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Abstract: Computational protein design (CPD) is a useful tool for protein engineers. It has been

successfully applied towards the creation of proteins with increased thermostability, improved

binding affinity, novel enzymatic activity, and altered ligand specificity. Traditionally, CPD
calculations search and rank sequences using a single fixed protein backbone template in an

approach referred to as single-state design (SSD). While SSD has enjoyed considerable success,

certain design objectives require the explicit consideration of multiple conformational and/or
chemical states. Cases where a ‘‘multistate’’ approach may be advantageous over the SSD

approach include designing conformational changes into proteins, using native ensembles to

mimic backbone flexibility, and designing ligand or oligomeric association specificities. These
design objectives can be efficiently tackled using multistate design (MSD), an emerging

methodology in CPD that considers any number of protein conformational or chemical states as

inputs instead of a single protein backbone template, as in SSD. In this review article, recent
examples of the successful design of a desired property into proteins using MSD are described.

These studies employing MSD are divided into two categories—those that utilized multiple

conformational states, and those that utilized multiple chemical states. In addition, the scoring of
competing states during negative design is discussed as a current challenge for MSD.

Keywords: multistate design; oligomeric association; conformational switch; backbone ensemble;

negative design

Introduction

Protein engineers strive to create new proteins to

serve a specific and desired function by altering the

sequence of existing proteins. Because protein

sequence space is astronomically vast, a major hur-

dle to overcome is the identification of beneficial

mutations required to access the desired protein

property. Computational protein design (CPD) is a

useful tool for protein engineers as it allows for the

in silico evaluation of amino acid sequences on a

scale that is experimentally impossible to achieve.1

CPD originated as a means to understand the forces
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which govern protein stability;2,3 however, over the

last two decades, CPD has been used to create new

proteins with desired properties. For example, CPD

has been successfully applied towards (i) the crea-

tion of proteins with increased stability,2,4 (ii) the

creation of de novo enzymes from catalytically inert

protein scaffolds,5–7 (iii) the introduction of new or

altered binding specificity for metals,8–10 small mole-

cules,11,12 peptides,13 proteins,14–16 and DNA,17 (iv)

the design of conformational switches,18 and (v) the

creation of a novel protein fold not observed in na-

ture.19 Thus, CPD not only tests and improves our

knowledge of the forces that drive protein structure

and function, but also allows us to search and har-

ness the vastness of sequence space for the solution

of real world chemical problems.20

Computational protein design

CPD simulations traditionally require the following:

(1) a protein backbone template, (2) a rotamer

library containing a discrete set of conformations for

all amino acid side chains to be tested, (3) a scoring

function to rank rotamers in order of stability or

desired function, and (4) an optimization algorithm

to search through the combinations of rotamers to

return the sequences with the best predicted scores.

Backbone templates are often prepared from protein

crystal structures; however solution NMR or molecu-

lar dynamics structures have also been used.21,22

Generally, hydrogens are explicitly modeled in the

design simulation and solvent is implicitly accounted

for using a distance-dependent dielectric, a simpli-

fied surface area model,23 or an occlusion based sol-

vent model.24,25 The preparation of template back-

bones can be completed with a coarse energy

minimization to alleviate van der Waals clashes

introduced as a result of the hydrogen addition pro-

cess or those already present in the deposited crystal

structure. After the backbone template has been pre-

pared, the CPD calculation can begin by threading

sets of discrete rotamers onto the template at speci-

fied positions. Following sequence optimization, the

output returned by CPD algorithms is a list of

ranked sequences based on their score value.

Single-state design experiments in

computational protein design
Traditional CPD methodologies focus on the optimi-

zation of amino-acid sequences for coordinates from

a single, fixed protein backbone template. This

approach, referred to as single-state design (SSD)

[Fig. 1(A)], is employed in positive design experi-

ments whereby sequence space is searched to solve

for a single desired function.26 In SSD, undesired

states, such as the unfolded and aggregated states,

are implicitly designed against through the use of

penalties added to the score of sequences expected to

favor such undesired states. To date, most successful

examples of CPD were achieved using the SSD

approach. For instance, the application of SSD to

improve protein stability has had considerable suc-

cess,27 leading to several hyperthermophilic variants

of the well-studied b1 domain of Streptococcal

Figure 1. Examples of computational protein design. A:

Improving the stability of a target protein fold by positive

single-state design (SSD). B: Improving the stability of a

target protein fold by positive multistate design (MSD). C:

Designing sequences capable of adopting distinct folds by

positive MSD. D: Designing oligomeric association

specificity by negative MSD. E: Designing ligand binding

specificity by negative MSD.
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protein G.2,28 The SSD approach has also been used

for the design of ligand binding specificity11,13 as

well as the design and introduction of new catalytic

activity into proteins. For example, esterase,5 Kemp

eliminase,6,29 retro-aldolase,30 and Diels-Alderase7

activities have all been successfully designed de

novo using SSD.

