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Summary
In this article, we first study parameter identifiability in randomized clinical trials with
noncompliance and missing outcomes. We show that under certain conditions the parameters of
interest are identifiable even under different types of completely nonignorable missing data: that
is, the missing mechanism depends on the outcome. We then derive their maximum likelihood and
moment estimators and evaluate their finite-sample properties in simulation studies in terms of
bias, efficiency, and robustness. Our sensitivity analysis shows that the assumed nonignorable
missing-data model has an important impact on the estimated complier average causal effect
(CACE) parameter. Our new method provides some new and useful alternative nonignorable
missing-data models over the existing latent ignorable model, which guarantees parameter
identifiability, for estimating the CACE in a randomized clinical trial with noncompliance and
missing data.
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1. Introduction
Two common problems in clinical trials are noncompliance and missing outcome data.
Noncompliance occurs when some subjects fail to follow their assigned treatments; missing
outcome data occurs when study investigators cannot collect outcome information on some
subjects. Ignoring noncompliance or missing outcome data may result in biased estimates of
causal effects. Moreover, the assumed mechanism of missing data also has an impact on the
estimated causal effects. Many methods have been developed for handling either missing
data or noncompliance, but researchers have only recently started to develop methods for
handling both missing outcome data and noncompliance in the same study (Frangakis and
Rubin, 1999; Yau and Little, 2001; O’Malley and Normand, 2005; Zhou and Li, 2006).
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Frangakis and Rubin (1999) proposed a moment estimator for the complier average causal
effect (CACE) parameter under binary compliance status and a latent ignorable (LI) missing
outcome assumption. The LI assumption means that the missing-data mechanism has no
residual dependence on the outcome, given the observed data and latent compliance class.
Under the same LI assumption, Zhou and Li (2006) derived maximum likelihood (ML)
estimates as well as moment estimates of the CACE when the compliance status is a discrete
variable with three categories and when the outcome variable is binary. O’Malley and
Normand (2005) gave the moment and ML estimators of the CACE for a continuous
outcome variable.

The above-mentioned methods may yield biased estimators of the CACE if the missing-data
mechanism is of a different type of nonignorable missing mechanism from latent
ignorability. The mechanism of missing outcome Y may depend on missing values of Y. For
example, some subjects may drop out of a study because of a patient’s declining health,
which is related to Y given the observed data and latent compliance class. As a motivating
example, consider a study on the effectiveness of influenza vaccine in reducing morbidity in
high-risk adults (McDonald, Hui, and Tierney, 1992). This study began in 1978 and lasted
for 3 years. There were about 2000 patients enrolled in the study. Physicians were randomly
assigned to the treatment group and the control group at the beginning of the study. The
physicians assigned to the treatment group would encourage their eligible patients to get a
flu shot. But the patients themselves decided whether or not to take flu shots. One of the
main outcomes in the study was flu-related hospitalization. Some patients’ outcomes were
not observed, and the reason for missing outcomes may depend on the missing values. For
example, some subjects were missing their outcomes because they had the flu but went to
different hospitals than the study hospital, and as a result their outcomes were not recorded.
Or, some patients were missing their outcomes because the reason for their hospitalization
was unknown. When the missing-data mechanism depends on the outcome, we define this
situation as completely nonignorable (CN). The LI missing-data mechanism assumes that
subjects drop out only because of subjects’ latent compliance status.

Analysis of CN missing data is more difficult than analysis of LI data. One major difficulty
under the CN missing-data mechanism is the issue of parameter identifiability. Here we say
that a parameter vector θ is identifiable by observation of Y if distinct values for θ yield
distinct distributions for Y, that is, if F (y; θ) = F (y; θ′), then θ = θ′, where F is the
distribution of Y (Bickel and Doksum, 1977). When the missing-data mechanism is
nonignorable, some of the parameters may not be identifiable even if the data provide
enough degrees of freedom (Little and Rubin, 2004). Several authors have proposed
methods for dealing with CN. For example, Brown (1990) developed an estimation method
for missing normal outcome variables in longitudinal studies under the CN missing
mechanism. Robins and Rotnitzky (2004) discussed parameter identifiability in randomized
trials with noncompliance. Vansteelandt and Goetghebeur (2005) discussed parameter
identifiability in randomized trials with noncompliance and missing data. However, no
methods are available for dealing with the CN missing-data mechanism and noncompliance
in the same study.

