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Abstract
In the present study, we consider the problem of classifying spatial data distorted by a linear
transformation or convolution and contaminated by additive random noise. In this setting, we
show that classifier performance can be improved if we carefully invert the data before the
classifier is applied. However, the inverse transformation is not constructed so as to recover the
original signal, and in fact, we show that taking the latter approach is generally inadvisable. We
introduce a fully data-driven procedure based on cross-validation, and use several classifiers to
illustrate numerical properties of our approach. Theoretical arguments are given in support of our
claims. Our procedure is applied to data generated by light detection and ranging (Lidar)
technology, where we improve on earlier approaches to classifying aerosols. This article has
supplementary materials online.
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1. INTRODUCTION
In the present study, we consider signal classification problems, where the observations are
d-dimensional noisy spatial functions Yij, for 1 ≤ i ≤ nj, coming from population Πj, where j
= 1 or 2, and which can be modeled as Yij = TXij + δij, where T is a transformation of the
function of interest Xij and δij is a random error with zero mean and some correlation
structure. Based on training data, the goal is to classify a new noisy data function Y whose
class is unknown, as coming from one of Π1 and Π2.

In many instances, the function TXij is the result of a convolution of the function Xij with a
blurring source, that is, TXij = ωT * Xij, where * denotes the convolution operator (see
Section 2.3) and ωT is a point spread function. There, the function Xij can be reconstructed
in part by a (necessarily estimated) deconvolution operation. There is a large statistics
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literature on deconvolution for image data, and for data of similar type, dating from the
1980s. It includes contributions by Besag (1986), Donoho (1994), Dass and Nair (2003), Qiu
(2005, 2007, 2008), and Mukherjee and Qiu (2011). Related research problems arise in
spatial statistics, for example, in the contexts of remote sensing (see, e.g., Klein and Press
1992; Cressie and Kornak 2003; Crosilla, Visintini, and Sepic 2007) and statistical signal
recovery (see, e.g., Johnstone 1990; Huang and Cressie 2000; Shi and Cressie 2007).

There is also a significant literature on blind deconvolution and estimation of point spread
functions. This work includes contributions by Kundur and Hatzinakos (1998), Cannon
(1976), Carasso (2001), Galatsanos et al. (2002), Figueiredo and Nowak (2003), Joshi and
Chaudhuri (2005), Hall and Qiu (2007a, b), Qiu (2008), Huang and Qiu (2010), and Popescu
and Hellicar (2010). However, the problems of deconvolution and point spread function
estimation are very different from those of classification, to such an extent that, even if T
were known, the methods suggested in this article would still be recommended. It should
also be noted that, since neither the function X nor the noise δ is observable, it is not
possible to estimate the noise and, hence, to remove it effectively from the observed data Y.
In particular, in the problem treated in this article, it is not possible to compute residuals.

In our classification context, it is at least intuitively plausible that if one could recover the
function Xij, then one would use that function as the basis for classification, rather than
using the noisy convolved function Yij. This idea has been used in the classification of
different types of aerosols using long-range infrared light detection and ranging (Lidar)
methods (Warren et al. 2008), where deconvolution was used to obtain estimates of the true
signal, and the resulting estimates were used as the basis for classification. Our work relates
to whether a signal should be deconvolved or correlated errors should be deconvolved
before classification, and we shall use Lidar data to illustrate our conclusions. We shall
show that there exists a transformation of the noisy convolved function Yij that is
appropriate for classification, but that it is not necessarily related to the transformation that
would be used to recover the true signal.

The real-data classification problems that motivate this work, all involve just K = 2
populations, and for this reason, and to simplify discussion, we shall confine attention to this
case. However, out methodology and theoretical results extend readily to the general case K
≥ 2, using the approach suggested by Friedman (1996).

The article is organized as follows. We introduce our model and ideas in Section 2, and in
Section 3, we establish theoretical properties of our procedure. In Section 4, using a variety
of classifiers, we apply our approach to simulated data and to the Lidar data mentioned
above. Technical arguments are deferred to the supplementary materials.

2. METHODS
2.1 Model and Classification Problem

We observe spatial data functions Yij (r), r ∈ , 1 ≤ i ≤ nj, j = 1, 2, generated by the model

(2.1)

where  denotes a d-dimensional spatial grid, or lattice; Xij is the spatial function of
interest, T is a linear transformation that blurs the signal; and δij, representing noise, is a
component of a correlated stochastic process with zero mean affecting the signal. In this
model, the data come from two populations, Π1 and Π2, and, for j = 1, 2, Yij denotes the ith
data function drawn from the jth population Πj, where i = 1, …, nj. To simplify notation, we
define scale in such a way that  ⊂ ℤd, where ℤ is the set of all integers.
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The model at Equation (2.1) is appropriate when the observations Yij are, for example,
digitized images or Lidar signals. There, T typically represents the accumulated impact of
issues such as generalized lens aberrations, atmospheric effects, motion blur, etc., and  is a
two- or three-dimensional grid.

Remark 1: It is important to realize that Yij, Xij, and δij are functions defined on , and that
T (and later, the transforms R and Q, which will be defined below) is not a function; it is a
functional that maps the function Xij to the function T Xij .