Multistate computational protein design

For the examples provided above, SSD has had suc-

cess for two major reasons: the first is that the coor-

dinates for the protein backbone template were suita-

ble for the desired function and redesigned sequence,

and the second, is that the simulation goals could be

accomplished with the use of a positive design

approach. However, in cases where multiple desired

conformational or chemical states for a protein of in-

terest, or cases where desired and undesired states

(i.e., negative design) must be considered to design

the desired property [Fig. 1(B–E)], SSD is expected

to have reduced success. Cases where a ‘‘multistate’’

approach may be advantageous over the SSD

approach include designing conformational changes

into proteins, using native ensembles to mimic back-

bone flexibility, and designing ligand specificity or

oligomeric association. All of the examples above are

examples of multistate design (MSD), an emerging

methodology in CPD that considers any number of

protein conformational or chemical states as inputs

instead of a single protein backbone template, as in

SSD. MSD allows sequence selection to be driven by

the energetic contributions of multiple conforma-

tional or chemical states simultaneously. In truth, all

protein design problems are MSD problems because

proteins are dynamic in nature since they are capa-

ble of adopting alternate local minima conforma-

tions31,32 and these conformations can be further

influenced and potentially stabilized by the binding

of allosteric modifiers, small molecules and other pro-

teins.33 Additionally, proteins that bind ligands can

exist in various chemical states such as the free and

bound states. While SSD is well suited to positive

design simulations for a single desired state, MSD is

better suited to the application of simulations which

require the explicit consideration of multiple adopt-

able states during sequence optimization.

From a computational standpoint, the major dif-

ference between MSD and SSD simulations is

amino-acid sequence optimization. A multistate CPD

simulation can be viewed as a collection of multiple

independent single-state calculations whereby

rotamers for a specific amino-acid sequence are opti-

mized in the context of each of the conformational

and/or chemical states used as input templates. This

means that an amino-acid sequence will not adopt

the same side-chain conformations in all states. In

each of these single-state calculations, rotamer com-

binations are scored using typical scoring functions

from SSD. In MSD, most or all single-state scores

are then combined into a fitness value for each

amino-acid sequence. This fitness value is a single

value ranking for that amino-acid sequence across

all states which reflects how well the sequence sta-

bilizes the positive state(s), and in the context of

negative design, how it also destabilizes the negative

state(s) (Fig. 2). MSD optimization algorithms then

attempt to optimize this fitness value as a function

of amino-acid sequence. Many of the common optimi-

zation algorithms used in SSD have been adapted

for MSD, including stochastic algorithms, such as

Monte Carlo with simulated annealing,18 genetic

algorithms,34 and Fast and Accurate Side-Chain

Topology and Energy Refinement (FASTER),35 as

well as deterministic algorithms such as dead-end-

elimination.36

In this review article, recent examples of the

successful design of a desired property into proteins

using MSD will be described. These studies employ-

ing MSD are divided into two categories—those that

utilized multiple conformational states, and those

that utilized multiple chemical states. In all cases,

the experimental validation of the MSD designs is

described. In addition, the scoring of competing

states during negative design is discussed as a cur-

rent challenge for MSD.

Examples of Multistate Design
As described earlier, MSD accounts for alternate

conformational and/or chemical states for all speci-

fied sequences during the CPD simulation. Alternate

conformational states are included in CPD simula-

tions by searching the same sequences on multiple

different backbone templates, such as distinct folds

or native ensembles [Fig. 1(B,C)]. This approach can

be contrasted with the MSD of alternate chemical

states which involves the simulation of the same

sequences in search of alternate functions, for exam-

ple, comparing sequence specificity for multiple

ligands or for oligomeric association [Fig. 1(D,E)].

Both kinds of MSD simulations will be discussed

below.

MSD applied to multiple conformational states

MSD can be used to design protein sequences that

undergo large conformational changes depending on

experimental conditions, in effect leading to protein

switches whose conformation can be controlled via a

desired stimulus. For example, in 2006, Ambroggio

and Kuhlman engineered a conformational switch,

referred to as Sw2, capable of reversibly adopting

two distinct folds depending on the presence of tran-

sition metals.18 The first state, resembling a 2Cys-

2His zinc finger fold, was stabilized in the presence

of Zn(II) while the second state, involving assembly

of the peptide into a trimeric coiled-coil fold, was
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favored in the absence of Zn(II) [Fig. 3(A)]. The engi-

neering of Sw2 employed a MSD approach in which

sequences were searched on two distinct protein

backbones. These templates consisted of residues

13–44 of hemagglutinin from H. influenzae and resi-

dues 3–33 of the Zif268 zinc finger-DNA complex

from M. musculus, corresponding to the desired

coiled-coil and zinc finger conformations respectively.