In this article, we fill the gap by first studying identifiability of the model parameters under
the CN assumption. We show that the parameters are identifiable under two different
conditions. The first condition assumes that the missing-data mechanism depends only on
the missing outcome variable. If this assumption does not hold, the parameters are not
identifiable. However, we can show that the parameters are also identifiable if we can find
an observed discrete covariate X before the treatment assignment, which is associated with
Y in each subpopulation of the compliance and treatment level. Then we derive both
moment and ML estimators.
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The article is organized as follows. We describe notation and assumptions in Section 2. In
Section 3, we give the theoretical results on identifiability of the parameters. In Section 4,
we conduct simulation studies to assess the finite-sample properties of the derived
estimators and sensitivity of the proposed estimators to depart from the assumed conditions.
Then we illustrate application of the proposed methods in a real study. We give some
concluding remarks in Section 5. The proofs of theorems are presented in the Web
Appendix.

2. Notation and Assumptions
For the ith patient, we let Zi represent the randomized treatment assignment (1 = new, 0 =
control) with ξ = P (Z i = 1), and let D i (z) be the potential binary treatment variable,
indicating which treatment the ith patient would receive (1 = new treatment received, 0 =
control received) if the patient is assigned to treatment z. We also let Y i (z) denote the
potential binary outcome variable if the ith patient is assigned to treatment z; Y i (z) = 0 if
the patient goes to the hospital due to the flu and Y i (z) = 1 otherwise. Finally, we let Ri (z)
be the binary response indicator of Y i (z), that is, Ri (z) = 1 if Y i (z) is observed and Ri (z)
= 0 if Y i (z) is missing. In our notation, D i (z), Y i (z), and Ri (z) are potential outcomes of
a patient. Finally, we use Z i to denote the observed treatment assignment of the patient, and
D i = D i (Z i), Y i = Y i (Z i), and Ri = Ri (Z i) denote observed treatment actually received,
the observed outcome, and the observed response indicator of the patient.

Following Imbens and Rubin (1997), we let U i be the compliance status of the ith patient,
defined as follows:

where c, n, a, and d represent complier, never-taker, always-taker, and defier, respectively.
Here U i is an unobserved variable, representing the compliance behavior pattern of the
patient. Let ω u = P (U i = u). We assume P (ωc) > 0 throughout this manuscript. For
simplicity, we also denote ρyzu = P (Ri = 1 | Y i = y, Z i = z, U i = u) and θyzu = P (Y i = y |
Z i = z, U i = u). As in Imbens and Rubin (1997) and Frangakis and Rubin (1999), in this
article we consider CACE as the parameter of interest, defined as CACE = E{Y i (1) − Y i
(0) | U i = c}.

Because the joint distribution of the potential outcomes Y i (z), Ri (z), and U i conditional on
Z = z can be expressed as a function of the parameters ωu, ρyzu, and θyzu, the causal effects
are identifiable if we can show that these parameters are identifiable. Next, we give the
necessary assumptions to make these parameters identifiable under the CN missing
mechanism.

Assumption 1 Stable unit treatment value assumption (SUTVA) (Angrist, Imbens,
and Rubin, 1996; Imbens and Rubin, 1997).

SUTVA implies that potential outcomes do not depend on the treatment status of other
individuals.

Assumption 2 Randomization: Z is randomized.

We can express the CACE as CACE = θ11c− θ10c under the randomization assumption.
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Assumption 3 Monotonicity: D i (1) ≥ D i (0) for all subjects, which implies there are
no defiers.

Assumption 4 Exclusion restrictions among never-takers and always-takers (Angrist
et al., 1996): P {Y i (1) | U i = n} = P {Y i (0) | U i = n}, and P {Y i (1)
| U i = a} = P {Y i (0) | U i = a}.

