
Bayesian estimate of this totally unknown population distribution, including rigorous (not
asymptotic) credibility intervals around all parameter estimates for any sample size.

Both NPAG and NPB estimate the unknown population distribution as a discrete
distribution. These discrete representations are perfectly suited for multiple-model adaptive
control in which required integrals over the population distribution become finite sums [24].
By combining discrete distributions that are free of a priori assumptions on shape with
credibility intervals, NPB combines the best of parametric and nonparametric methods.

The outline of the paper is as follows. First, we describe the mathematical and statistical
details of the population PK/PD modeling problem. Then we describe the mathematical and
statistical details of the NPAG and NPB algorithms. Next we give the results for our
simulated PK/PD study data. The paper closes with conclusions and work for the future.

The population PK/PD model
Consider a sequence of experiments where each one consists of a dosage regimen and a set
of measurements at several time points on one of N individual subjects. The measurement
model for the ith subject is:

(1)

where the vectors Yi are the observed measurements, e.g. serum concentrations, PD effects,
etc. The components of the vector θi represent the unknown model and noise parameters
defined on a space Θ; hi(θi) represents the noise-free output depending on the dosage
regimen and the measurement schedule. The noise vectors ei are assumed to be independent,
normal random variables with zero mean and covariance Σi = Σi(θi) which may depend on
θi.

The {θi} are independent and identically distributed with common (but unknown)
probability distribution F. The population analysis problem is to estimate F based on the data
YN = (Y1, …, YN ).

Algorithms
The next two sections describe the mathematical and statistical details of the NPAG and
NPB algorithms.

NPAG algorithm (nonparametric adaptive grid)
Nonparametric adaptive grid is an adaptive grid algorithm for finding the nonparametric
maximum likelihood estimate of the population distribution. It was developed over a number
of years at the Laboratory of Applied Pharmacokinetics, USC, by Alan Schumitzky [25],
Robert Leary [26], and James Burke from the University of Washington, see also [27].

NPAG is based on a primal–dual interior point method. In this paper we present a brief
outline of this approach. Consider Eq. (1). The log likelihood is given by
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The Maximum Likelihood distribution FML maximizes p(YN|F) over the space of all
distributions F defined on Θ. Using Caratheodory’s theorem and the results of Lindsay [8]
and Mallet [9], it follows that FML can be found in the class of discrete distributions with at
most N support points. In this case we write

(2)

where φ = (φ1, …, φk) are the support points of FML; w = (w1, …, wk) are the corresponding
weights (probabilities) which sum to unity; and δφ is the Dirac measure with mass 1.

Consequently, to maximize log p(YN|F), it is sufficient to maximize

(3)

with respect to the vectors {wk} and {ϕk}. If the support points {φk} are known, then
maximization of log p(YN|F) with respect to the weights {wk} in Eq. (3) is a convex
optimization problem and can be solved very efficiently.

The approach used in NPAG can be briefly described as follows: First solve the
optimization problem for the weights related to Eq. (3) over a large but fixed grid G0 of
support points. Usually G0 is taken to be a large number of so-called Faure points which
optimally cover Θ [28]. Then reduce the grid G0 by deleting points with very low
probability to get a new grid G1. Then expand the grid G1 by adjoining to each point φ0 in
G1 the vertices of a hypercube with φ0 as its center. This adds 2dimΘ points to G1 resulting in
an expanded grid G2. This cycle is repeated with G2 replacing G0. The process is continued
until convergence is achieved.