Let Y be a new data value coming from Πk, where k = 1 or 2 is unknown. Our goal is to
construct a classifier (·) ≡ (·|{Yij}j = 1,2; i = 1,…,nj) from the data Yij that assigns Y to Πk̂,
where k̂ =  (Y|{Yij}j = 1,2; i = 1,…,nj) = 1 or 2 is an estimator of k. In the applications we
have in mind, where the data are images or Lidar signals, distinguishing between Π1 and Π2
is inherently a problem involving high-dimensional data analysis. In practice, the number of
points r at which we observe data Yij(r) can be in the thousands, whereas the training sample
sizes, n1 and n2, are often only limited to 20 or 30.

2.2 Deconvolution of the Data Through the Noise Transform
As we indicated in the Introduction, when the functional T is invertible, it is sometimes
argued that, instead of applying standard classifiers to the data Yij, one should apply them to
inverted data where Y and each Yij are replaced by T−1 Y and T−1 Yij, or rather by
regularized versions of them, T̂−1 Y and T̂−1 Yij. That is, classification should be based on 
(T̂−1 Y|{T̂−1Yij}j = 1,2; i = 1,…,nj), instead of (Y|{Yij}j =1,2;i=1,…,nj). Transforming the data
by T−1 is a good idea when the goal is to recover the function Xij, since we have T−1 Yij =
Xij + T−1 δij, so the transformed data are no longer distorted and contain only additive noise
T−1 δij of zero mean. This is only approximately true when using T̂−1, of course; see, for
example, Cannon and Hunt (1981) and Hall (1990). However, we argue that when the goal
is classification, inverting T is not necessarily a good idea, and a better strategy is to
transform the data in such a way that classification performance is improved.

To explore the classification problem further, let εij = T Xij − T μj + δij, where the function
μj is defined by μj = Ej(Xij) and Ej denotes expectation, conditional on Xij coming from
population j. Then, (2.1) can be written as

(2.2)

where Ej(εij) = Ej(δij) = 0. If the processes Xij − μj and δij are also linear, in particular if εij
is stationary and Gaussian, as is often approximately the case in practice, then we can write
εij = R ξij, where R is another linear transformation and the process ξij is white noise, that is,
the random variables ξij(r), for r ∈ ℤd, are uncorrelated and have zero mean and common
variance σ2. In this notation, the model in Equation (2.2) can be expressed as

(2.3)

so if R is invertible, Equation (2.3) can be written equivalently as
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The absence of correlation of ξij, and the constant variances, suggests that, for a variety of
classifiers, performance can be improved by working with the data R−1 Y, rather than with
Y itself. For example, this is the case when the error process εij in Equation (2.2) is
stationary and Gaussian and we use the centroid classifier (see Section 3.1). Indeed, there,
the classifier based on such transformed data is Fisher’s linear discriminant, albeit in a much
higher-dimensional setting than is usually contemplated, and so, has optimality properties.
In particular, this classifier is asymptotically equivalent to applying a likelihood ratio test.
More generally, we shall show in Section 3 that in non-Gaussian cases, the optimal
transformation, in terms of asymptotic performance of the centroid classifier, is also R−1.

These considerations suggest that, for such classifiers, far from it being a good idea to
replace Y and Yij by their deconvolved forms T−1 Y and T−1 Yij, we should replace them by
R−1 Y and R−1 Yij and base classification on (R−1 Y|{R−1 Yij}j = 1,2; i = 1,…,nj). For more
general classifiers too, transforming the data prior to applying a classifier can often improve
performance, but not when this transform is taken to be T−1. In practice, the optimal
transform is unknown and is not necessarily equal to R−1 for each classifier, since the best
transform may depend on the particular classifier in use. Likewise, the optimal transform is
not necessarily always exactly linear. However, by inverting the Yij’s via a carefully chosen
linear transform, which we shall denote by Q−1 in the next section, we can often improve
classification performance significantly. We suggest such a practicable inversion technique
in the next section, and we construct it from the data in such a way as to optimize
classification performance.

2.3 Transforming the Data in Practice
2.3.1 Modeling the Transform—Since the best transform to apply to the data Yij prior to
classification is generally not known, it needs to be estimated from the data. However, the
sample size is usually too small for estimating this transform without imposing restrictions
on it. Motivated by our discussion in the last paragraph of Section 2.2, we model the
transform by the inverse Q−1 of a linear transform Q = Qθ, which depends on a low-
dimensional vector of parameters θ = (θ1, …, θq), as follows.

Let ωQθ be a nonnegative weight function defined on ℤd and depending on θ. Moreover, let
* denote the discrete convolution operation, defined for any two absolutely square
summable functions f and g by f * g(r) = Σs∈ℤdf (r − s) g(s). We take Qθ to be the linear
transform that maps a function ζ to a function χθ = Qθ ζ defined, for each r ∈ ℤd, by

(2.4)

In image analysis terminology, ωQθ is called the spread function of the transform Qθ. The
choice of the parameters θ will be treated in Section 2.3.3.

