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Abstract
This review summarizes the evidence indicating that mutagenic mechanisms in vivo are
essentially the same in all living cells. Unique metabolic reactions to a particular environmental
stress apparently target specific genes for increased rates of transcription and mutation, resulting
in higher mutation rates for those genes most likely to solve the problem. Kinetic models which
have demonstrated predictive value are described and are shown to simulate mutagenesis in vivo
in E. coli, the p53 tumor suppressor gene, and somatic hypermutation. In all three models, direct
correlations are seen between mutation frequencies and transcription rates. G and C nucleosides in
single-stranded DNA (ssDNA) are intrinsically mutable, and G and C silent mutations in p53 and
in VH framework regions provide compelling evidence for intrinsic mechanisms of mutability,
since mutation outcomes are neutral and are not selected. During transcription, the availability of
unpaired bases in the ssDNA of secondary structures is rate-limiting for, and determines the
frequency of mutations in vivo. In vitro analyses also verify the conclusion that intrinsically
mutable bases are in fact located in ssDNA loops of predicted secondary structures.
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1. Introduction
Due to the Unity of Biochemistry, first recognized by Kluyver in 1926 [1], evolution has
bestowed a fundamental unity of biochemical behavior on all forms of life: the same
substrates, enzymes, regulatory mechanisms, biosynthetic and catabolic pathways. The
mechanism of mutagenesis, then, should be similar in microbes and man. However, this
similarity is difficult to demonstrate because, in vivo, a system of coupled interacting
biological components has properties far beyond those apparent from the analysis of these
components in isolation. Thus, hierarchical schemes of control based on any single cellular
event, such as “gene activation” or “enzyme-induction” is inadequate to account for
biochemical behavior that necessarily owes its very existence to complex relationships
among many kinds of events. Moreover, in vitro data may not be relevant to circumstances
in vivo, because substrates are typically used at saturating levels while enzymes are used at
low, rate-limiting concentrations in order to measure the rate of a reaction. In contrast,
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enzyme concentrations in vivo under steady-state conditions usually far exceed substrate
concentrations, and therefore enzymes may not receive sufficient substrate to operate at
maximum velocity. Thus, the amount of available substrate is rate-limiting [2–4]. Moreover,
the effect of transcription on mutagenesis in vivo differs from circumstances typically used
in vitro. For example, genotoxin-induced transcription of the p53 tumor suppressor gene in
vitro has frequently been reported [5–7], but it is also known that transcription exposes
ssDNA with G and C nucleotides that are intrinsically mutable [8,9]. Therefore, in vivo, the
role of carcinogens in mutagenesis is confusing and difficult to predict, since mutagens both
activate transcription and cause base damage (primarily G-to-T transversions) [10]. In spite
of the fundamental importance and consequences of these insights concerning metabolism in
vivo, these facts have been largely ignored, perhaps because further insights would likely
require collaborations between biochemists and experts able to formulate kinetic models
which simulate circumstances in vivo.

Our challenge is to understand these relationships in vivo. Fortunately, kinetic models have
the unparalleled ability to cope with such complexity by calculating the consequences of an
integration of the relevant information. As our biochemical knowledge grows, models will
become increasingly essential for the integration and interpretation of this knowledge. They
allow us to clarify which facts are compatible and pinpoint those that are not. Since kinetic
models can simulate metabolism in living systems, they also provide a framework in which
to judge the relevance of in vitro data to metabolism in vivo. However, models are only
valid and useful if they have demonstrated predictive value. Kinetic models created by our
computer program, mfg, have frequently demonstrated predictive value in the analyses of
mutagenesis in three very different systems: Escherichia coli [11–15], the p53 tumor
suppressor gene [10, 16], and in somatic hypermutation (SHM) during the immune response
[17–20]. In these analyses, mutation frequencies were determined experimentally during
transcription and during mfg-simulated transcription in order to predict: (1) the location of
mutable bases in loops of high-stability secondary structures, and (2) the effects of
transcription, supercoiling, and secondary structure stabilities on base mutability.