Optimization over fixed support points
The main part of the calculation comes in the optimization of the weights over a fixed grid
of support points. Start with a set of support points φ. Let Ψi,k ≡ p(Yi|φk). Assume that the
row sums of the N × K matrix Ψ = [Ψi,k] are strictly positive (note that

). For any K-dimensional vector z = (z1, …, zk)T we can define the
function:

Maximizing Eq. (3) with respect to the weights {wk} is equivalent to the solving the
following two problems:

(P) Primal Problem: Minimize Φ(Ψw) subject to eTw = 1 and w ≥ 0 where e is the K-
dimension column vector of with components all equal to one,

Now grad[Φ( Ψw)] = grad[ΨTq], where q = (q1, …, qn)T and . The Fenchel convex
dual is then given by the Dual problem:
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(D) Dual Problem: Minimize Φ(q) subject to ΨTq ≤ Ke and q ≥ 0

Duality theorem and Karush–Kuhn–Tucker conditions
Solutions to (P) and (D) always exist, with the solution to (D) unique. Also w solves (P) and
q solves (D) if and only if the Karush–Kuhn–Tucker [29, 30] conditions are satisfied:

where s is a non-negative N-dimensional vector (slack variables) and Q = diag(q), W =
diag(w), Z = diag(z), S = diag(s). The primal–dual interior point method finds a solution to
the above non-linear system of equations [27]. The Jacobian of the system is singular at the
solution, so the strategy is to approach the solution along the central path (w(ρ), q(ρ)) as ρ ↓
0 In this case, the equation WSe = 0 is replaced by WSe = ρe and the (KKT) conditions
become:

The (KKTρ) equations are solved by Newton’s method for a sequence of ρ values tending to
zero. The limit solution then solves both the primal and dual problems. The whole process
converges quadratically and is very fast.

Grid adaptation: reduction and expansion
As described earlier, the reduction of a current grid is accomplished by deleting support
points with very low probability. The value of the likelihood function before and after grid
reduction is essentially the same. The expansion of a current grid adds 2dimΘ points to the
grid. The optimization process over this new expanded grid can only increase the value of
the likelihood function. When this increase is essentially zero, the whole process has
converged. Exact details of solving the (KKTρ) equations and of grid adaptation will be
published separately.

NPB (nonparametric Bayesian)
There are two common ways to construct a Bayesian prior using a Dirichlet process:
“marginal” and “full conditional” methods. In the framework of our Nonparametric
Bayesian algorithms we implemented both approaches as described below. We now
consider Eq. (1) from a Bayesian point of view. In this case the distribution F is considered
to be a random variable. The simplest prior distribution for F is the so-called Dirichlet
process, see [14, 17] for details. In this case we write F ~ D(αG0) where the distribution G0
will be our prior estimate of F, and where the number α will be the strength of that guess. As
before, we assume θt ~ F. Now the population analysis problem is to estimate the full
conditional distribution of F given the data YN. Most methods to solve this problem employ
a marginal approach. However, F can be “integrated out” leaving a much simpler problem
for the θt. The resulting model for the θt is given by the Polya Urn representation:
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The marginal approach leads to a Gibbs sampler algorithm for estimating E[F|Data], i.e., the
expected value of F given the data, but not its distribution function [31]. This approach is
commonly used. However, it does not solve the classical population analysis problem as
stated above, for example, to estimate the full conditional distribution of F. To solve this
problem we employ the Full Conditional Method. In this we estimate the full conditional
distribution of F given the data YN, not just the expected value of F.

The full conditional method begins with a definition of the Dirichlet Process called the
Stick-Breaking representation, see Sethuramam [32] and Ishwaran and James [23] Consider
the random distribution:

(5)

where the random vectors {φk} are independent and identically distributed (iid) from the
known distribution G0 and the weights {wk} are defined from the so-called stick-breaking
process as follows:

where Beta(1, α) is the Beta distribution with parameters (1, α). The name “Stick Breaking”
comes from the fact that the vk are random cuts on a stick of length 1 and the wk are the
lengths of the pieces broken off. This gives an informal proof that the wk sum to 1. It is
shown in Sethuraman [32] that the random distribution F ~ D(αG0) if and only if F can be
written in the form of Eq. (5).

Below we show how to use the Stick Breaking representation to estimate F|Data, not just
E[F|Data]. The estimate of F|Data leads to an estimate of all moments and their
corresponding credibility intervals. More generally, the full conditional method can be used
to estimate any functional of F, such as a target serum concentration profile to be achieved
by a given dosage regimen, with its corresponding credibility interval.

