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Background: NAADP is a messenger that links cell surface receptors to contraction in many cells, but its function is
unknown in tracheal contraction.
Results: NAADP participates in contractions induced by a neurotransmitter receptor.
Conclusion: NAADP is a messenger that mediates tracheal contraction.
Significance: Inappropriate tracheal contractions underlie asthma, and NAADP represents a new physiological mediator and
drug target.

Nicotinic acid adenine dinucleotide phosphate (NAADP) is
increasingly being demonstrated to be involved in calcium sig-
naling in many cell types and species. Although it has been
shown to play a role in smoothmuscle cell contraction in several
tissues, nothing is known about its possible role in tracheal
smooth muscle, a muscle type that is clinically relevant to
asthma. To determine whether NAADP functions as a second
messenger in tracheal smooth muscle contraction, we used the
criteria set out by Sutherland for a molecule to be designated a
second messenger. We report that NAADP satisfies all five cri-
teria as follows. First, the NAADP antagonist Ned-19 inhibited
contractions in tracheal rings and calcium increases in isolated
smooth muscle cells induced by the muscarinic agonist carba-
chol. Second, NAADP increased cytosolic calcium in isolated
cells when microinjected and was blocked by Ned-19. Third,
tracheal homogenates could synthesize NAADP by base
exchange from exogenous NADP and nicotinic acid andmetab-
olize exogenous NAADP to nicotinic acid adenine dinucleotide
by a 2�-phosphatase. Fourth, carbachol induced a rapid and
transient increase in endogenous NAADP levels. Fifth, tracheal
homogenates contained NAADP-binding sites of high affinity.
Taken together, these data demonstrate that NAADP functions
as a secondmessenger in tracheal smoothmuscle, and therefore,
steps in the NAADP signaling pathway might provide possible
new drug targets.

Airway diameter is dynamically regulated during normal
physiological processes, but inappropriate narrowing caused by
hyperresponsiveness results in asthma. Airway contractility is
mediated by smooth muscle contraction, which is largely
driven by increases in cytosolic calcium, as in other types of

smooth muscle (1–6). Smooth muscle relaxation can occur
through either a decrease in calcium or an increase in cyclic
AMP (7). The G-protein-coupled receptors linked to cytosolic
calcium and cyclic AMP have been intensively characterized
not only for a better understanding of the basic biology but also
because this biological knowledge can be exploited to provide
pharmacological treatments (7–11).
Cytosolic calcium can increase through either release from

intracellular stores or influx from the extracellular space (3,
12–16). Traditionally, focus has been on calcium stored in the
sarcoplasmic reticulum (12, 13), which is released through
channels, either inositol 1,4,5-trisphosphate (IP3)3 receptors
activated by IP3 (12, 13) or ryanodine receptors activated by
cyclic ADP-ribose (17–20). Cytosolic calcium can also increase
in response to the second messenger nicotinic acid adenine
dinucleotide phosphate (NAADP) (21–24). NAADP releases
calcium from acidic endolysosomal stores (21–23, 25–28) by
activation of two-pore channels (29–31). Since its discovery by
Lee and colleagues (17, 22) almost 20 years ago, the emerging
consensus is that NAADP is a widespreadmessenger that plays
physiological roles in many mammalian systems (6, 21, 23, 24,
32–41).
In airway smooth muscle contraction, both IP3 and cyclic

ADP-ribose and their signaling components have been
reported and well characterized (3, 5, 6, 8, 12, 13, 34), but a role
for NAADP in this muscle type has not been reported. One
study did investigate a role forNAADP in tracheal smoothmus-
cle but reported negative results (42). However, the authors
based this on thio-NADP being an NAADP antagonist, which
has been subsequently shown not to be the case (43), and a
concentration of NAADP (100 �M) that is now known to be
inhibitory due to a bell-shaped concentration-response curve
for NAADP (21, 23, 24).
Sutherland and co-workers (44, 45) set out five criteria to
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a particular hormone. We now provide evidence that NAADP
satisfies all five of Sutherland’s criteria, thereby demonstrating
that NAADP mediates, at least in part, calcium increases and
contractions in tracheal smooth muscle induced by muscarinic
acetylcholine receptors.