Thus, our research over the past ten years on the mechanisms underlying mutagenesis in E.
coli, p53, and SHM is summarized and compared in order to determine whether the Unity of
Biochemistry is, indeed, applicable to the mechanisms underlying mutagenesis in all forms
of life.

2. Interactions of substrates, enzymes and stressors in vivo
One of the earliest investigators to use a simple kinetic model for finding critical variables in
vivo was H. Kascer [21], who explained that “…it is necessary to uncover, both
experimentally and logically the causal connections of a system without isolating the steps
of which it is composed. The language in which such a system is described must of necessity
be the language of molecular interactions, namely, kinetics. Our conventional logical
apparatus, which is essentially a linear one and lacks quantitative rigor, cannot handle most
of the situations which are of the essence of interacting systems. Some of the conclusions of
the treatment which follows may therefore appear intuitively strange… but so much the
worse for intuition”. His elegant insight into our need for kinetic models to understand
metabolism in vivo prompted a brief description of his model, to help our readers grasp
more complex models of mutagenesis.

Kascer used the pathway of arginine synthesis in Neurospora to show, under steady-state
conditions, the sensitivity of metabolite flux to changes in the level of an enzyme, depending
upon its “kinetic position” in a metabolic sequence (Fig. 1A). Since glycogen is in excess,
glycogen phosphorylase is rate-controlling for flux through the cycle, while CIT SYNase
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and ASAase are not. He used a simple mathematical model and five Neurospora mutants
that varied in ASAase-specific activity, and he also measured the concentrations of the ASA
pools and the ARG pools (not shown) (Fig. 1B). Thus, under steady-state conditions, Kascer
correctly predicted: (1) no effect on ARG pool sizes in the five mutants because SYNase and
ASAase are not rate-controlling; and (2) that changes in ASAase-specific activity would
result in inverse correlations with ASA concentrations, which was also observed. Therefore,
his model demonstrated predictive value: one enzyme, glycogen phosphorylase, is flux-
controlling while two others, SYNase and ASAase, are not.

As illustrated in Fig. 1C, evolution usually occurs in response to stress, by activating
relevant portions of the genome and selecting beneficial mutations that correct the problem
[11, 1222–24]. In the prokaryote E. coli, for example, starvation for inorganic phosphate de-
represses the phoregulon, thus activating a new high-affinity phosphate transport system
able to cope with lower phosphate levels, and also activates a hydrolase able to obtain
phosphate from new sources [25]. Oxidative stress activates hydroperoxide reductase in E.
coli [26], and the effect of osmotic stress on supercoiling and expression of the proU locus
increases the transport of osmoprotective solutes [27]. In humans, genotoxic stress activates
p53 transcription, thus exposing intrinsically hypermutable Gs and Cs in stem-loop
structures (SLSs) [10,16,28], and foreign antigen stress also activates transcription, resulting
in a striking increase in B cell mutation frequency [29–31]. Thus E. coli, the p53 tumor
suppressor gene, and SHM in VH5 have apparently evolved similar solutions in response to
environmental stressors. In each case, transcription provides the ssDNA that exposes
unpaired intrinsically mutable bases, which are the essential precursors of mutation.