An example of a simple model for ωQθ is the two-parameter family ωp0;θ, where θ = (ρ, ℓ)
and ωp0;θ is the ℓ-fold convolution of the probability mass function p0, defined by

(2.5)

where  and |ρ| < 1 (usually, 0 < ρ < 1). This is the model we used in our
numerical work in Section 4, but alternative models and more comments are given in
Appendix A.2 in the supplementary materials.
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2.3.2 Inverting Q—Since Qθ is defined by a convolution, its inverse is more easily
expressed in the Fourier domain. Let ζ be a function defined on ℤd such that Σr∈ℤd|ζ(r)|< ∞.
The (discrete) Fourier transform φζ(t), for t ∈ (−π, π)d, is defined by

(2.6)

where, on this occasion, . Since the Fourier transform of a convolution between two
functions is equal to the product of their Fourier transforms, we deduce from Equation (2.4)
that the Fourier transform of the function χθ is given by φχθ = φζ φωQθ.

In this notation, when φωQθ (t) ≠ 0, we can write φζ(t) = φχθ(t)/φωQθ (t). If |φχθ|/|φωQθ is

integrable, then Qθ is invertible, and the inverse transform , obtained by the Fourier

inversion theorem, maps the function χθ into the function  defined by (2.8), taking
there  = (−π, π)d. If Qθ is not invertible, we can typically define a generalized inverse,

, by truncating the integral used in Fourier inversion to a small-enough set  ⊂ (−π, π)d,
for example,

(2.7)

with η ∈ (0, π). Thus, in either case, we can write

(2.8)

Remark 2: To motivate the selections of  in (2.7), observe that φωQθ (0) equals the sum of
the weights ωQθ (r) over r ∈ ℤd, and the ωQθ (r)’s would normally be chosen so that this
sum was strictly positive, in fact equal to 1. Therefore, φωQθ (0) ≠ 0, and by continuity,
φωQθ (t) ≠ 0 for t in a sufficiently small neighborhood of the origin. Hence, choosing  as in
the formulas in (2.7), for sufficiently small η, ensures that the integral at (2.8) is well
defined if the function χθ is uniformly bounded.

For example, if we model Qθ by taking ωQθ = ωp0;θ, defined above Equation (2.5), then

 is particularly easy to calculate. As a matter of fact, by standard calculations, we have

(2.9)

for each t = (t1, …, td)T ∈ (−π, π)d, so

(2.10)

The integral in Equation (2.10) is well defined if we take  = (−π, π)d, in which case, it
simplifies to
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(2.11)

A very attractive aspect of this choice of Qθ is that we do not need smoothing parameters,
such as η at Equation (2.7), to regularize the integral. Further, it can be proved that each
integral in Equation (2.11) is equal to a constant, depending only on |sj − rj|, ρ, and ℓ, and

which vanishes if |sj − rj| > ℓ. In other words,  is a linear combination of values of
χθ(s), for s in a neighborhood of r (more precisely, for s such that maxj =1,…,d |sj − rj| ≤ ℓ).

2.3.3 Estimation of Unknown Parameters—Now that we have a practicable

representation  for the transform to apply to the data before classification, it remains to
choose θ. Just as, a priori, it may seem natural to invert the data by T−1, it may also seem
natural to choose θ to give a good fit to the data. However, again, our goal here is to
classify, and thus, θ should rather be chosen to optimize the performance of the classifier

based on . We suggest choosing θ to minimize a cross-
validation estimator of error rate.

Specifically, write π1 for the prior probability of Π1, which is typically taken to equal 0.5 if
we have no a priori knowledge, or to n1/(n1 + n2) if we believe that the proportion of
observations from Π1 in the training sample is representative of that in the population.
Define

(2.12)

where  denotes the version of  constructed without using Yij, that is,

. Then, ê(θ) estimates the error rate,

(2.13)

where Pj denotes probability conditional on Y ∈ Πj. We suggest choosing θ to minimize
ê(θ).

Remark 3: In cases where the set  cannot be taken equal to (−π, π)d, the classifier can
also depend on a small number of parameters defining , which, if they are unknown, can
play the role of a smoothing parameter; see the examples in (2.7). In such cases, , ê(θ) and
e(θ) are replaced by , ê(θ, ) and e(θ, ), respectively, and θ and  re chosen to
minimize ê(θ, ).

3. THEORY
3.1 Centroid Classifier

There exist a variety of standard classifiers that give good performance for high-dimensional
data. Here, we discuss detailed theoretical properties in the context of one of the most
popular and effective methods, the centroid-based technique; for example, see James and

Hastie (2001) and Shin (2008). If , the centroid method assigns a new
value Y, coming from Π1 or Π2, to Π1 (i.e., it puts (Y) = 1) if Σr∈  [{Y(r) − Ȳ2(r)}2 −
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(Y(r) − Ȳ1(r)}2] > 0, and to Π2 (i.e., it puts (Y) = 2) otherwise. Other classifiers will be
discussed in Section 4.4.

As already highlighted in Section 2.2, if the errors are stationary, then this classifier is

optimized when applied to the data R−1 Yij. Using the representation  for R−1, an
approximation to optimal classification involves assigning a new observation Y to Π1 (i.e.,
putting (Y) = 1) if and only if Sθ(Y) > 0, where

(3.1)

with  and where the functions Zθ and Zij;θ are defined by 

and .