EXPERIMENTAL PROCEDURES

Tissue Harvesting—Adult male Hartley guinea pigs (400–
500 g) were killed humanely using cervical dislocation subse-
quent to stunning. Tracheaswere excised aseptically andplaced
into Hanks’ balanced salt solution (Sigma). All extraneous tis-
sue was carefully removed.
Tracheal Contractions Measured by Wire Myography—Ex-

periments were performed as described previously (46, 47) with
minormodifications. Briefly, whole tracheaswere cut into rings
between two and three cartilages per ring. The segments were
immersed in heated tissue baths (37 °C) containing 7 ml of
Krebs solution. The solution was continuously equilibrated
with 5% CO2 in O2 to maintain a pH of 7.4. Each tracheal seg-
ment was mounted on two L-shaped metal prongs, ensuring
that the strip of smoothmuscle was facing upwards. One prong
was connected to a force-displacement transducer for contin-
uous recording of isometric tension by Chart software (ADIn-
struments). Another prong was connected to a displacement
device, allowing adjustment of the distance between the two
parallel prongs. Following equilibration, a pre-tension of �5
millinewtons was applied to each segment and equilibrated for
at least 30 min with washes every 10 min. Following equilibra-
tion, themaximumresponsewas determined by addition of 100
�M carbachol. Tissue was then washed and incubated for 30
min with washes every 10 min and then for 1 h with either
dimethyl sulfoxide or 10�MNed-19 (InterBioScreen).We then
generated a cumulative concentration response to carbachol,
followed by a single addition of 60 mM KCl.
Calcium Imaging—Tracheal smooth muscle cells were pre-

pared using an explant technique and grown in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal calf
serum, penicillin/streptomycin, and L-glutamine at 37 °C in a
5% CO2 incubator. Experiments were performed on cells pas-
saged once. Cells were loadedwith fura-2 via the acetoxymethyl
ester (1 �M for 45 min at room temperature) and imaged on an
inverted microscope using alternating 340 and 380 nm excita-
tion and �510 nm emission (longpass) detected with a charged
coupled device camera controlled with MetaFluor software.
Cells were incubated with either dimethyl sulfoxide or 10 �M

Ned-19 for 15 min before addition of 100 �M carbachol.
Microinjection of Messengers—Isolated airway smooth mus-

cle cells fromguinea pigwere injectedwith either 5�MNAADP
or 5 �M IP3 (final concentration of �50 nM as 1% of the cellular
volume was injected, estimated from the cell’s dimensions).
Injectionswere performedwith Femtotips II and the InjectMan
NI 2 and FemtoJet systems (Eppendorf AG). Pipettes were
back-filled with an intracellular solution composed of 110 mM

KCl, 10 mM NaCl, and 20 mM HEPES (pH 7.2) and supple-
mented with or without NAADP or IP3. The injection time was
0.5 s at 60 hectopascals with a compensation pressure of 20
hectopascals.

NAADP Synthesis and Metabolism—For synthesis, we incu-
bated a tracheal homogenate (5%, w/v) with NADP (1 mM) and
nicotinic acid (10 mM) at pH 5 (50 mM acetic acid) or pH 7 (20
mM HEPES). For metabolism, we incubated the homogenate
with NAADP (100 �M) at pH 7.4 (20 mMHEPES). All reactions
were conducted at 37 °C, stopped by immersion for 1 min in a
95 °C water bath, and centrifuged at 13,000 � g for 5 min to
pellet denatured protein, and 100 �l of supernatant was then
injected onto a Waters HPLC system. Compounds were sepa-
rated by anion exchange using AG MP-1 resin (Bio-Rad)
packed in a 1 � 10-cm column (Omnifit) using a concave up-
gradient of trifluoroacetic acid as described previously (48) and
monitored by absorbance at 254 nm. Compounds were identi-
fied by elution times of authentic samples.
NAADP Levels—Whole tracheas were cut into rings and