Under randomization, the exclusion restriction implies that P (Y i | Z i = 1, U i = n) = P (Y i |
Z i = 0, U i = n), and P (Y i | Z i = 1, U i = a) = P (Y i | Z i = 0, U i = a); that is, θ11n = θ10n
and θ11a = θ10a. In some studies, such as those with double blinding, exclusion restrictions
are reasonable.

Assumption 5 Compound exclusion restrictions among never-takers and always-
takers (Frangakis and Rubin, 1999): P {Y i (1), Ri (1) | U i = n} = P
{Y i (0), Ri (0) | U i = n}, and P {Y i (1), Ri (1) | U i = a} = P {Y i (0),
Ri (0) | U i = a}.

Assumption 5 is stronger than Assumption 4. Besides having the same implications as
Assumption 4, Assumption 5 also implies P (R | Z = 1, U = n) = P (R | Z = 0, U = n) and P
(R | Z = 1, U = a) = P (R | Z = 0, U = a). Assumption 4 instead of Assumption 5 is required
in our Theorems 1 and 2, where the missing-data mechanism does not depend on latent
compliance status variable U (Assumptions 6 and 7). However, Assumption 5 is required in
Theorem 3 where the missing-data mechanism depends on both missing outcomes and U
(Assumption 8).

3. Identifiability and Estimation
In this section, we discuss additional conditions needed to identify the causal parameters
under the CN assumption and then propose moment and ML estimators of the causal effects.
Intuition behind how identification of parameters is achieved is related to the idea of
instrumental variables. As we know, if there are no missing outcomes, causal parameters are
identifiable under the standard Assumptions 1 to 4 of an instrumental variable, as shown in
Angrist et al. (1996). When the missing-data mechanism depends only on outcomes, under
Assumptions 1 to 4 and the additional Assumption 6, U and Z can be considered as
instrumental variables, and the causal parameters are still identifiable. In Section 3.1, we
consider a missing-data mechanism model in which the mechanism of missing outcome Y
depends only on the outcome Y itself; that is, only the outcome Y has an effect on R. Under
this assumption we provide a sufficient condition on parameter identifiability in Theorem 1.
Without any other assumptions on the missing-data mechanism, only this model and LI
model can be identified.

When the missing-data mechanism depends on more variables, an additional instrumental
variable is required to identify parameters. If the missing-data mechanism depends on not
only Y but also the treatment assignment Z, we can still identify the parameters in this
model when we have one additional covariate X that can affect the outcome Y but does not
depend on the other variables D and Z in the study. This model is more general than the first
missing-data model. Here X and U are used as instrumental variables for finding the effect
of Y on R. In Section 3.2, we present the results under this more general model. In Section
3.3, we extend our identifiability results to a discrete outcome with more than two
categories.

3.1 Identifiability without Covariate
We consider a CN mechanism that satisfies the following assumption:
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Assumption 6 P {Ri (z) | Y i (z), D i (z), U = u} = P {Ri (z) | Y i (z)} for z = 0 and 1,
and P {Ri (1) | Y i (1) = y} = P {Ri (0) | Y i (0) = y}.

When Z is randomized, the first equality implies P (R | Y, D, U = u, Z) = P (R | Y, Z), and
the second equality implies P (R | Y, Z = 1) = P (R | Y, Z = 0), so Assumption 6 implies
ρy z u = ρy z′ u′ for any z ≠ z′ or u ≠ u′, which means that R is independent of (Z, U, D),
given Y.

Before studying parameter identifiability, we compare Assumption 6 with the LI
assumption. The LI assumption requires that potential outcomes and associated potential
non-response indicators are independent within each level of the latent compliance covariate
(Frangakis and Rubin, 1999), that is, P {R(1) | U, Y (1)} = P {R(1) | U } and P {R(0) | U, Y
(0)} = P {R(0) | U }. The LI assumption means that patients drop out because of their latent
compliance class. Yet Assumption 6 means that patients may drop out because of worsening
disease, which is related to the outcome. For example, they may drop out when they feel
worse after taking the assigned drugs. In our study, Y measures the hospitalization status of
a subject, and the reason for missing Y of a subject may be due only to her/his
hospitalization status. So whether patients drop out of the trial is determined by their
outcomes, not by other inherent and invariable subject characteristics. These two
assumptions are so different that a wrong assumption will have a serious impact on
estimation of CACE. We will see this point in our simulations.