Truncated stick-breaking
Ishwaran and James [23] consider replacing the infinite sum in Eq. (5) by a truncated
version:

(6)

where it is now required that vk = 1 so the series of weights sums to one. They show that the
truncated version FK is virtually indistinguishable from F for sufficiently large K. The only
problem now is the size of K. Ishwaran and James [23] have suggested that K = 50 is
sufficient. In this paper we show that this number can be dramatically reduced.
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Note that Eq. (6) has exactly the same form as the Eq. (2) for FML. The difference is that in
Eq. (2), the weights {wk} and support points {φk} are deterministic, while in Eq. (6) the
same quantities are random. In other words, FML is a deterministic distribution while FK is a
random distribution.

Full conditional approach
Let us assume now that we have a sufficient number of components in Eq. (6) to
approximate the infinite sum in Eq. (5) accurately. Using Eqs. (3–6) we have the new model
given by

(7)

where the random vectors are iid from the distribution G0 and the weights are defined by Eq.
(5b) with vk = 1.

Equation (7) defines a mixture model with an unknown but finite number of components.
Much is known about this subject [33–35]. For a fixed number of components K, the
posterior distribution of the weights {wk} and the support points {φk} can be determined by
the Blocked Gibbs Sampling [23]. Consequently, for a fixed K, the posterior estimates of the
support points {φk} and the weights {wk} are straightforward to calculate. As opposed to the
Gibbs Sampler for the Marginal Method, the Gibbs Sampler for the NPB approach directly
involves the distribution FK.

Sampling the posterior of FK, E[FK] and moments of FK

Let be , k = 1, …, K; M = 1, … M samples of wk, φk from the Gibbs Sampler after the
sampler has “converged”. Then we have:

Samples from FK|YN: , m = 1, …, M

Samples from the moments of F*|YN: Let μj = ∫θj dF(θ) be the jth moment of FK|YN.

Then samples of μj are given by: , m = 1, …, M.

In particular, samples from the first moment or mean are given by

A histogram of the values of μ(m) gives the estimated distribution of μ = ∫θdF(θ), and the
Bayesian credibility intervals are derived from it.

Samples from the expected value E[FK |YN]
For this quantity we calculate:
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To assess the performance of our algorithm, we can compare our estimate of E[FK |YN] with
the estimate from the marginalization method.

Choice of K
We have implemented the Gibbs sampler from Ishwaran and James [23], Sect. 5.2, using the
software package JAGS [13]. An important feature of this algorithm is that it keeps track of
the number K* of distinct components in the K component mixture. If K is chosen too small,
the algorithm will alert the user by indicating that K* = K. See [36, 37] for applications to
pharmacokinetics using truncated stick-breaking methods.

A more sophisticated way of choosing K is based on new results for retrospective sampling
[31] and slice sampling [38, 39]. In these methods the infinite sum in the stick-breaking
representation of Eq. (5) is retained but only as many terms in the sum are used as are
needed in the calculation.

Comparison of NPAG and NPB methods
Both NPAG and NPB estimate the entire probability distribution F of PK/PD parameters in
a population modeling setting. NPAG is a deterministic method using the convexity of the
resulting nonparametric maximum likelihood problem. The optimization algorithm in
NPAG is based on “state of the art” primal–dual interior-point theory. It has been used in
our laboratory for many years and can handle PK/PD problems defined by 20–30 differential
and algebraic equations containing 20–30 unknown parameters. The algorithm is very stable
and fast. It always determines an optimal solution to the problem. The only drawback with
NPAG is it does not directly determine confidence intervals of the parameters of interest.
(When the number of subjects in the population is large, then the asymptotic confidence
intervals can be obtained with additional computing by bootstrap methods.)