In this notation, the cross-validation technique for choosing θ, described in Equation (2.12)
in Section 2.3.3, can be written as

(3.2)

where Sθ;−ij denotes the version of Sθ in (3.1) calculated with Z̄j being replaced by

. Likewise, the error rate e(θ) in Equation (2.13) can be written as

(3.3)

3.2 Main Assumptions
To simplify notation, throughout Section 3, we define scale in such a way that , in d-
variate Euclidean space, has edge width 1, for example,

(3.4)

where n ≥ 1. In this setting, #  ≍ nd and the training sample sizes, n1 and n2, are interpreted
as functions of n. Let  denote the pair of training samples ( , ), with  = {Yij, 1 ≤ i ≤
nj}, Yij = (Yij(r):r ∈ ). The error rate of our classifier, computed from the training dataset

, is denoted by e(θ) and defined in Equation (3.3). In this section, we give asymptotic
formulas for e(θ) and ê(θ), taking  to be a general subset of (−π, π)d. For example, 
might be equal to (π, π)d, or to one of the regions defined in Equation (2.7). Theory in cases
where cross-validation is used to determine , as well as θ (see Remark 3 in Section 2.3.3),
can be developed at the expense of longer arguments; in the present section, we use cross-
validation to optimize over θ but not , which corresponds to our practical implementation
of the method; see Section 4.

We develop our theory under three main model assumptions. First, we assume that R maps a
function ζ, defined on ℤd, into a function R ζ, defined by
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(3.5)

Second, we assume that

(3.6)

We impose this condition only to avoid long arguments for dealing with potential edge
effects. Our conclusions remain valid without it, but the proofs become considerably longer.
Finally, we assume that T μ1 − T μ2 = T (μ1 − μ2) is smoother than ωR. More precisely, we
assume that T (μ1 − μ2) = α K * ωR, where α is a constant and K is a function supported on

. This assumption ensures that the inverse of the mean of the differences of the observed
signals, R−1T(μ1 − μ2), remains bounded. It is imposed only to make our technical
arguments simpler and explicit. If it is not satisfied, then, generally speaking, the
classification problem becomes simpler, in that the difference between the means of the
inverted signals is even larger and, therefore, easier to detect.

We allow the distance between the two transformed means, T μ1 and T μ2, to vary with n,
by letting α above depend on n. In particular, we assume that T(μ1 − μ2) = αn K * ωR,
where αn is a sequence of positive real numbers bounded above zero. The most important
case is that where αn (and hence the distance) decreases with increasing n, since that enables
our theoretical arguments to address particularly challenging cases. We also permit the noise

variance, , to depend on n. We shall see that the relative sizes of n, αn, and σn
interact together to determine the performance of our classifier. Although this interaction is
quite complex, to a large extent, it can be represented in terms of the quantity

(3.7)

where φωR (t) = Σr∈ℤd ωR(r) exp(i rTt) is the Fourier transform of ωR and φK (t) = Σr∈ 
K(r) exp(i rTt) is the Fourier transform of K; here, we used the fact that K is supported on .

To derive our theoretical results, we also need regularity conditions. These are more
technical, and we shall describe them in detail in Appendix B.1 in the supplementary
materials; see Equations (B.2)–(B.6).

3.3 Asymptotic Formula for Error Rate
The next theorem describes properties of e(θ) as n diverges. Let Φ denote the standard
normal distribution function, and write Θ for a compact set of parameters from which θ is
chosen.

Theorem 1—Assume that the data are generated by the model in (2.3), where R is of the
form in Equation (3.5) and T is a linear transformation, and that (B.2)–(B.6) hold. Then,

(3.8)

where the convergence is in probability.

To elucidate the implications of Theorem 1, observe first that the asymptotic error rate,
Φ(−un), in Equation (3.8) is a monotone decreasing function of un. It therefore follows from
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the formula in Equation (3.7) for un(θ) that the error rate decreases as either the distance,

represented by αn, between population means increases or the error variance, , decreases.
Moreover, Hölder’s inequality implies that Φ{−un(θ)}, interpreted as a functional of φωQθ,
is minimized when φωQθ = φωR, that is, when the transformation Qθ is identical to the actual
transformation R.

3.4 Consistency of Cross-Validation Estimator of Error Rate
Recall the definition of ê(θ), the cross-validation estimator of error rate, in Equation (3.2).
Theorem 2 shows that ê(θ) shares the same asymptotic property, Equation (3.8), as the
actual error rate e(θ), and therefore, is consistent for e(θ), uniformly in θ.

Theorem 2—Assume the conditions of Theorem 1. Then,

(3.9)

where the convergence is in probability.

Similarly, it can be proved that if θ = θ̂ is chosen to minimize ê(θ), and used when
constructing the classifier, then, under mild additional assumptions, the classifier’s actual
error rate will equal minθ∈Θ Φ{−un(θ)} + o(1) as n → ∞.

4. NUMERICAL WORK
4.1 Goals of Simulations

We performed simulation studies to illustrate the following properties:

1. Transforming the data by T−1 prior to applying a classifier generally does not
improve classification performance.

2. Transforming the data using a cross-validation-based transform  generally

improves classification performance even if  is only a rough approximation to
the best transform to apply.