Rotamers were scored using the standard Rosetta

energy function to which an additional scoring term

Figure 2. Sequence ranking and selection in single-state (SSD) and multistate (MSD) design. A: Positive SSD simulations

rank a sequence using the energy from a single positive state. In this example, sequence A is kept and ranked as the best

sequence because it has the largest favorable difference in energy between the single positive state and the reference

energy. Sequence B is also kept although its difference in energy from the reference value ranks it lower than sequence A,

while both sequences C and D are rejected as their difference in energy from the reference energy is positive and thus

unfavorable. The ranking of kept sequences for this SSD example is A > B. B: Positive MSD simulations rank a sequence

using the average energy over an ensemble of positive states and this average energy is used to rank the sequence relative

to a reference energy. Here, sequences A and B are both kept as their average ensemble energy falls below the reference

energy. Sequence C is rejected as it’s ensemble average energy lies above the reference energy and sequence D is kept as

its ensemble average energy is less than the reference energy, even though some of the states have an energy greater than

the reference energy. The ranking of kept sequences for this MSD example is A > B > D. C: Negative MSD simulations rank

a sequence by evaluating the difference in energy between the desired positive state and the competing negative state.

Sequences favoring the negative state are ranked poorly. In this example, only sequence A is kept as it is the only sequence

whose difference in energy between the positive and negative state is favorable and whose positive state energy falls below

the reference energy. The remaining sequences (B, C and D) for this MSD example are rejected.

Figure 3. Input templates for examples of published multistate design experiments. A: Two distinct folds (a trimeric coiled-

coil and a zinc finger fold) were used as inputs to design a conformational switch.18 B: Native ensembles of multiple

backbone templates were used as input to design proteins with improved stability.21 C: Enzyme structures bound to either a

substrate or an inhibitor were used as inputs to design for antibiotic resistance.43 D: Coiled coil templates were used as

inputs to design oligomeric association specificity.45
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based on the probability of finding specific amino

acids at each position in multiple sequence align-

ments was added, and these scores were in turn

used to compute the fitness of each sequence. The

fitness of each sequence was computed as the score

average for each sequence on both conformational

templates. By selecting for sequences that stabilized

both conformations, Ambroggio and Kuhlman per-

formed a positive MSD simulation. The design objec-

tive for this particular example requires a MSD sim-

ulation because sequence optimization for a single

conformation in a SSD approach does not guarantee

the stabilization of the alternate, unconsidered,

conformation.

To demonstrate the existence of the conforma-

tional switch, circular dichroism spectroscopy was

employed to monitor the disappearance of the coiled-

coil conformation in the presence of increasing con-

centrations of Zn(II). In corroboration with analyti-

cal ultracentrifugation data and circular dichroism

(CD) spectroscopy experiments, the authors were

able to support that the trimeric coiled-coil confor-

mation of the designed Sw2 did exist in the absence

of Zn(II). To conclusively demonstrate that the zinc

finger conformation was achieved, cobalt absorption

spectroscopy was used to show that the engineered

Sw2 sequence did indeed bind Co(II) in a monomeric

zinc finger fashion. Cobalt-bound Sw2 showed peaks

at 310, 340, and 640 nm, consistent with what is

observed for other Cys2-His2 zinc fingers. However,

analytical ultracentrifugation experiments showed

that Sw2 began to associate in a nonspecific manner

at higher concentrations (>100 lM). This is an im-

portant observation as it demonstrates the conse-

quence of not explicitly modeling undesired states in

a negative design approach, in this case an aggre-

gated state, during the CPD simulation. Another im-

portant consideration about this MSD example is

that the sequences ability to undergo the conforma-

tional change itself was not explicitly designed for.

Instead, the conformational change was expected to

occur because the designed sequences were predicted

to be stable in both conformational states. Despite

the successful design of a conformational switch, the

authors note that the current limitation of this

approach lies in the ability to accurately compute

the relative free energy values between the two

conformations.

Another example of MSD applied to multiple

conformational states was published by Allen et al.21

who used native backbone ensembles approximating

the flexibility of proteins to design sequences that

could improve the stability of a single fold belonging

to the protein domain Gb1 [Fig. 3(B)]. The overall

goal was to test whether the use of native backbone

ensembles in a MSD approach could predict higher

quality sequences than the use of a single fixed

backbone in a SSD approach. To test this, the

authors used a variety of structural ensembles,

including solution NMR structures as well as tem-

plates derived from constrained and unconstrained

molecular dynamics (MD) simulations. These back-

bone ensembles were compared alongside a typical

SSD simulation using a single crystallographic

structure of wild type Gb1. During the positive MSD

simulation, each sequence was searched across all

backbone templates and the energy of each sequence

returned. To compute the fitness of each sequence

across the ensemble, a Boltzmann weighted average

function was used. Employing this averaging func-

tion ensured that sequences which were favored in

the majority of states were not penalized by the few

states which disfavored them. Stability of the

sequence variants was then experimentally deter-

mined using a 96-well plate chemical denaturation

assay.