NPB is a stochastic Monte Carlo Markov Chain (MCMC) method. The unknown probability
distribution F is considered to be a random variable with a Dirichlet process prior. The
Dirichlet process is implemented with the Sethuraman’s stick-breaking representation. The
algorithm used to estimate F is a Metropolis-within-Gibbs sampling (GS) scheme. For the
example in this paper, the program JAGS is used to implement this scheme. This
implementation of GS is composed of three parts: First a number of samples of GS are
burned to remove dependence on the initial conditions; then GS is run for a large number of
iterations until “convergence” is achieved. Then after convergence, GS is run some more to
get the samples used for the actual estimation and plotting of results. The number of samples
required for convergence is a delicate issue. There are many candidates to test convergence
of MCMC algorithms. No one method is perfect. We use the Gelman-Rubin method of
parallel chains to determine convergence. Finally, being a Bayesian method, NPB can
provide rigorous credibility intervals for any function of interest of the PK/PD parameters.
These credibility intervals are accurate in both large and small population sample sizes.

In conclusion, for a given set of initial conditions, NPAG will always give the same results,
whereas NPB may possibly give different results depending on the sampling scheme. On the
other hand, no confidence intervals are available with NPAG (without asymptotic
bootstrap), while rigorous Bayesian credibility intervals are defined for NPB no matter what
the sample size. Consequently, it is extremely useful to be able to run both NPAG and NPB
side by side and compare the results (as shown in this paper).

Finally, both NPAG and NPB estimate F with a finite discrete probability distribution (as
described in the paper). This result is vital for our resulting maximally precise “multiple
model” dosage optimization and experimental design programs.
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Example: a population PK study
We took dosing, sample times, and body weights from N = 35 infants enrolled in an IV
zidovudine PK study as a template to simulate new observations after a short intravenous
(IV) infusion of a hypothetical drug into a one compartment model with simulated PK
parameter values. This provided a realistic simulated dataset with unbalanced doses, number
of samples numbers and sample times in the population, but with known PK parameter
values for each subject. We used the Monte Carlo simulator function in our R package
Pmetrics. In short, Pmetrics is our freely available R package for non-parametric and
parametric population modeling and simulation. It can model multiple inputs and outputs
simultaneously, with complex dosing regimens, inclusion of covariates, lag times, and non-
zero initial conditions all available to the user. Specification of a model, based on algebraic
equations or differential equations and incorporating any function of parameters and
covariates, is done with a very simple text file. Detailed examples and model files can be
found at http://www.lapk.org.

Simulation model
For the PK parameter values, we set the elimination rate constant (Kel = κ) as a mixture of
two normal distributions with arbitrary means of 0.5 and 1.0 1/h and weights of 0.3 and 0.7.
The population average was equal to 0.85 1/h and located in the “valley” between the two
modes. These parameter values produced realistic time-concentration profiles. The
coefficients of variation (CV) for each distribution were set at 25 %. We set the volume of
distribution to be a single normal distribution, with a mean of 2.0 L/kg and standard
deviation of 0.5 L/kg. The measurement noise, as a normal distribution with mean 0 and
standard deviation σe = 0.01, was added to each simulated observation.

Hence, we consider a one compartment model with T = 5 or 6 serum measurements (specific
for each patient) for a population of N = 35 subjects. In this case θ = (κ, V); where κ is
bimodal and V is unimodal. Therefore the model that was used to simulate the data is
described by the following equations:

where Ri is the subject-specific infusion rate with di infusion duration for zidovudine; Wti is
the body weight in kg for each subject; tij is the time of the jth sample from subject i, and eij
is the measurement noise of the jth measurement noise in subject i. Values of Ri, Wti, di
were the defined patient-specific parameters in the original population of infants. The
symbol ~ means “distributed as”. To avoid negative parameter values we also set: κi = |κi|
and Vi = |Vi|.

Estimation model
The NPB model used to analyze the data came from the stick-breaking representation, with
K = 17, see Eq. (6). This number of stick breaks (support points) for the NPB prior was
based on the number of clusters created by the NPB algorithm and was determined by a
manual iterative approach. If more than 17 support points were used the resulting
probabilities assigned to additional support points were negligible. The base measure G0(κ,
V) was given by:
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where Gamma(a, b) is the gamma distribution with parameters a,b. These are the common
distributions traditionally chosen for means and variances. The user of the program can also
make other choices.