placed into 200 �l of Hanks’ balanced salt solution. Rings were
incubated with carbachol for the desired times before addition
of 200 �l of 0.75 M HClO4. Tracheal rings were sonicated and
centrifuged to pellet denatured protein, and the supernatant
was neutralized with an equal volume of 2 M KHCO3 as
described (49). The levels of NAADP in each sample were
determined as described previously (49). Briefly, NAADP
standards or samples were incubated with sea urchin egg
homogenate for 10 min. [32P]NAADP was added to each tube
and incubated for an additional 10 min. Bound NAADP was
filtered onto Whatman GF/B filter papers by washing using a
Brandel cell harvester. Radioactivity was determined using a
storage phosphor screen and Typhoon scanner (Amersham
Biosciences).
NAADP Binding—Whole tracheas were chopped using a

razor blade and homogenized using a Precellys 24 tissue
homogenizer (Bertin Technologies). Specific binding was
determined as described previously (49). Briefly, standards of
NAADP were prepared in Hanks’ balanced salt solution. Tra-
cheal homogenate was then added to give a final protein con-
centration of �1 mg/ml. [32P]NAADP was synthesized from
[32P]ATP (PerkinElmer Life Sciences) and added to give a final
concentration of � 0.2 nM. The tubes were then incubated for
1 h at room temperature, filtered using a Brandel cell harvester
onto Whatman GF/B filter papers, and washed with ice-cold
HEPES buffer (50 mM, pH 7.2). Radioactivity was determined
using a storage phosphor screen and Typhoon scanner.

RESULTS AND DISCUSSION

To determine whether NAADP signaling plays a role in tra-
cheal smooth muscle contraction, we determined if NAADP
meets the five criteria suggested by Sutherland as necessary for
a molecule to be designated a second messenger (44, 45). Spe-
cifically, first, antagonism of the action of themessenger blocks
the effects of the extracellular messenger; second, a molecule
applied intracellularly must mimic the effect of an extracellular
stimulus; third, it can be synthesized and metabolized; fourth,
its levels must be shown to change in response to a physiologi-
cally relevant stimulus; and fifth, specific intracellular binding
sites must be present.
Sutherland’s first criterion for a second messenger is that

antagonism of the action of the messenger blocks the effects of
the extracellular messenger (44, 45). To address this criterion,
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we determined the effect of the NAADP antagonist Ned-19
(50–52) on contraction of tracheal rings from guinea pig and
calcium responses in isolated airway smooth muscle cells.
Tracheal smooth muscle has several G-protein-coupled

receptors thatmobilize calcium increases to induce contraction
(3, 8). To determine whether the NAADP antagonist Ned-19
affects calcium increases stimulated by G-protein-coupled
receptor signaling, we investigated the effect of Ned-19 on con-
tractions of tracheal rings induced by carbachol. Carbachol is a
hydrolysis-resistant agonist of the muscarinic acetylcholine
receptor. In guinea pig tracheal smoothmuscle, theM2 andM3
subtypes are equally present, and theM3 subtypemediates con-
traction (53). For these experiments, we employed cumulative
concentration-response curves as commonly reported for such
preparations (46, 47, 54). As reported (46, 47), increases in car-
bachol concentration led to increasing force of contraction
until saturation of the response (Fig. 1A). The resulting concen-
tration-response curve had an ED50 of�150 nM and aHill coef-
ficient of 0.9, indicating no cooperativity (Fig. 1C). Ned-19 (10
�M) reduced the maximum contraction by �50% and right-
shifted the concentration-response curve to an ED50 of�30�M