It was found that significant improvement over

the control SSD simulation was afforded only by the

constrained MD backbone ensemble which gave

sequences of similar or better stability to the wild

type and returned no destabilized unfolded variants.

The NMR solution structure ensemble gave 6

sequences with a stability similar or identical to

that of the wild type, and 18 which were highly

destabilized. The unconstrained MD ensemble per-

formed the poorest as all 24 designed sequences

failed to produce any significant fluorescence signal

change during chemical denaturation, indicating

that the chemical environment of the Trp fluores-

cence reporter is very different from that of the tar-

get structure. This observation, coupled with the low

levels of protein expression for members of this

library, suggests that the members of the uncon-

strained MD library likely assume structures that

differ from the target structure. It is important to

note that the backbone RMSD for the NMR ensem-

ble, as well as the unconstrained and the con-

strained MD ensembles were 0.25, 0.84 and 0.12 Å,

respectively.21 The unconstrained MD ensemble had

the greatest RMSD from crystallographic structure

and gave the poorest predictions of the three ensem-

bles suggesting that larger deviations from the crys-

tal structure may be responsible for predicting

sequences that are incompatible with the target

structure. There still remains a difference in the

predictive capability between the NMR and the con-

strained MD ensembles which may be due, in part,

to their respective deviation from the input crystal-

lographic structure. These predictive differences

may also arise because not all backbones included in

NMR ensembles may be suitable to use as templates

for CPD calculations.22 In each case, regardless of

MSD ensemble or SSD template, the experimental

stability and the simulation score for each sequence

were not correlative. This suggests, once again, that

there may be many more factors influencing the

Davey and Chica PROTEIN SCIENCE VOL 21:1241—1252 1245



outcome and success of a MSD simulation than just

the ensemble’s RMSD from the input crystallo-

graphic structure. Nonetheless, this particular

example demonstrates the improved predictive

power that MSD can afford over SSD for the engi-

neering of protein stability.

Backbone ensembles have also been used for the

computational design of a pair of interacting proteins

that is orthogonal to the wild-type proteins from

which they were derived and that is capable of medi-

ating complex biological processes within cells. In

this study,16 two interacting proteins, the GTPase

Cdc42 (Cdc42WT) and its partner, the GTPase

Exchange Factor named intersectin (ITSNWT), were

designed such that the new sequence variants,

referred to as orthoCdc42 and orthoITSN respectively,

would preferentially associate together over their

wild-type parents. Following a computational alanine

scan,37 position 56 in Cdc42 was identified as the

main candidate for affecting ITSN binding without

perturbing other binding interactions that are

required for the biological activity of Cdc42. Position

56 of Cdc42WT and four positions on ITSNWT (1369,

1373, 1376, and 1380) were then mutated in silico to

introduce a specific interaction between the

orthoCdc42 and its mutated binding partner,

orthoITSN. Initially, the authors performed these in

silico mutations using a positive SSD approach, how-

ever, Kapp et al. found that the use of a single fixed

backbone template could not correctly predict muta-

tions in ITSN that were specific to the identity of the

mutated amino acid at position 56 of Cdc42. Failure

to predict precisely the sidechain–sidechain interac-

tions in a protein binding interface likely resulted

from the use of a single fixed backbone, presumably

by biasing the choice of rotamer during the simula-

tion, a known artifact in CPD. To address this issue,

a backbone ensemble generated using backrub

motions38,39 was used in design calculations where

the identity but not the conformation of the mutated

residue 56 was fixed while the four neighboring posi-

tions in ITSN were designed. This approach allowed

for the identification of Glu at position 1373 in ITSN

when an Arg residue is found at position 56 in

mutated Cdc42, demonstrating that MSD yielded a

specific interaction in the orthogonal binding site.

To validate the designed orthoCdc42 and

orthoITSN pair, in vitro experiments were employed

to examine the catalytic activity and thermal stability

of the individual proteins, as well as the dissociation

constant of the Cdc42WT/ITSNWT, Cdc42WT/orthoITSN,

orthoCdc42/ITSNWT, and orthoCdc42/orthoITSN pairs.