(3) The more the errors εij are correlated, the larger is the improvement at (2),
especially if the error variance σ2 is large compared with T μj.

3. The performance of classifiers, applied to data transformed by , improves as the
training sample size and/or the fineness of the grid  increases.

4.2 Simulation Setup
4.2.1 Generation of Training Samples—We generated training samples {Y11, …,
Y1n1} and {Y21, …, Y2n2}, of sizes n1 = n2 = 10 or n1 = n2 = 25, according to the model

(4.1)

for different curves μj, j = 1, 2, and transformations R and T, and with r ∈  ⊂ ℝ or r = (r1,
r2) ∈  ⊂ ℝ2.

We considered four pairs of mean curves μj, for j = 1, 2 (two univariate and two bivariate),
each with several features, such as asymmetric peaks and valleys, or sinusoidal components:

a. μj (r) = |2r − aj|4/5 exp{−5 · 10−4(4r2 − bj)}, where a1 = 5, b1 = 100, a2 = 4, b2 = 80.

Carroll et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2013 April 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



b. , where, c1 = 200, c2 = 190.

c. , with aj and bj as in (a).

d. μj(r1, r2) = 0.1|4 + 3r2/50|1/5 · exp{−(3r1 + 20)/dj}/{1.2 + cos(1.5r1)} ·
1[−20/3,∞)(r1),

where d1 = 40, d2 = 50, and 1[−20/3,∞)(r1) = 1 if r1 ∈ [−20/3, ∞) and 0 otherwise.

In the previous sections, the method was discussed for a grid that had edge width 1. More
generally, in our simulations, we also considered examples where the grid has edge width
k . In that case, the various transformations have to be rescaled by a factor k . More
precisely, if a transform F has the form F ξ (r) = Σs∈ℤd ωF(s) ξ (r − s) on a grid of edge

width 1, on a grid of edge width k , it becomes , where ℤk

= {s/k , s ∈ ℤ}. Reflecting this discussion, we took  and

(4.2)

where ωp0;θ is the function defined above (2.5), with θ = θT (ℓT, ρT) or θ = θR = (ℓR, ρR). In
our bivariate models (c) and (d), we also considered

(4.3)

where, for u ∈ ℤ+, ωM (u) = (θM + 1 − u)/Σu≤θM (θM + 1 − u), with θM being a positive
integer.

In each case, we considered several different values of θR in (4.2), or θM in (4.3), and we
took the ξij (r) to be independent normal N(0, σ2). Each combination of σ and θR or θM was
chosen such that good classification was possible for at least one of the versions of the
centroid classifier described below; see Tables A.1–A.3 in Section A.3.1, in the
supplementary materials, for all the combinations we considered in practice, and for a
measure of signal-to-noise ratio in each case. Finally, we took the parameter θT of the
transform T and the grid  where the data are observed as follows:

• Model (a): θT = (0.5, 3) and  = {−80, −80 + k , …, 80 − k , 80}.

• Model (b): θT = (0.5, 2) and  = {−80, −80 + k , …, 80 − k , 80}.

• Models (c) and (d): θT = (0.25, 2) and  = {−60, −60 + k , …, 60 − k , 60}×
{−40, −40 + k , …, 40−k , 40}.

In each case, k  = 2 when n1 = n2 = 10, and k  = 1 or 2 when n1 = n2 = 25. In particular,
when n1 and n2 were increased, we let the grid  become finer by decreasing k  from 2 to 1
so as to illustrate point (4) in Section 4.1. We also ran simulations in the unbalanced case,
where n1 = 10 and n2 = 25, and obtained results similar to those we shall discuss below; see
Figures A.4 and A.5 in Section A.3.4 in the supplementary materials.
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For illustration, Figure 1 shows Y11 and Y12 in models (c) and (d), with θR = (0.5, 3).
Comparing with Figure 9 in Section 4.5, we can see that model (d) looks similar to our
empirical example discussed in Section 4.5.

4.2.2 Model for Qθ, Generation of Test Samples and Estimation of Error Rate—
No matter what model we used for R, we systematically modeled Qθ by

(4.4)

with θ = (ℓQ, ρQ). This model is flexible, and, as discussed in detail in Section 2.3, it has
attractive practical properties such as the fact that we do not need any smoothing parameters
to define  in Equation (2.8), which can be taken equal to  = (−π, π)d.

To test our classifier constructed from the training observations Yij, we generated test

samples of N = 100 new data curves , of which half came from Π1 and the
other half came from Π2, using each time the same model as the one used to generate the

Yij’s. We applied several classifiers to three versions of the ’s: the untransformed noisy

data , the data , and the data , where Q̂ denotes Qθ̂CV, with Qθ as in
(4.4), and with θ = θ̂CV chosen to minimize the cross-validation estimator of the
classification error rate, as in Section 2.3.3, where we took π1 = n1/(n1 + n2). When R was

of the form in Equation (4.2), we also applied the classifiers to the data .