3. How to use our computer algorithm, mfg
To simulate in vivo conditions in response to increased rates of transcription a computer
algorithm, mfg, was developed [12]. During transcription the mutability of a base in a DNA
secondary structure depends both on the stability of the structure and on the extent to which
the base is unpaired. Mfg interfaces with the mfold program [32] which can fold single-
stranded segments of a specified length for any given sequence and report all possible
secondary structures that can form from each folded segment, in descending order of
stability. As indicated in Fig. 2A, mfg uses mfold to analyze a sequence of ssDNA. The
sequence and window size are first specified, and then mfold is instructed to fold the
relevant successive sequences into SLSs (stem-loop structures). Mfg then reports the
stability (Max E, or ΔG) of the most stable secondary structure in which a mutable base is
unpaired, and also reports the percent of total folds in which it is unpaired. The Mutability
Index (MI) of each unpaired base is the product of these two variables, i.e. MI = % unpaired
X ΔG, or MI = % X ΔG (Fig. 2A). Two such structures are shown in Figure 2B, namely,
SLS 8.7 and SLS 4.6. The website http://www.dbs.umt.edu/research_labs/wrightlab/upload/
mfg.html provides directions for using mfg to analyze DNA secondary structures formed
during transcription. An example of mfg output is shown in Figure 2A. A segment of ~ 400
nts in the non-transcribed strand of the selected sequence is first pasted into the mfg
program. A frame length for viewing the subsequent successive secondary structures is then
chosen, and these segments are copied to the clipboard and loaded in to the mfold program
http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold for folding. Once the folded sequences
are available they are loaded back into mfg by selecting “save target as” from the dropdown
menu. The successive sequences are then saved to an mfg-associated file. This ct file is
processed by mfg, which selects subsequences where subsequent bases are unpaired, and
then gives the frequency (%) with which they are unpaired and the stability (ΔG, or Max E)
of the most stable structure in which they are unpaired. As seen by the computer output (Fig.
2A), these data are shown along with the bases in the sequence. Thus, by selecting any base,

Wright et al. Page 3

Mutat Res. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.dbs.umt.edu/research_labs/wrightlab/upload/mfg.html
http://www.dbs.umt.edu/research_labs/wrightlab/upload/mfg.html
http://mfold.rna.albany.edu/?q=DINAMelt/Quickfold


the highest energy structure in which that base is unpaired is displayed, with the selected
base highlighted in blue.

To our knowledge the mfg program is unique for predicting the successive formation and
inter-conversion of the most stable SLSs that presumably exist in vivo during transcription
of sequences hundreds of nucleotides long. This algorithm is based upon logical
assumptions: Each successive fold must be initiated by an unpaired base, and the most stable
structure in which each base is unpaired will dominate the folding pathway. Thus, the mfg
program has allowed us to discover and describe a here-to-for unknown mechanism of
mutagenesis that incorporates and augments the underlying causes of transcription-driven
SLSs containing intrinsically mutable unpaired bases [11, 24]. This program has recently
been used in the analysis of viral RNA secondary structures [33], and in investigations to
determine the extent to which mutations occur in unpaired secondary structures of the E. coli
glycerol kinase glpK 218 allele [15]. Kim et al. [14] have used mfg for analyses of
transcription-associated mutations, and suggest that the genome sequence has evolved to
increase protein evolvability under stress. In mfg analyses of human rearranged
IGHV3-2301 gene sequences Duvvuri et al. [20] found that hypermutable bases were
located in the ssDNA of stable SLSs.

4. Mfg-predicted secondary structures exist
In order to confirm mfg-analyses indicating that highly mutable Gs and Cs in p53 are
actually located in ssDNA loops of predicted SLSs, plasmid DNA containing codon 175 in
exon 5 of p53 was analyzed using S1 endonuclease (Fig. 2B and C). Selected p53 structures
associated with the sequence surrounding “hot spot” codon 175 and accompanying gels
shows cleavage sites from S1 endonuclease digestions of supercoiled plasmid DNA and
pausing sites using T7 DNA polymerase. The SLSs are from the non-transcribed strand,
while experimental cleavage and pausing data were derived from the transcribed strand.
Comparable analysis demonstrating the existence of predicted SLSs in p53 have been
demonstrated for hypermutable codons 245, 248, 273, and 282 [10], and in somatic
hypermutation [19] pausing analysis demonstrated the existence of three different sized
segments of VH5.

5. G and C bases are intrinsically mutable
Table 1 summarizes the characteristics and mutability of nucleosides (predominately Gs and
Cs) in ssDNA, demonstrating their intrinsic instability and fate. In particular, unpaired Gs
primarily mutate to A and Cs mutate to T. Compelling evidence for the mechanism
underlying base instability is shown by the three examples of intrinsic mutability, i.e., of
nucleosides and two silent mutations, which can only reflect intrinsic base instabilities since
they do not alter the encoded amino acid and are not selected [see 16,34,35]. These data
underlie key questions that we address below: Is the availability of intrinsically mutable
unpaired bases via transcription rate-limiting for mutagenesis? If so, does this fully explain
the mechanistic link between the frequencies of transcription and mutation in E. coli
auxotrophs, p53 exons, and SHM? As demonstrated by Kascer, kinetic models are essential
tools for simulating such complex relationships in vivo in order to answer these fundamental
questions.