and a Hill coefficient of 0.8 (Fig. 1, B and C). In these experi-

ments, we used KCl to fully contract the tissue to demonstrate
tissue viability at the end of the experiment, as described previ-
ously (46, 47). Importantly, Ned-19 did not affect KCl-induced
contractions (Fig. 1D), which is consistentwith the lack of effect
of Ned-19 on KCl-induced responses in pancreatic beta cells
(50) and rat uterine smooth muscle (32). The inhibition of the
carbachol-induced contractions by Ned-19 is consistent with a
role for NAADP in calcium mobilization and contraction in
trachea. To demonstrate directly that Ned-19 affects NAADP-
mediated contraction, we investigated the effect of Ned-19 on
contractions mediated by NAADP acetoxymethyl ester, a cell-
permeant form of NAADP (55). NAADP acetoxymethyl ester
did not induce contractions in tracheal rings, possibly due to
de-esterification in cell layers and not reaching the tracheal
smooth muscle cells in high enough concentrations, which is a
well known problem for molecules made membrane-permeant
through esterification (56). Therefore, we addressed the ques-
tion ofNed-19 action and selectivity in trachea by using isolated
smooth muscle cells as described below.
Having established that Ned-19 blocks contractions of tra-

cheal rings induced by carbachol, we next investigated whether
Ned-19 also inhibits calcium increases induced by carbachol in
isolated airway smooth muscle cells. Carbachol (100 �M)
induced a peak and plateau increase in calcium (Fig. 1E). This
response is typical for muscarinic acetylcholine receptor-in-
duced calcium mobilization in tracheal smooth muscle (3, 57,
58). Ned-19 (10 �M) slowed the carbachol-induced rate of cal-
cium increase and decreased its maximum amplitude (Fig. 1, E
and F). This result is consistent with Ned-19 reducing the cal-
cium response in other types of smooth muscle to agonists,
such as oxytocin (32), endothelin-1, and norepinephrine (38),
and to G-protein-coupled receptor signaling in other cell types,
including thrombin and glycoprotein VI in platelets (59), ATP
in astrocytes (60), histamine in endothelial cells (61), and insu-
lin in �-cells (62) and adipocytes (63). Combined, the above
data support that an NAADP antagonist blocks action of the
G-protein-coupled receptor-mediated responses of calcium
increase and contraction, thereby supporting a role forNAADP
in these processes.
Sutherland’s second criterion for a secondmessenger is that,

when applied intracellularly, it must mimic the effect of an
extracellular stimulus. To address this criterion, we determined
whether microinjection of NAADP increases cytosolic calcium
in isolated airway smooth muscle cells. Microinjection of
NAADP resulted in a rapid calcium increase (Fig. 2A). Preincu-
bation (15 min) with 10 �M Ned-19 reduced the NAADP-in-
duced calcium increase (Fig. 2, C and E). Microinjection of IP3
also resulted in a calcium increase (Fig. 2B), but this response
was not blocked by preincubationwithNed-19 (Fig. 2,D and F).
The ability of Ned-19 to attenuate NAADP but not IP3 shows
selectivity and is consistent with the effect of Ned-19 in other
cell types (32, 50, 64). These data demonstrate that Ned-19 is
an antagonist of NAADP in tracheal smooth muscle cells.
Additionally, the ability of NAADP to increase cytosolic cal-
cium demonstrates that NAADP meets Sutherland’s second
criterion.
Sutherland’s third criterion for a second messenger is that it