As indicated above, we chose θ = (ρ, ℓ) to minimize the cross-validation estimator of
classification error rate, where we performed the minimization over a bivariate grid of
values in the range 0 ≤ ρ ≤ 0.95 and 1 ≤ ℓ ≤ 5. Here, ρ = 0 denotes the identity transform, and
when ρ = 0, we do not transform the data. Observe that, in our simulations and examples,
the sizes of the training datasets are small, and there is little computational cost. In larger
datasets, one would use k-fold cross-validation, that is, the training data would consist of a
randomly selected (1 − k−1) × 100% of the data, and the test data, the remaining (100/k)%,
with this procedure repeated many times to calculate an overall error rate. Wikipedia has a
good description of this approach (http://en.wikipedia.org/wiki/Cross-
validation_(statistics)); see also McLachlan, Do, and Ambroise (2004).

In practice, the transform T is often unknown and is not necessarily invertible. In such cases,
instead of using T−1, one has to use a regularized estimator T ̂−1 constructed from the data
(see our real-data illustration). Here, for simplification, we take T as both known and
invertible. While this may seem to be unfavorable to our approach, it actually does not
matter since our point is to show that T−1 has essentially no role to play in our classification
problem, and whether T−1 is known or estimated does not change our conclusions.

In each model, we generated B = 100 training samples, and for each training sample, we
generated a test sample of N = 100 new data curves as described above, which we classified
in one of the two populations using each of the methods described in the previous paragraph.
For each training sample, we calculated the percentage of the new curves that were
misclassified by each method. We obtained B = 100 misclassification percentages for each
method, and the boxplots shown in Figures 2–8 were computed from these 100 percentages.
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4.3 Simulation Results for Centroid Classifier
4.3.1 Data Coming From the Model in (4.1)—We start by reporting results obtained
when applying the centroid classifier described in Section 3.1 to data generated from the
model in Equation (4.1). In cases where ê achieved its minimum at several values θ, we
broke the ties according to the rule described in Section A.1 in the supplementary materials.
The boxplots corresponding to each of the four methods described above, for R of the form
in Equation (4.2), are shown in Figures 2–4. We present the results for various values of θR
= (ρR, ℓR), for n1 = n2 = 10 and k  = 2, n1 = n2 = 25 and k  = 2, and for n1 = n2 = 25 and k
= 1, where k  is the distance between two adjacent univariate components of the grid .
Our finite-sample results support our asymptotic theory, which implies that as n1 and n2
increase (i.e., as training sample size increases) and k  decreases (i.e., as the grid 
becomes finer), the best results should be obtained by the centroid classifier applied to the

data inverted by R−1, of which  is a consistent estimator.

Overall, our results indicate that, in finite samples, it is the latter cross-validation approach
that is the most competitive. This is because this method has the ability to optimize
performance based on the particular sample at hand. Unsurprisingly, transforming the data

through R−1 and  brings the most significant improvements when ρR and ℓR are the
largest, since it is in these cases that the correlation among the εij’s is the greatest. For
smaller values of ρR and ℓR (e.g., ρR = 0.25 and ℓR = 1), the correlation among the εij’s is
relatively small, and as a result, in finite samples, the centroid method applied to the

untransformed data  is often the most competitive approach, although even in these
cases, the cross-validation approach remains highly competitive. Of course, in practice, we
do not know the transformation R, and our results indicate that cross-validation-based
inversion is the method of choice.

4.3.2 Robustness Against Misspecification of R—Next, we illustrate the robustness
of the inversion procedure by reporting the results obtained when applying the centroid

classifier to the data , with Q as in Equation (4.4), when the true transform R was
of another form, specifically the one in Equation (4.3), where we took θM = 10, 20, or 30.

We compare this approach with the centroid-based classifier based on the data  and

with the one based on the data . We show boxplots of the percentage of misclassified
data curves in Figure 5, for each of the three methods and for n1 = n2 = 10 and k  = 2, n1 =
n2 = 25 and k  = 2, and n1 = n2 = 25 and k  = 1. Our results indicate that even if Qθ at (4.4)

is not the exact noise transformation, inverting the data through  can considerably

improve on the centroid classifier based on either  or the untransformed data .

4.3.3 Robustness Against the Stationarity Assumption—In practice, the model in
Equation (4.1) is often an approximation to the model that generated the data. In this section,
to investigate the effect of nonstationarity of the errors on our procedure, we report results of
simulations where the data Yij were generated from the model

(4.5)

with the fixed transform R replaced by a transform Rr, depending on r.

In the univariate case, instead of R in Equation (4.2), we used
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(4.6)

with θr = (ρr, ℓ), where ρr = ρ + 0.1 cos(r/α) (we considered two cases: α = 2 and α = 10)
and ρ and ℓ are as in the previous section. In the bivariate case, instead of using the transform
R in Equation (4.3) with constant θM, we used the transform

(4.7)

where, for u ∈ ℤ+ and j = 1, 2, ωM,rj (u) = (θM,rj + 1 − u)/Σu≤θM,rj
 (θM,rj + 1 − u), with θM,rj

= θM + 2 · [α cos(rj/2)] (we considered two cases: α = 2 and α = 4), θM is as in the previous
section, and, for any real number x, we use [x] to denote the integer closest to x.