Using the NPAG algorithm [19] from the Pmetrics software package [21], we calculated the
maximum likelihood distribution FML, see Fig. 2. Implementing the stick-breaking
algorithm using the Rjags package [40], we calculated the estimated conditional distribution
FML, shown in Fig. 2. For the NPB algorithm, we used one Markov Chain for the Monte
Carlo simulation, drawing every 10th posterior sample from iteration 10,000–10,500.

As a further comparison, we also fitted the data with the NONMEM FOCE algorithm, with
V and K modeled as univariate normal distributions with an additive measurement error eij.

Results
Simulated observations with realistic, unbalanced sampling times and sample numbers
ranged from <0.01 to 1.64 mg/L, calculated up to 8 h after dosing, with 5–6 samples per
subject at times that varied throughout the population, and which corresponded to the times
that real infants in the source population had been sampled. Figure 1 shows the simulated
time-series. The whole NPAG optimization, including post-processing and report
generation, took 18 s on a MacBook Pro with 2.54 GHz Intel core 2 Duo processors and 4
GB of RAM. On the same computer, NPB took 2 min.

Summaries of the simulated (True) values for KEL and VOL and of the weighted support
points fitted by the NPB, NPAG and FOCE algorithms are shown in the Table 1. Figures 2,
3, 4, 5 show the output of the NPB algorithm. In the Figs. 2 and 3, the NPB estimates for
Vol and Kel are plotted against the histogram of simulated values for volume of distribution.
Figures 4 and 5 show NPB error in true—fitted parameter values for comparison of NPB
estimated versus the simulated values for volume of distribution and elimination constant.
Figures 6 and 7 show the NPAG estimates for Vol and Kel compared against the histogram
of simulated values for volume of distribution.

For 35 subjects NPB estimates values Vol and Kel for individual patients, but the estimated
parameter distribution functions have too many peaks as compared to the “true” parameter
distributions. When we increase the number of subjects to 70 or more (data not shown), the
estimated parameter distribution functions has two modes for Kel and one mode for Vol, and
parameter distributions approach the true population distributions. However, due to the
nature of our simulation study (infant HIV patients enrolled in an IV zidovudine PK study) it
is not realistic to expect large cohorts in a clinical setting.

Discussion
Bayesian methods are rapidly gaining recognition and popularity. A comprehensive
overview of the general philosophy of Bayesian methods can be found in the book “The
Bayesian Choice” [41]. Computational issues of MCMC methods are well described in
“Monte Carlo Statistical Methods” [42]. Biostatistics applications are described in the
chapter “Nonparametric Bayes Applications to Biostatistics” [43]. To the best of our
knowledge, currently there are no textbooks that primarily discuss nonparametric

Tatarinova et al. Page 11

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pharmacokinetic modeling. However, our references [14–18] provide a good survey of this
subject.

We have described two novel methods, NPAG and NPB, to estimate the population
distribution F of PK parameters, have shown their excellent performance in a realistically
simulated PK study. We also compared their performance to NONMEM, the widely-used
FOCE algorithm. In this simple model, FOCE, a parametric method, was able to find the
same the mean parameter values and standard deviations, but could not find the true non-
normal distribution for K without resorting to post hoc estimates. In contrast, both NPAG
and NPB are able to directly estimate the true distribution. In future work beyond our proof-
of-principle work on NPB here, we will show that more “challenging” data with greater
noise and non-normal parameter value distributions are even better fitted by optimized non-
parametric methods, i.e. NPAG and NPB. In this paper, our simulation allowed us to have
benchmarks in the form of the true population parameter values to compare with the
estimated values, while incorporating challenges like unbalanced sample times and sample
numbers as well as the ability to include the covariate of patient weight.