The first experiment monitored the catalysis of nucleo-

tide exchange by ITSN using a fluorescently-labeled

GDP analog. By measuring the loss of fluorescence as

a function of time, Kapp et al. found that the mutant

orthoITSN catalyzed nucleotide exchange in

orthoCdc42, but not in Cdc42WT, while ITSNWT did

not catalyze exchange in orthoCdc42, demonstrating

that the designed pair maintained its activity. Ther-

mal stability of each protein was monitored using CD

spectroscopy. Thermal melts of the two wild-type and

mutant proteins indicated a similar stability. The

association specificity of orthoCdc42/orthoITSN was

evaluated using surface plasmon resonance (SPR)

spectroscopy to determine the dissociation constant

(KD) for the four possible pairs. SPR results indicated

that the orthogonal pair, orthoCdc42/orthoITSN, asso-

ciated specifically and preferentially (KD ¼ 478 6 22

nM) while the non-cognate pairs, Cdc42WT/orthoITSN

and orthoCdc42/ITSNWT, were not observed to associ-

ate. While specific, the designed orthogonal complex

has approximately 16-fold weaker binding affinity

than the wild-type Cdc42WT/ITSNWT complex (KD ¼
29 6 2 nM). Additional validation was done in an in

vitro reconstituted system as well as in vivo in mam-

malian cells to demonstrate that the signal pathway’s

function was unimpeded when the wild-type Cdc42WT/

ITSNWT pair was replaced with the designed

orthoCdc42/orthoITSN pair.

The examples provided for MSD using multiple

conformational states illustrate different ways of

exploiting structural data for different design pur-

poses. In one case, the multiple conformations were

used to create a protein capable of undergoing a

desired conformational change when exposed to a

stimulus. In the other, the use of native backbone

ensembles during a CPD simulation leads to a

substantial improvement in the quality of output var-

iants by simulation. In this latter example, improve-

ments likely result from decreasing the number of

false negatives, which occur because many rotamers,

which could be compatible with slight changes in the

backbone, would be considered sterically incompati-

ble and be discarded because the protein backbone is

not allowed to relax after rotamer placement.40

Although researchers have focused on remodeling

the backbone during the CPD simulation,41 in effect

creating a flexible backbone that would be capable of

tolerating rotamers that cause slight steric clashes,

MSD with native ensembles that mimic backbone

flexibility can be used as an alternative. For exam-

ple, native backbone ensembles derived from molecu-

lar dynamics simulations, backrub motions, and

kinematic closure refinement protocols have been

used as inputs in MSD to recapitulate antibody–anti-

gen interface amino acid residues that were experi-

mentally observed by phage display.42 In the future,

MSD with native ensembles could be combined with

the design of desired properties such as ligand bind-

ing and oligomeric association to improve the quality

of designs.

MSD applied to multiple chemical states
Multiple chemical states, such as protein/ligand

complexes or oligomeric association of subunits, can
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be used in MSD to explicitly design for specificity

using a negative design approach. One example of

the application of MSD to modify ligand binding

specificity is a study by Frey et al. who examined

the effect of mutations to the antibiotic target dihy-

drofolate reductase of the methicillin resistant S.

aureus on both inhibitor binding and catalytic activ-

ity.43 In this article, Frey et al. sought to investigate

whether or not mutations that conferred antibiotic

resistance while maintaining catalytic activity could

be predicted in an attempt to assist the drug design

process. In this manner, MSD was applied to screen

for sequences which preferentially bound the natural

substrate dihydrofolate (chemical state 1) over a pro-

pargyl-linked antifolate inhibitor (chemical state 2)

using a single backbone template [Fig. 3(C)]. Even

though a single protein backbone was used, this is

an example of MSD as two templates with different

ligands were considered during sequence optimiza-

tion. The fitness of each sequence, describing the

binding preference, was calculated by taking the ra-

tio of the score describing the binding affinity for

the substrate over the score of the binding affinity

for the inhibitor. Thus, the authors sought to iden-

tify sequences that scored highly for dihydrofolate

and poorly for the inhibitor. Their MSD simulation

returned 105 mutants with a score ratio of infinity.

Four double mutant sequences, which exhibited a

significantly better dihydrofolate score than the

other sequences, were experimentally tested. Three

of the experimentally tested double mutants (V31Y/

F92I, V31Y/F92S, V31F/F92L) conferred antibiotic

resistance (resulting in 18, 8.7, and 13 fold increases

to the original Ki of 10 nM, respectively) while main-

taining sufficient catalytic activity to maintain cell

viability (36-, 107-, and 306-fold decreases to the

original kcat/KM of 2.14 lM�1 s�1, respectively). It is

important to note that the MSD design procedure

required the X-ray crystallographic structures of

dihydrofolate reductase bound separately to both the

substrate and inhibitor. Having both templates elim-

inated the need for translation and rotation of either

substrate or inhibitor in the active site of the protein

for each sequence solution to be scored.

MSD can also be used for the design of oligo-

meric association of protein subunits. As many bio-

logical processes are mediated and controlled by pro-

tein–protein interactions, the ability to design for

protein–protein binding specificity is of paramount

importance. A recent review by Chen and Keating44

describes an integrated approach to the design of

protein–protein interaction specificity using compu-

tational design and experimental library screening

methodologies. Here, we focus on publications

employing a MSD approach to tackle the design of

oligomeric association specificity and the challenge

associated with the simultaneous design of specific-

ity and stability.