The next theorem shows that the parameters are all identifiable under Assumption 6. For
simplicity, we denote ρy = ρyzu and δyzu = P (Y i = y, Ri = 1 | Z i = z, U i = u). Under
Assumption 6, the vector of parameters is θ = (ξ, ωa, ωn, θ10a, θ11n, θ11c, θ10c, ρ0, ρ1).

Theorem 1—If Y is not independent of Z given U or if Y is not independent of U given Z,
then under Assumptions 1–4 and Assumption 6, the vector of parameters, θ, is identifiable.

We give a detailed proof of this theorem in the Web Appendix. It is worthwhile to note that
if Y is independent of Z given U and is also independent of U given Z, we cannot identify
all of the parameters. However, from θ10a = θ11n = θ11c = θ10c, we can get CACE = θ11c −
θ10c = 0, which means that the treatment has no causal effect on the outcome.

After we have shown identifiability of θ, we can derive the moment and ML estimators of θ.
Let N yrzd be the observed number of patients with Y = y, R = r, Z = z, D = d. The observed
data, N y 1z d (for y, z, d = 0, 1) and N +0z d (for z, d = 0, 1), can be considered as arising
from a multinomial distribution with corresponding cell probabilities, ν y 1z d and ν+0z d,
where N+0z d = Σy Ny 0z d denotes an observed frequency with y’s value missing, νy 1z d = P
(Y = y, R = 1, Z = z, D = d), and ν+0z d = P (R = 0, Z = z, D = d). Then the moment

estimator of CACE is . In addition, we can show that  has an
asymptotically normal distribution using the central limit theorem and the multivariate delta
method. Because the moment estimates may be outside of the parameter space in practice
(Zhou and Li, 2006), we propose the expectation–maximization algorithm to find ML
estimates in this article. In Theorem 1 the complete-data likelihood function is given as

 the E-step, we take the expectation of
the complete data, given the observed data and the previous parameter estimate θ = θ(k), that

is . In the M-step, we can get the ML estimates θ(k +1)

from . More details of our expectation–maximization algorithm are given in the Web
Appendix.
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3.2 Identifiability with a Covariate
In some clinical trials, there are good reasons to believe that the missing-data mechanism is
also affected by the treatment assignment, not just the outcome, because the occurrence of
side effects differs between treatment arms. In some clinical trials, a direct effect of the
treatment assignment on the missing-data mechanism is essentially implied by the study
design. For example, when patients in the treatment group experience severe side effects,
they are removed from further study. Therefore, the response indicator of the outcome, R,
depends not only on the outcome Y itself but also on other variables. The parameter vector θ
is not identifiable under only Assumptions 3, 4, and 6 without further assumptions. In this
case, we can introduce an additional covariate X so that Z is independent of X and U.
Suppose that X is associated with Y in each subpopulation of U = u and Z = z (that is, P (y |
x, z, u) ≠ P (y | z, u) for some x and for all u and z) such that the parameter vector θ becomes
identifiable. For example, in some clinical trials it may be reasonable to assume that patient
age is associated with Y in each subpopulation. Here we assume that x is discrete. Then the
following theorem shows that the parameters are identifiable. Let αxu = P (X = x, U = u),
ρyzux = P (R = 1 | Y = y, Z = z, U = u, X = x), and θyzux = P (Y = y | Z = z, U = u, X = x). To
emphasize the dependence of the causal effect parameter on covariates, we write CACE as
CACEcova, which is defined as follows:

With the availability of this covariate X, we can replace Assumption 6 by the following
assumption.

Assumption 7 For z = 0 and 1,

(1)

Assumption 7 means that the missing-data mechanism depends on both the outcome Y and
the assigned treatment Z. To identify the parameters under Assumption 7, we introduce an
observed covariate X as an additional instrumental variable in Theorem 2.