6. Correlations between mutation frequencies, base mutability and loops in
SLSs

As shown in Fig. 3A, direct correlations between mutation and transcription frequencies
occur in both prokaryotes, such as a trpA E. coli auxotroph [12,36] and eukaryotes, e.g., the
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p53 tumor suppressor gene, [10,16], and a pre-B cell line [29,30]. In each case, the mutable
bases are located in loops of identified secondary structures, as demonstrated in Fig. 3B and
C for E. coli and p53, respectively. In Fig. 3B, comparisons are made between the stability
(ΔG) of four trpA codons and the location of two mutable Gs in codon 211 of SLS 4.9. Fig.
3C shows that Exon 7 of p53 has two of the most hypermutable codons, 245 and 248, which
are located as shown in SLS 11.1. In the heavy chain variable region VH5 gene (Fig. 3D)
mutable bases have been identified in predicted mutable sites 1–7 in complementarity-
determining regions 1 and 2 (CDR1 and CDR2). The location of four of these sites (3 to 6)
is shown in loops (unpaired regions) in the predominant secondary structure, SLS 14.9.

7. Somatic hypermutation
The mechanisms underlying the immune response in pre-B cell lines are fascinating. A
10,000-fold increase in transcription initiates, and is mechanistically linked to a million-fold
increase in mutation frequency [31], especially during phase 1 of SHM, predicted to follow
B cell activation [40]. Moreover, there is a direct correlation between increasing levels of
transcription and mutation frequency [29,30]. Extremely high frequencies of mutation are
apparently essential for producing the number of variations required to test, change and
coordinate mutations in fitting antibody to antigen. The rate of VH and VL transcription is
negligible in germ-line DNA, but variable-region gene rearrangements close the gap
between enhancers and promoters to increase the rate of transcription by ~10,000-fold.
Polymerase pausing analyses (not shown, but similar to those shown in Fig. 2B and C) of
three different-sized segments of VH5 in the non-transcribed strand have verified the
existence of the two major mfg-predicted 65 nt secondary structures seen in Fig. 4 (SLS
14.9) and (SLS 13.9) [19]. The present model of SHM accounts for all seven mutable sites
in ssDNA loops in the variable region, and 89% of the 2,505 total mutations identified are
accounted for in unpaired bases of SLSs 14.9 and 13.9.

8. Rate-limiting variables for mutagenesis
The intrinsic instability of G and C nucleosides in ssDNA (Table 1), as well as the high
number of G and C silent mutations in all exons of p53 (78.4% Gs and 79.3% Cs), and of
VH framework regions (67.5% Gs and 80.4% Cs) provide compelling evidence for an
intrinsic mechanism of mutability, since the outcome of these mutations does not alter the
encoded amino acid and is not selected. The direct correlation (Fig. 3A) between mutation
and transcription frequencies in an E. coli auxotroph, the hypermutable codons of p53, and
in a pre-B cell line also implicates ssDNA as the essential rate-limiting substrate for
mutagenesis.

Kinetic models shown in Fig. 5A-D help to clarify a key question with respect to liver
cancers induced by genotoxins and involving p53: In liver cancers, is the availability of
unpaired intrinsically mutable Gs in ssDNA rate-limiting for mutation frequency? The
answer is yes! Circumstances in vivo at low “endogenous” levels of transcription are
depicted in Fig. 5A and C, showing that the majority of intrinsic G mutations (74.0 %) are to
A, and that the availability of Gs in ssDNA is rate-limiting for mutation frequency (see Supp
Table 2 of [10]). Fig. 5B and D describe the dual effects of oxyradicals, which both activate
transcription (about 4 fold) and increase G-to-T transversions (to 85.8%), compensated for
by decreases in G-to-A and C mutations (Fig. 5D). Thus, oxyradicals compete for the fate of
rate-limiting G mutations. In other words, since Gs in ssDNA are rate-limiting for mutation
frequency, an increase in G-to-T transversions must be compensated for by decreases in G-
to-A and C mutations [10].