can be synthesized and metabolized (44, 45). In other cell types

FIGURE 1. NAADP antagonist Ned-19 attenuates muscarinic signaling in
trachea. A and B, effect of Ned-19 on carbachol-induced contraction of tra-
cheal rings from guinea pig. Carbachol was added cumulatively to the con-
centrations indicated after a 1-h incubation with either 0.1% dimethyl sulfox-
ide (A) or 10 �M Ned-19 (B). pN, piconewtons. C, concentration-response
curves for carbachol-induced contractions in the presence and absence of 10
�M Ned-19. Error bars represent the mean � S.E. (n � 3). D, summary bar chart
of the contractile response to 60 mM KCl. Error bars represent the mean � S.E.
(n � 5). Means were compared with an unpaired, one-tailed t test. E, effect of
carbachol (100 �M) on cytosolic calcium over time in tracheal smooth muscle
cells from guinea pig. Carbachol was added after a 15-min incubation with
either 0.1% dimethyl sulfoxide (Control) or 10 �M Ned-19. F, summary bar
chart of the increase in calcium. Error bars represent the mean � S.E. (n �
15–20 cells). Means were compared with an unpaired, one-tailed t test
between the control (n � 15) and Ned-19-treated (n � 20) cells.
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and tissues, the consensus view is that NAADP is synthesized
by base exchange (65, 66), whereby the nicotinamide group on
NADP is swapped with nicotinic acid (Fig. 3A). To determine
whether NAADP can be synthesized, we incubated tracheal
homogenate with the substrates for NAADP synthesis via base
exchange, NADP and nicotinic acid (39, 66). HPLC revealed a
peak ofNAADP that increasedwith time (Fig. 3B). Surprisingly,
the reaction was as efficient at pH 7 as at pH 5 (Fig. 3C). Base
exchange is catalyzed by a family of enzymes termed cyclases
(as they are named for the synthesis of cyclic ADP-ribose (67)),
of whichCD38 is the prime candidate formammalian synthesis
(10, 41, 65, 66), but in certain tissues, CD38 is not required, and
in others, alternative base exchange enzymes either exist (68) or
compensate (41, 69). However, in mouse trachea, CD38 is the
most likely candidate, as it accounts for all of the cyclase activ-
ity, and agonist-induced calcium transients are attenuated in
CD38 knock-out mice (10, 65).
As with IP3 (70), NAADP can be metabolized by several

enzymes,which in vitro includes pyrophosphatase (71), alkaline
phosphatase (71), CD38 (72), and glucose-6-phosphate dehy-
drogenase (73). To determine whether NAADP can be metab-
olized and towhich product(s), we incubatedNAADP (100�M)
with tracheal homogenate and monitored the reaction with
HPLC. Over time, NAADP was converted primarily into nico-
tinic acid adenine dinucleotide (Fig. 3D). This result is consis-
tent with previous reports implicating a 2�-phosphatase (74)
that is likely alkaline phosphatase (75) as the physiologically
relevant metabolic pathway. Taken together, these data dem-
onstrate that NAADP is synthesized and metabolized by tra-
chea, thereby fulfilling Sutherland’s third criterion.
Sutherland’s fourth criterion for a second messenger is that

its level must change in response to a physiologically relevant
stimulus (44, 45). The preceding data demonstrate that tracheal
tissue has the enzymes required for NAADP synthesis and deg-
radation; however, they do not address whether this occurs

during physiological stimulation. To address Sutherland’s
fourth criterion, we measured endogenous NAADP levels dur-
ing stimulation with carbachol. Carbachol (100 �M) induced a
time-dependent increase in NAADP that peaked at 30 s and
then returned to the base line (Fig. 4). This type of rapid
and transient messenger increase is characteristic of NAADP
and has been reported in several tissues and cells, including
sperm (76), T-cells (77), beta cells (37), pancreatic acinar cells
(40), heart cells (78) and smoothmuscle cells (32, 79). To enable
pooling of different experiments, we present the data normal-

FIGURE 2. Microinjected NAADP increases calcium and is antagonized
selectively by Ned-19 in isolated tracheal smooth muscle cells. A–D, cal-
cium responses of individual cells microinjected with NAADP (A and C) or IP3
(B and D) in the absence (A and B) or presence (C and D) of Ned-19 (10 �M). E
and F, summary bar charts of the calcium responses induced by microinjec-
tion. Error bars represent the mean � S.E. (n � 6), and p values were calculated
by a two-tailed t test.