When the treatment assignment Z is randomized, we have from equation (1) that ρy z u x =
ρy z u′ x′ for any u ≠ u′ or x ≠ x′, and thus we can simply denote ρyzux as ρy z. The vector of
parameters, θ, is denoted as θ = (ξ, ωa, ωn, αx a, αx n, αx c, θ10a x, θ11n x, θ11c x, θ10c x, ρ00,
ρ01, ρ10, ρ11).

Theorem 2—Suppose that X is an observed discrete covariate that depends on Y in each
subpopulation of U = u and Z = z. Then under Assumptions 1–4 and Assumption 7, the
vector of parameters, θ, is identifiable.

We give a proof of Theorem 2 in the Web Appendix. Under the model in Theorem 2, we can

obtain the estimate of CACE as .

Note that in Theorems 1 and 2 we make only the exclusion restriction assumption, which is
weaker than the compound exclusion restriction assumption made in Frangakis and Rubin
(1999). If we also make the stronger compound exclusion assumption, we can further relax
Assumption 7 to allow the missing-data mechanism to depend on both the missing outcomes
and latent compliance status variable.
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Assumption 8 For z = 0 and 1,

(2)

This assumption assumes that the missing-data mechanism depends on Y, Z, and U. When
the treatment assignment Z is randomized, using equation (2) we obtain that ρy z u x =
ρy z u x′ for any x ≠ x′, and thus we can simply denote ρyzux as ρyzu. Because the compound
exclusion assumption (Assumption 5) holds, we have that ρy 0n = ρy 1n and ρy 0a = ρy 1a.
Hence, the vector of parameters, θ, is

Theorem 3—Suppose that X is an observed discrete covariate that depends on Y in each
subpopulation of U = u and Z = z. Then under Assumptions 1–3, 5, and 8, the parameters in
θ are identifiable.

The difference between the models in Theorems 2 and 3 is in their missing-data
mechanisms. For the model in Theorem 3, R depends on Y(Z), Z, and U, whereas R depends
only on Y(Z) and Z in the model of Theorem 2. For the model of Theorem 3, we can obtain

the estimate of CACE as .

3.3 Extension to Multilevel Outcomes
In this subsection we generalize Theorems 1, 2, and 3 to a multilevel outcome. Let Y be a K-
level discrete variable, where Y = 0, …, K − 1, and let the covariate X be a J− valued
variable, i.e., X ∈ {0, 1, …, J − 1}. Because the proofs of the corollaries are similar to
Theorems 1–3 below, we omit the proofs for simplicity.

Corollary 1—If Y has fewer levels than five, that is K < 5, and the rank of the 4 × K
matrix,

is equal to K, then the result of Theorem 1 holds.

Note if K > 4, the model of Theorem 1 cannot be identified without additional assumptions,
because the number of degrees of freedom in the observed data is 4K + 3, which is smaller
than the number of parameters 5K −1.

Corollary 2—Let us define the following J × K matrices:
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(3)

where u = n, a, c, and z = 0, 1.

1. When J ≥ K, if the ranks of the two J × K matrices,  and , are equal to K,
then the result of Theorem 2 holds.

2. When J ≥ K, if the ranks of the four J × K matrices, , and ,
are all equal to K, then the result of Theorem 3 holds.

4. Simulation Studies and Application
In our simulation studies, we first assessed the relative performance of the moment and ML
estimators in finite-sample sizes when the assumptions were correct. We then assessed the
sensitivity of the derived moment and ML estimators when some of the assumptions were
violated.