Although, here, the errors Rr ξij (r) were nonstationary, we inverted the data in the same way

as before, using the transform . Figures 6 and 7 show boxplots of the percentage of

misclassified curves for the centroid classifier constructed from the data , Yij, and
T−1 Yij, where Yij was generated as in Equation (4.5), with μj from model (a) and model (b),
respectively, Rr as in (4.6), and α = 2. For the case α = 10, see Figures A.1 and A.2 in the
supplementary materials. Figure 8 shows similar results for the bivariate models (c) and (d),
when the data were generated according to (4.5), with Rr as in Equation (4.7) and α = 2; see
Figure A.3 in the supplementary materials for the case α = 4. These results indicate that our
inversion method can improve classification performance significantly even when the errors
are not exactly stationary; it usually does not degrade performance more than a little.

4.4 Other Classifiers
Although it is beyond the scope of this article to develop theory for all types of classifiers,
and derive the theoretically optimal transform for each of them, we argue that our
conclusions extend to other classifiers. To illustrate this, we also implemented two other
classifiers often employed in high-dimensional and functional data problems, which we

applied to the four versions of the data: Yij, T−1 Yij, R−1 Yij, and , with θ̂CV chosen
to minimize the cross-validation estimate of classification error. Namely, we used the
support vector machine (SVM) classifier with a linear kernel (svmtrain in MATLAB) and
the logistic classifier applied to the partial least-square (PLS) projection of the data (here,
data refer to any of the four versions, transformed or not, of the data); see Delaigle and Hall
(2012b) and Section A.3.3 in the supplementary materials for more details on the logistic
classifier, and see Delaigle and Hall (2012a) for properties of PLS in the functional context.

Boxplots summarizing the results of our simulations, in the same settings as for the centroid
classifier, are shown in Figures A.6–A.11 in Section A.3.5 in the supplementary materials.
From these figures, we can see that the results obtained with these two classifiers are very
similar to those obtained with the centroid classifier. In other words, inverting by T−1

usually did not improve the results, and, in general, inverting by the transform , chosen
by cross-validation from the data, improved the results significantly (compared with using

the data Yij or T −1 Yij) or, when the latter worked well, transforming the data by  did
not degrade performance much.
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As already noted, the best transform to apply generally depends on the particular classifier.

However, an attractive aspect of our methodology is that the suggested inversion, , is
chosen to minimize a cross-validation estimator of classification error. Therefore, our
approach is very flexible, since in a general setting, it approximates the inverse transform
that optimizes classification.

4.5 Empirical Example
We have access to data from a small experiment involving long-range infrared Lidar
methods. Briefly, the idea is to discriminate between two types of aerosols that have been
emitted and are to be detected by Lidar: those that are biological in nature and those that are
nonbiological. There are 29 curves available to us, with n1 = 15 nonbiological and n2 = 14
biological signals.

The process involves a signal or waveform sent out in a series of bursts, and received Lidar
data were observed. Some of the bursts were sent before the aerosol was released, and these
were used to background-correct the received signal after the aerosol was released. For each
sample, the data used here are the background-corrected received signals for a burst, 19
wavelengths, and 250 backscatter time points. In our illustrative analysis, we followed the
procedure described below for 20 bursts collected almost simultaneously in the middle of
the release period and then averaged over the bursts before classification. Thus, in our
notation, Yij consists of the two-dimensional collection of background-corrected received
signals over the wavelengths and the backscatter time points for the ith sample within the j
th aerosol class. These observed data are the convolution of a true signal, the Lidar response
function for a delta-pulse transmitter, with the transmitted signal. If we write (t) for this
true signal for wavelength w at backscatter time point t, Rijw(t) for the background-corrected
received signal, and (t) for the transmitted signal, then, using an integral approximation to
the discrete convolution, the signal we observe is

where ξijw(t) has mean zero. If we define (t) = E{ (t)}, ,

and , then we have that the observed data
are given by Rijw(t) = (t) + (t), where (t) has mean zero. In our notation, Yij, μj, T
μj, and εij are the collection of Rijw(t), (t), (t), and (t) over the wavelengths and
backscatter ranges, respectively, but averaged across 20 bursts. It is readily observed that the
transformation T μj is linear. Two typical observed average curves for each population are
given in Figure 9.

We considered three approaches. The first simply used the observed data Yij. The second