FIGURE 3. NAADP is synthesized and metabolized by tracheal tissue. A,
chemical structures and scheme showing NAADP synthesis via base
exchange and metabolism by reported mechanisms. B and C, HPLC traces
showing NAADP synthesis by base exchange using tracheal tissue homoge-
nate incubated with NADP (1 mM) and nicotinic acid (NA; 10 mM) at pH 5 (B)
and pH 7 (C). D, HPLC traces showing NAADP metabolism. NAADP (100 �M)
was incubated with homogenate at pH 7. All reactions contained tracheal
homogenate at 5% (w/v) and were incubated at 37 °C. Peaks were identified
by the elution times of authentic samples. NiAM, nicotinamide; ADPR-P,
ADP-ribose phosphate; NAAD, nicotinic acid adenine dinucleotide; Abs,
absorbance.
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ized to themaximum absolute response with a given tissue on a
given day. For comparison, phosphatidylinositol turnover in
guinea pig tracheal rings induced by carbachol was reported to
have an ED50 of 100�M,withmaximum stimulation phosphati-
dylinositol turnover approximately doubled (80). In absolute
terms, resting levels varied dramatically from pmol/mg of pro-
tein to �1 fmol/mg of protein, roughly the sensitivity of our
binding assay (49). These values are on the low end of the pub-
lished range of 0.1–10 pmol/mg of protein. Older literature
attributed carbachol-induced contractions entirely to changes
in IP3 and inositol turnover in tracheal ring preparations (80,
81). More recently, cyclic ADP-ribose and CD38 have been
shown to be involved in contraction (4, 10, 11, 82), but there are
no reports of changes in cyclic ADP-ribose levels. We can now
conclude that calcium increases and contractions are mediated
not just by IP3 and cyclic ADP-ribose but also by NAADP.
Taken together, the above data demonstrate physiologically
relevant increases in NAADP and fulfill Sutherland’s fourth
criterion.
Sutherland’s fifth criterion for a second messenger is that

specific intracellular binding sites are present. To address this
criterion, we used a competitive binding assay in which we
incubated tissue homogenates with [32P]NAADP and com-
peted with nonradioactive NAADP. The resulting concentra-
tion-displacement curvewas best fit with two binding sites with
affinities of �1 pM and 170 nM, with each contributing to about
half of the total binding (Fig. 5). A two-site binding curve for
NAADP is consistent with that obtained using HeLa cells
expressing two-pore channels and endogenous receptors in
mouse liver homogenates (29). The differences in affinity may
simply reflect the different buffer conditions, as NAADP bind-
ing is acutely sensitive to the ionic composition of the buffer
(83). Additionally, recent evidence demonstrates that the actual
binding protein is not the two-pore channel itself but an acces-

sory protein (84–86). The salient finding is that specific bind-
ing sites for NAADP are present, thereby fulfilling Sutherland’s
fifth criterion.
The exact details of how NAADP coordinates calcium

increases with IP3 and cyclic ADP-ribose will require further
study. However, the data we obtained for NAADP in tracheal
tissue and smooth muscle cells are consistent with its reported
mechanismof action in other cell types. The rapid and transient
increase in NAADP upon muscarinic receptor stimulation fits
with NAADP acting as a “trigger” for a larger global calcium
release, with a small release of calcium from acidic organelles
triggering a secondary larger increase from the sarcoplasmic
reticulum (5, 18). Thus, the messengers cooperate under nor-
mal circumstances to elicit an agonist-induced calcium
increase. The independent actions of the messengers can be
revealed only by blocking one response or the other. Since it
was first proposed (24), a trigger role for NAADP has been
demonstrated inmany cell types (87). Themost direct evidence
for this comes from experiments in which NAADP was either
perfused into the cell through a patch pipette or photo-released
with or without the IP3 antagonist heparin or xestospongin (29,
35, 88–90). NAADP can also function as a trigger through a
two-pool mechanism, originally proposed by Berridge and
Galione (91). In sea urchin eggs (92), arterial smooth muscle
cells (90), and heart cells (93), NAADP shuttles calcium from
endolysosomal stores into the endoplasmic reticulum, which
then promotes release through IP3 or ryanodine receptors.
In summary, we have used Sutherland’s five criteria for a

second messenger as a template to demonstrate that NAADP
plays a role in calcium increase and contraction in tracheal
smooth muscle. We suggest that NAADP plays a parallel and
complementary role to IP3 and cyclic ADP-ribose, enabling a
more sensitive response to agonist stimulation. This emerging
role for NAADP reveals new possibilities for physiological
control and possible new drug targets for the treatment of
asthma (8).
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