As depicted in Fig. 5E-G, similar compensatory shifts in the fate of rate-limiting Cs occur
during SHM. Fig. 5E models background levels of transcription and shows intrinsic C-to-T
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mutations occurring at a frequency of ~10−9 mutations/base/generation. Foreign antigen
challenge (Fig. 5F) results in a striking increase in transcription frequency, from 10−9 to
10−3 mutations/base/generation, and a roughly million-fold increase in mutation frequency
[31]. The role of activation-induced (cytidine) deaminase (AID) has not yet been entirely
clarified, and we suggest that its activation may in part serve to redirect the fate of mutable
Cs from T to U (Fig. 5G), leading to high frequency enzyme diversification compensated for
by lower rates of intrinsic C-to-T mutations [19].

9. Conclusions and perspective
As demonstrated by the work of Kascer [21], in vivo models can provide conceptual insights
that are not intuitively obvious and help to reveal which variables are, and which are not
rate-controlling, depending upon their “kinetic” position in a metabolic sequence. In
understanding the mechanisms underlying mutagenesis, perhaps the most difficult
conceptual insight that is not intuitively obvious is the intrinsic instability and mutability of
G and C bases (Table 1), and the fact that they are rate-limiting for mutagenesis during
transcription (Fig. 5C and D).

Models created by using our computer program, mfg, have demonstrated predicted value in
the analyses of mutagenesis in microorganisms [12–15,24], and in p53 [10,16], by: (a)
correlations between predicted and experimentally-determined mutation frequencies during
transcription, (b) the predicted effects of transcription, promoter strength and supercoiling
on base mutability, and (c) in vitro analyses that confirm the location of the twelve most
mutable bases in predicted ssDNA loops of secondary structures. The predictive value of our
mfg SHM model [17–19] has also been demonstrated in several ways by: (a) the location of
high mutation frequency bases in mfg-predicted highly exposed unpaired bases, (b) the fact
that unpaired bases in SLS 14.9 are identical to those identified independently in ssDNA
patches during transcription [41], (c) the fact that the great majority of mutations in the non-
transcribed strand occur within loops of predicted high-stability SLSs, (d) the observation
that 89% of the 2,505 mutations reported in SLS sites 1–7 of these regions are predicted by
mfg to occur in identified loops of secondary structures in the encoded CDR, and (e) in vitro
analyses that have verified the existence of SLS 14.9.