In a pioneering example of MSD, Havranek and

Harbury developed and experimentally validated

this approach for the redesign of GCN4 dimeric

coiled-coil association specificity.45 By considering

both the homo and heterodimer form of each coiled-

coil sequence pair in the MSD simulation [Fig. 3(D)],

Havranek and Harbury could direct formation to

prefer one specific oligomeric association (homo-

dimer) in positive design fashion while searching the

same sequences against formation of the other oligo-

meric association (heterodimer) in a negative design

fashion and vice versa. Two additional states, the

unfolded and aggregated states, were also explicitly

designed against. The score for each sequence in

each state was the computed free energy. The fitness

of each sequence was evaluated by the difference in

free energy for the target state from the ensemble of

competing states. Havranek and Harbury used the

S. cerevisiae GCN4 homodimeric coiled-coil structure

as their design scaffold for both the target dimeric

positive state(s) and the competing dimeric negative

state(s). The unfolded state was modeled using AGA-

DIR parameters46 and the aggregated state was

determined by re-evaluating the stability of the tar-

get dimer with an adjusted dielectric constant to

reflect the environment of an aggregated protein.

Experimental validation of the association specificity

and stability predicted from MSD simulation was

carried out using a disulfide-exchange assay and a

urea denaturation assay, respectively. Havranek and

Harbury were able to produce 8 new individual

sequence variants which preferentially associated as

homodimers and 4 new sequence pairs which prefer-

entially associated as heterodimers. However, most

of the designed sequences were destabilized when

compared to the wild-type. Furthermore, Havranek

and Harbury’s results demonstrated that omission of

any structures from the ensemble of negative states

(i.e. the competing homo/hetero-dimer, unfolded or

aggregated states) was detrimental to the perform-

ance and outcome of their simulation. For example,

omission of the unfolded and aggregated states dur-

ing the MSD simulation gave 2 sequence pairs

which were predicted to associate specifically but

also to be unstable, while omission of either the com-

peting homo/hetero-dimer state resulted in a total

loss of predicted association specificity.

Another example of MSD using chemical states

was the redesign of the H. influenzae SspB adaptor

protein. In this study, Bolon et al. designed the wild-

type sequence, which associates as a homodimer,

into mutant variants that preferentially associate as

heterodimers.47 The authors employed and compared

both a SSD and MSD approach to their CPD objec-

tive. The first approach (SSD) involved stabilization

of the heterodimer in a positive design fashion with-

out explicit consideration of the homodimer, while

the second approach (MSD) explicitly included the
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competing homodimer state. Two pairs of sequence

variants at positions 12, 15, 16 and 101, found at

the dimer interface, were produced. The first pair,

containing Phe12/Ala15/Phe16/Ile101 (FAFI) in one

subunit and Leu12/Ala15/Leu16/Ile101 (LALI) in the

other subunit, was found after SSD while the second

pair, containing Leu12/Ser15/Leu16/Ala101 (LSLA)

in one subunit and Tyr12/Gly15/Phe16/Met101

(YGFM) in the other subunit, was found using the

MSD approach. For both the SSD and MSD

approaches, the score for each dimer sequence pair

was computed using the standard DREIDING force

field48 terms. In the case of SSD, the lowest energy

sequence was selected while in the case of MSD, the

fitness for oligomeric association specificity was com-

puted by taking the difference in energy between

the target heterodimer state and the competing

homodimer states (fitness ¼ 2 � EAB � EAA � EBB,

where E is the energy and A and B are different

monomeric subunits). To experimentally validate

their designs, Bolon et al. employed ion-exchange

chromatography to isolate homodimer and hetero-

dimer species and a urea denaturation assay to

examine stability. These experiments allowed the

authors to calculate the free energy of dissociation/

unfolding at 30�C which demonstrated that their

SSD approach could not produce sequences

(sequence pair 1 variants (A) FAFI and (B) LALI)

which favored either the homo or heterodimer state

(DGAA ¼ 24.3, DGBB ¼ 25.6, DGAB ¼ 25.6 [kcal/mol])

while the MSD approach allowed for the design of

sequences (sequence pair 2 variants (A) LSLA and

(B) YGFM) that favorably formed heterodimers over

homodimers (DGAA ¼ 14.5, DGBB ¼ 17.5, DGAB ¼
20.1 [kcal/mol])). While the MSD approach allowed

for the successful design of specificity, the stability

of the heterodimer relative to the wild-type sequence

(WT) was reduced (WT: LAYV, DGWT-WT ¼ 23.6 kcal/

mol vs. 20.1 kcal/mol for the LSLA/YGFM

heterodimer).