The statistical problem of estimating F has a direct utility in the form of individualized
therapy of future patients because the estimate of F can be used quickly and accurately to
isolate a new patient’s characteristics (i.e., parameters) and use this knowledge to tailor
patient-specific efficacious treatment. The NPB method is very flexible and has been used in
many areas of applied statistics and bio-informatics outside PK, discussed, for example, in
[43].

NPAG and NPB represent two ends of the spectrum spanning frequentist (NPAG) to
Bayesian (NPB) methodologies; they estimate the entire distribution F, not just parameter
values. The two methods are the state-of-the-art in nonparametric population modeling, and
they accurately estimate the parameter distributions without resorting to any a priori
assumptions about the underlying form of these distributions. While NPAG is significantly
faster at present, the main advantage of the NPB method is that it naturally allows for robust
credibility intervals for all parameter estimates.

The simulation study presented above is performed in the setting of a real zidovudine trial
which allows us to have benchmarks in the form of the true population parameters to
compare with the estimates produced by the two methods, while incorporating realistic
challenges like unbalanced sample times and sample numbers as well as the ability to
include the covariate of patient weight. Figures 2–9 and Table 1 show that both methods
focus on the marginal distributions of Kel (elimination rate constant) and Vol (volume of
distribution) in our example and produce accurate estimates of their moments. We have
previously shown that NPAG, as implemented in our Pmetrics R package, can directly and
accurately detect true non-normal parameter distributions and outliers in an idealized
simulated population. In addition to confirming this property of NPAG with a more realistic
study design here, we extend this property to our NPB algorithm.

Future refinements of the NPB algorithm include exploring convergence criteria,
implementation of the Retrospective and Slice sampling methods to determine the correct
number of stick breaks (i.e. support points, as opposed to the empiric approach described
here), and generalization to even more complex PK models, including arbitrary models
defined by ordinary differential equations. The software used to implement NPAG and NPB
can be obtained from http://lapk.org/software.php.
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Fig. 1.
Time concentration profiles for each of the 35 simulated subjects
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Fig. 2.
NPB distribution and simulated values for volume of distribution (VOL). Marginal
distributions for simulated (true) parameter values are shown in black circles and seven
filled histograms. The posterior distribution is represented in two ways (1) dark grey bars
with binning (nbins = 50) and (2) a smoothed sum of normal distributions about the means
of the distributions for each of the 17 support points (solid black line). True population
distribution is shown as a dashed line
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Fig. 3.
NPB distribution and simulated values for elimination rate constant (KEL). Marginal
distributions for simulated (true) parameter values are shown in black circles and filled
histograms. The posterior distribution is represented in two ways (1) dark grey bars with
binning (nbins = 50) and (2) a smoothed sum of normal distributions about the means of the
distributions for each of the 17 support points (solid black line). True population distribution
is shown as a dashed line
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Fig. 4.
NPB error in true—fitted parameter values (VOL). Linear regression of simulated volume of
distribution versus predicted volume of distribution for each of the 35 simulated subjects
using NPB algorithm
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Fig. 5.
NPB error in true—fitted parameter values (KEL). Linear regression of simulated
elimination constant versus predicted elimination constant for each of the 35 simulated
subjects using NPB algorithm
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Fig. 6.
NPAG distribution and simulated values for volume of distribution (VOL). Distribution of
simulated (true) parameter values are shown in black circles. The posterior distribution is
represented by dark grey bars. True population distribution is shown as a dashed line
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Fig. 7.
NPAG distribution and simulated values for elimination rate constant (KEL). Distribution of
simulated (true) parameter values are shown in black circles. The posterior distribution is
represented by dark grey bars. True population distribution is shown as a dashed line
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Fig. 8.
NPAG error in true—fitted parameter values (VOL). Linear regression of simulated volume
of distribution versus predicted volume of distribution for each of the 35 simulated subjects
using NPAG algorithm
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Fig. 9.
NPAG error in true—fitted parameter values (KEL). Linear regression of simulated
elimination constant versus predicted elimination constant for each of the 35 simulated
subjects using NPAG algorithm
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