Given the proposed model of mutagenesis in E. coli, p53 and SHM, the rate of transcription
plays a dominant role in mutation frequency, and any method of down-regulating the rate of
p53 transcription, for example, to baseline levels under stressful conditions may lower the
incidence of lung or liver cancers.
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Fig. 1.
(A) Analyses of enzymes that are /are not rate-controlling under steady-state conditions in
vivo. Soluble glycogen is in excess and therefore glycogen phosphorylase is flux-
controlling, while two other essential enzymes, ASAase and SYNase, are not rate-
controlling in vivo. (B) Kascer [21] used a simple mathematical model and five Neurospora
mutants that varied in ASAase-specific activity, and also measured the concentrations of
ARG and ASA. He correctly predicted no differences in ARG pool sizes (data not shown) as
well as changes in ASAase-specific activity that resulted in inverse correlations with ASA
concentrations. (C) Examples from both prokaryotes and eukaryotes in which stressors in
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the environment activate related genes, thus increasing the frequency of transcription and
mutations that overcome the stress.
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Fig. 2.
(A) Read out from the mfg computer program highlighting the sequence that is folded in the
top window. Folding data are shown on the lower left (Note: MaxE is synonymous with
ΔG) and the structure generated is shown to the right, exposing the mutable C (arrowed in
red). (B) Selected p53 structures associated with the sequence surrounding “hot spot” codon
175 together with (C) accompanying gels showing cleavage sites from S1 endonuclease
digestions of supercoiled plasmid DNA and pausing sites from T7 DNA polymerase.
Structures reflect folding of the non-transcribed strand, while experimental cleavage and
pausing data were derived from the transcribed strand. Two, 44-nucleotide structures, SLS
8.7 and SLS 4.6, are shown from an mfg analysis of exon 5 (red arrows indicate
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experimentally-determined cleavage sites and blue arrows indicate polymerase pausing sites;
numbers 1–7 correspond to sites in gels below). For both gels, the sequence (transcribed
strand) is indicated on the left, hypermutable bases are circled, and the third position of
codon 175 is underlined. The unnumbered cleavage and pause site arrows correspond to
high-stability structures published elsewhere [10].
Cleavage: An autoradiograph of a denaturing polyacrylamide gel that contains the sequence
in the exon 5 region (ladder), shown juxtaposed to S1 nuclease-digested dsDNA plasmid
fragments using the same primer. Lane 1 is the negative control; lanes 2 and 3 show
reactions using 10U and 20U S1, respectively. Corresponding bases involved in cleavage are
indicated in the sequence in red. Red arrows indicate experimentally determined S1 cleavage
sites, where numbers correspond to loops in structures shown. (Adapted from [10]).
Pausing: An autoradiograph of a denaturing polyacrylamide gel containing the exon 5
ladder, and three time points corresponding to T7 DNA polymerase exposure. Polymerase
pauses are indicated by bands (arrowed blue) and corresponding bases in the sequence are
shown in blue. Arrow numbers correspond to bases of stems in the structures shown above.
(Done as previously described [19], using the primer- 5′-CTAAGAGCAATCAGTG-3′).
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Fig. 3.
(A) Correlations between mutation frequencies and rates of transcription in mutable codons
of trpA, in hypermutable codons of p53, and in a GFP transgene in a pre-B cell line. (B)
Mutants of E. coli trpA auxotrophs located in a loop of SLS 4.9 [12,36]. Mutable codon 211
is highlighted in red to indicate its stability and location in SLS 4.9. (C) Hypermutable
codons in exon 7 of p53 are shown to be exposed in loops of the high-stability SLS 11.1 [10,
16]. (D) During SHM codons are primarily located in the CDRs, and hypermutable codons
3–6 are located in loops of the dominant secondary structure, SLS 14.9 [29,30].
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Fig. 4.
The current model of VH5 in B cells (see Fig. 3D) in which 89% of 2505 mutations in
CDR1 and CDR2 have been found to exist as unpaired bases (shown highlighted in yellow)
in loops of the predominant 65-nt structures of SLS 14.9 and SLS.13.9. The numbers of
mutations [39] are indicated at each yellow base. Mutations occurring in sites 1–7 are shown
in red, while those in lower-stability structures are shown in green. Two mutable bases at the
base of stems are shown in blue.
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Fig. 5.
Kinetic models of the fate of intrinsically mutable Gs in p53 and Cs in SHM. Top Half: (A
and C) The frequency of G mutations in All cancers (at background levels of transcription in
the absence of mutagens) is low, due to the low frequency of transcription in which the
majority of mutations (74.0 percent) are G-to-A (intrinsic) compared with liver cancers. (B
and D) Oxyradicals activate transcription (about 4-fold) as well as G availability, thereby
diverting most of the G mutations (85.8%) from A to T, as depicted in (D). Thus, the relative
rate of G-to-A intrinsic mutations is low. Cancer frequency data were obtained from [38].
Bottom Half: Kinetic models of circumstances resulting in mutation frequencies in VH5
during SHM. (E) Low background frequencies of about 10-9 mutations/base/generation
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resulting in C-to-T intrinsic mutations. (F) The consequences of the ~10,000-fold increase in
transcription frequency in response to antigen challenge targeted primarily at Cs to T in
ssDNA. (G) Predicted events occurring at the peak of Phase 1 of SHM as the result of AID
activation and a switch from high frequency C-to-T mutations to high frequency C-to-U
mutations, leading to enzyme diversification.
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