The computational redesign of oligomeric associ-

ation using MSD has also been successfully accom-

plished by Ali et al. who redesigned a previously

engineered homotetramer, comprised of four bba
motif peptides referred to as BBAT2, to prefer asso-

ciation in a heterotetrameric fashion.49 In this MSD

example, the positive state consisted of the heterote-

trameric assembly (ABAB, where A and B are differ-

ent monomeric subunits) of two previously designed

mutants of BBAT2, which was generated using sym-

metry operations on their crystal structures (PDB

codes 1SNA and 1SNE). In addition, four negative

states consisting of the two homotetramers (AAAA

and BBBB, where A and B are different monomeric

subunits) and the unfolded state for each peptide

(AUnfolded and BUnfolded) were included. The unfolded

state energy was evaluated by the sum of the energy

of all amino acids, belonging to the designed

sequence, in the context of a Gly-Gly-Xaa-Gly-Gly

pentapeptide model. All energies were computed

using a modified CHARMM19 force field.50 Stability

of the tetramer was computed as the difference

between the unfolded state energy and the heterote-

tramer energy (EUnfolded – EABAB) while the specific-

ity of the complex was calculated as the energy dif-

ference between two heterotetramers and the

respective homotetramers (EAAAA þ EBBBB � 2 �
EABAB). Sequences were ranked using both stability

and specificity fitnesses. Those that possessed high

fitness values for both stability and specificity were

further minimized and rescored. It was found after

MSD that monomers having Glu and/or Asp muta-

tions at positions 11, 13, and 18, and monomers hav-

ing Arg and/or Lys at opposing sites on adjacent sub-

units (positions 11 and 13 from one monomer

interact with positions 18 and 13 on the other mono-

mer, respectively) conferred the best fitness values

for directing specificity of the complex to the hetero-

tetramer. Two heterotetramers were thus designed—

BBAhetT1 and BBAhetT2, composed of 2 subunits

each of individual peptides A-Ala and B-Phe, or A-

Abu and B-Phe, respectively. Each of the designed

monomers (A-Ala, A-Abu, and B-Phe) displayed very

weak CD signal between 200 and 300 nm when

tested individually, indicating that they have very

little secondary structure. However, equimolar mix-

tures of A-Ala/B-Phe (BBAhetT1) and A-Abu/B-Phe

(BBAhetT2) gave rise to a significant increase in

ellipticity indicative of interhelical association. The

heterotetrameric association specificity of BBAhetT1

and BBAhetT2 was also demonstrated by fluores-

cence quenching experiments (the A-Ala and A-Abu

monomers were synthesized with a quencher while

the B-Phe monomer was synthesized with a fluoro-

phore) and analytical ultracentrifugation. Finally,

the crystal structure of BBAhetT1 was solved and

confirmed the designed C2-symmetric heterote-

tramer assembly. Thermal denaturation experiments

of the two designed heterotetramers demonstrated

that they are less stable than the parent BBAT2

homotetramer. These results again demonstrate that

the sequences identified by MSD, although display-

ing a different oligomeric association specificity, also

display decreased stability, similar to what Bolon

et al.47 observed in their design of the SspB adaptor

protein.

This trade-off between increased specificity and

decreased stability arises from the fact that

sequence optimization for the design of oligomeric

association specificity in the previous examples

involved a negative design approach which did not

explicitly attempt to increase the stability of the pos-

itive state. To address this issue, Grigoryan et al.

developed a landmark computational framework,

referred to as cluster expansion and linear program-

ming-based analysis of specificity and stability
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(CLASSY).51 The CLASSY framework is initiated by

designing for stability of the positive state, i.e. the

design–target heterodimer, without consideration of

specificity. This first positive design calculation

yields a sequence with maximum affinity for the tar-

get but does not necessarily confer specificity over

competing states (off-targets) or itself (design). This

is followed by a negative design calculation whereby

sequences are optimized by computing the difference

in energy between the positive state (design–target)

and the best ranking competing state (design–design

or design–off-target). By sequentially introducing a

larger specificity constraint defined as the energy

difference between the lowest energy undesired state

and the desired target state, specificity can be grad-

ually increased. This procedure, referred to as a

specificity sweep, allows for the optimization of

sequences maximizing the specificity of the desired

interaction while minimizing the resulting decreased

stability of the target state.

To validate their CLASSY framework, Gri-

goryan et al. designed and tested 48 peptides to bind

representative members across the 20 families of the

human basic-region leucine zipper (bZIP) transcrip-

tion factors, known to associate as homo- and/or het-

erodimeric parallel coiled-coils. Experimental screen-

ing of their designs was completed using a micro

array assay where the target bZIPs were immobi-

lized onto the surface of the array and the plate was

washed with designed peptides bearing a fluorescent

dye.52 The authors showed that of the 48 designed

peptides, 40 bound to their intended target bZIP.