was our method applied to the , where Qθ had the form as in Equation (4.4). In the
third, for each burst and each wavelength, we deconvolved to estimate (t) using the
Wiener–Helstrom method described by Warren et al. (2008), and averaged over the bursts.
In each case, since we could not generate new data, we estimated the misclassification error
rate (i.e., misclassification percentage) by cross-validation. In other words, as in the case of
the procedure described in Section 2.3.3, we built the classifier from all but one of the 29
curves, classified that curve in one of the two populations (nonbiological or biological), and
averaged the results over all 29 curves.
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For the centroid classifier, the cross-validation estimator of the misclassification error rate
was 34.5% for the first approach based on nontransformed data, 24.1% for our cross-
validation-based inversion approach, and 34.5% for the third approach based on inversion of
T. For the SVM and logistic regression classifiers, the estimator of the misclassification
error rate was 37.9% (SVM) or 27.6% (logistic) when the classifier was based on
nontransformed data, 17.2% (SVM) or 21% (logistic) when the classifier was based on our
cross-validation-based inversion method, and 58.6% (SVM) or 31% (logistic) when the
classifier was based on inversion of T. For all three classifiers, the reduction in the
misclassification error rate obtained by our cross-validation-based data inversion illustrates
the significant improvement that can be obtained by inverting the data through a data-driven
transform chosen to minimize an estimator of classification error.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plots of Y11 (left) and Y12 (right), in models (c) (row 1) and (d) (row 2) with θR = (0.5, 3).
The online version of this figure is in color.
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Figure 2.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from model (a) when θR = (ρR, ℓR), with ρR = 0.75, 0.5, and 0.25 in rows 1, 2, and 3,
respectively; and ℓR = 3, 2, and 1 in columns 1, 2, and 3, respectively. In each group of 12
boxes, the first four are for n1 = n2 = 10 and k  = 2, the next four are for n1 = n2 = 25 and
k = 2, and the last four are for n1 = n2 = 25 and k  = 1. In each group of four boxes, the
data are transformed by Q̂−1 (first box), R−1 (second box), or T−1 (third box), or are
untransformed (fourth box).
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Figure 3.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from model (b) when θR = (ρR, ℓR), with ρR = 0.75, 0.5, and 0.25 in rows 1, 2, and 3,
respectively; and ℓR = 3, 2, and 1 in columns 1, 2, and 3, respectively. In each group of 12
boxes, the first four are for n1 = n2 = 10 and k  = 2, the next four are for n1 = n2 = 25 and
k  = 2, and the last four are for n1 = n2 = 25 and k  = 1. In each group of four boxes, the
data are transformed by Q̂−1 (first box), R−1 (second box), or T−1 (third box), or are
untransformed (fourth box).
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Figure 4.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from models (c) (rows 1 and 2) and (d) (rows 3 and 4) when θR = (ρR, ℓR), with ρR = 0.85
and 0.5 in rows 1, 3 and 2, 4, respectively; and ℓR = 3, 2, and 1 in columns 1, 2, and 3,
respectively. In each group of 12 boxes, the first four are for n1 = n2 = 10 and k  = 2, the
next four are for n1 = n2 = 25 and k  = 2, and the last four are for n1 = n2 = 25 and k  = 1.
In each group of four boxes, the data are transformed by Q̂−1 (first box), R−1 (second box),
or T−1 (third box), or are untransformed (fourth box).
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Figure 5.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from models (c) (row 1) and (d) (rows 2) when R is of the form at (4.3), with θM = 30, 20,
and 10 in columns 1, 2, and 3, respectively. In each group of nine boxes, the first three are
for n1 = n2 = 10 and k  = 2, the next three are for n1 = n2 = 25 and k  = 2, and the last three
are for n1 = n2 = 25 and k  = 1. In each group of three boxes, the data are transformed by
Q̂−1 (first box) or T−1 (second box), or are untransformed (third box).
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Figure 6.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from model (a) when θR = (ρR,r, ℓR), with ρR,r = ρR + 0.1 cos(r/2); ρR = 0.75, 0.5, and 0.25
in rows 1, 2, and 3, respectively; and ℓR = 3, 2, and 1 in columns 1, 2, and 3, respectively. In
each group of nine boxes, the first three are for n1 = n2 = 10 and k  = 2, the next three are
for n1 = n2 = 25 and k  2, and the last three are for n1 = n2 = 25 and k  = 1. In each group
of three boxes, the data are transformed by Q ̂−1 (first box) or T−1 (second box), or are
untransformed (third box).
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Figure 7.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from model (b) when θR = (ρR,r, ℓR), with ρR,r= ρR + 0.1 cos(r/2); ρR = 0.75, 0.5, and 0.25 in
rows 1, 2, and 3, respectively; and ℓR = 3, 2, and 1 in columns 1, 2, and 3, respectively. In
each group of nine boxes, the first three are for n1 = n2 = 10 and k  = 2, the next three are
for n1 = n2 = 25 and k  = 2, and the last three are for n1 = n2 = 25 and k  = 1. In each group
of three boxes, the data are transformed by Q ̂−1 (first box) or T−1 (second box), or are
untransformed (third box).
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Figure 8.
Boxplots of percentage of misclassified observations calculated from 100 simulated samples
from models (c) (row 1) and (d) (rows 2) when Rr is of the form at (4.7), with θM,rj = θM + 2
· [2 cos(rj/2)] and θM = 30, 20, and 10 in columns 1, 2, and 3, respectively. In each group of
nine boxes, the first three are for n1 = n2 = 10 and k  = 2, the next three are for n1 = n2 = 25
and k  = 2, and the last three are for n1 = n2 = 25 and k  = 1. In each group of three boxes,
the data are transformed by Q̂−1 (first box) or T−1 (second box), or are untransformed (third
box).
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Figure 9.
Plots of two background-corrected received data curves from population 1 (left) and
population 2 (right), averaged over the 20 bursts, across wavelength and the backscatter
spectral range. The online version of this figure is in color.
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