The seven designed peptides that showed the high-

est specificity were further characterized by thermal

denaturation monitored with CD spectroscopy. Each

of the seven designed peptides were denatured in

the presence of either their intended target bZIP,

the next-best interaction partner reported by the

array experiment, a protein closely related by

sequence identity to the target bZIP, or the design

peptide itself, giving a total of 28 peptide mixtures.

Thermal melts from 18 of the 21 mixtures contain-

ing undesired design-off-target or design–design

complexes showed no increase in temperature of

denaturation compared with that of the average of

the individual components, indicating that the

designed specificity was achieved. Thus, Grigoryan

et al. showed that the problem involving the sacrifice

of stability to achieve enhanced specificity could be

in part circumvented by their CLASSY framework.

In the design examples described above, MSD

was used to design for ligand binding or oligomeric

association specificity. Since the design of specificity

requires the evaluation of alternate competing

states, it is not surprising that MSD in a negative

design approach was required to achieve the design

goal. Indeed, the optimization of sequences for one

state using SSD does not guarantee that the same

sequence will be detrimental to the other state(s). In

the future, it will be interesting to see if positive

MSD using multiple chemical states could be used to

design for desired small molecule binding specificity.

For example, enzyme/substrate complexes could be

used as inputs for MSD to explicitly design for broad

specificity or multisubstrate enzymes.

Current Challenge for Multistate Design

The examples described above illustrate how MSD

can improve the quality of designs, either by identi-

fying sequences that are compatible with desired

states and incompatible with undesired ones or by

keeping sequences that would have been discarded

in the context of a single fixed backbone template.

Although MSD can provide an improved and suc-

cessful avenue over SSD for CPD, there remains a

challenge to overcome in order to improve its useful-

ness for the design of any desired protein property.

This challenge is the accurate modeling of energetic

effects arising from destabilizing mutations in com-

peting states during negative design.

In negative design calculations, the selection of

relevant sequences for the negative state can be dif-

ficult. This difficulty arises from the fact that the

score values for the negative state may not be mean-

ingful. Consider the example shown in Figure 4,

where the same hypothetical five amino acid

sequence (Tyr-Ser-Trp-Ala-Ala) was scored in the

context of two negative state backbones. Using nega-

tive state backbone A, a severe steric clash between

the sidechains of Tyr and Trp leads to an overin-

flated energy for the negative state. As a result, this

sequence would be preferred during a negative MSD

calculation as its fitness, that is the difference in

energy between the positive and negative states,

would be very high. However, although steric

clashes are likely destabilizing in the context of a

real protein, backbone motions can alleviate them

through conformational rearrangements. Thus, neg-

ative states that contain multiple steric clashes

should be preferred in negative MSD since they are

likely to destabilize proteins more efficiently. Bolon

et al. recognized this observation and came up with

a workaround to select sequences exhibiting many

steric clashes in the negative state. To do this, Bolon

et al. restricted the pairwise interaction energy

between two rotamers exhibiting unfavorable steric

clashes at a maximum value to approximate confor-

mational relaxation, thereby giving preference to

sequences having multiple smaller steric clashes,

considering them to be more acceptable than sequen-

ces having a few major steric clashes.47 For the hy-

pothetical example in Figure 4, negative state back-

bone B contains two smaller steric clashes between

the sidechain of Trp and the sidechains of Tyr and

Ala. Although the fitness of the sequence is lower

because the difference in energy between the
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negative state and the positive state is lower, the

sequence can now be selected even in the presence

of sequences that contain major steric clashes.

Although this strategy helps to address the issue of

conformational relaxation in the negative state, it is

still unknown whether the modeling of the negative

state in this fashion is physically relevant. Another

approach to address the issue of relevant scoring of

the negative state is the use of more rigorous statis-

tical mechanics methods to score the negative

states.53 For this approach to be successful, accurate

atomic models of the negative states are required.

However, methods to generate accurate atomistic

models for aggregated and unfolded states have not

yet been developed and validated, limiting the use of

this approach in negative design.

Conclusions

The ability of MSD to use multiple conformational

or chemical states as inputs for protein sequence

optimization can potentially yield higher quality

designed sequences for a number of different appli-

cations. Protein properties that can benefit the

most from MSD are those that are dynamic in na-

ture such as ligand binding specificity, oligomeric

association, and conformational switching. MSD

can also lead to improved sequences for the design

of protein stability by explicitly taking into account

negative states such as the unfolded and aggre-

gated states. With the development of search algo-

rithms that can handle large numbers of states dur-

ing MSD,35 and the development of a generic

program for MSD54 that allows users to rapidly tai-

lor the fitness function to be optimized in order to

achieve the desired design goal, more complex pro-

tein design problems requiring the consideration of

hundreds of positive and negative, chemical and

conformational states will likely be achievable in

the future.
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