In the first simulation study, we generated 1000 samples, each of which had a sample size of
N = 500, under the model with a covariate as specified in Theorem 2. The percentage of
missing data was 0.5445. We computed the moment and ML estimates of the parameters for
every sample, their means, standard deviations, and actual coverage percentages of 95%
confidence intervals. The results are reported in Table 1. We used the bootstrap to estimate
the standard deviation. Because the moment and ML estimators have an asymptotically
normal distribution, we computed the confidence intervals based on the normal assumption.
We also generated data under the missing-data models given in Theorems 1 and 3. Because
the results were similar to those for Theorem 2, we report only the results on the missing-
data model with a covariate in Theorem 2 for simplicity. From Table 1, we saw that except
for ξ, ωn, and ωa, the ML estimators performed better than the moment estimators. In
addition, for half of the samples the moment estimates were not proper (meaning that at least
one of the estimates for the sample was outside of the corresponding parameter’s range).
Hence we would recommend the ML estimates over the moment estimates.

Next we conducted a sensitivity analysis of the proposed estimators between the LI
assumption and CN assumption. We assumed that the true model satisfied the CN
assumption described in Theorem 1, but we estimated the CACE under the incorrect LI
assumption. Thus, the true CACEtrue was θ11c− θ10c, and the estimated CACEestimated was

. Let bias = |CACEestimated – CACEtrue|. We maximized bias over
all values from 0.0 to 1.0 by step 0.01 of θ 11c, θ 10c, ρ 1, and ρ 0. The results are reported in
Figure 1. Each curve in Figure 1 represents a fixed CACE value, which was set to be 0.05,
0.1, 0.15, 0.2, and 0.25, respectively. For each of the five true CACEtrue values, we plotted a
curve to represent the relationship between the maximum bias of CACE estimates and a real
parameter | P (R = 1 | Y = 1) − P (R = 1 | Y = 0) | in Figure 1. Here, | P (R = 1 | Y = 1) − P (R
= 1 | Y = 0) | could be interpreted as a measure of the departure of the assumed LI model
from the true CN model. The larger | P (R = 1 | Y = 1) − P (R = 1 | Y = 0) | was, the further
away the assumed LI model was from the true CN model. From Figure 1, we saw that the
further away the assumed LI model was from the true CN model, the bigger the bias of the
CACE estimates obtained under the wrong LI model. From Figure 1, we also saw that the
bias of the estimated CACE would depend on the value of the true CACE. In general, the
larger the true CACE, the bigger the bias of the estimated CACE. As the true CACE
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decreased, the bias of the estimated CACE also decreased, and as the CACE value tended to
zero, the difference between the estimates of the CACE under the CN and LI models also
tended to zero.

In Figure 2, we assumed that the true missing-data mechanism model was the LI model, but
we used the incorrect CN model to estimate the CACE. Thus the true CACEtrue was θ11c−

θ10c and the estimated CACEestimated was , where γz u =
P(R = 1 | Z = z, U = u). The bias was still denoted as bias = |CACEestimated – CACEtrue|. We
maximized bias over all values from 0.0 to 1.0 (in steps of 0.01) of θ11c, θ10c, θ11n, θ10a,
ρ1n, ρ0a, ρ1c, and ρ0c. We also found that the maximum bias of the estimated CACE
increased as the value of the true CACE increased. Thus, the estimator of CACE was
sensitive to the model for the missing-data mechanism. The estimator of the CACE obtained
from the LI model was biased if the true missing-data mechanism was the CN model, and
vice versa. On the other hand, if the value of CACE tended to zero, the maximum bias
tended to zero regardless of whether the true missing-data mechanism model was the CN
model or the LI model. Here the estimate of CACE under the LI assumption was given by
Zhou and Li (2006), and the estimate of CACE under the CN assumption was given by
Theorem 1 in this article.

We also compared our method with the method in which subjects with missing data were
discarded. We generated 1000 samples with sample size N = 3000 under the model of
Theorem 1. In Table 2, we reported means and standard errors of estimates of CACE,
derived using our method and the method of discarding subjects with missing data. We fixed
ρ 0 = 0.1 and let ρ1 vary from 0.2 to 0.9 whereas the other parameters were fixed at ξ = 0.5,
ωn = 0.2, ωa = 0.3, θ10a = 0.6, θ11n = 0.3, θ11c = 0.8, and θ10c = 0.2. From Table 2, we saw
that the bias of CACE estimates obtained by discarding subjects with missing data increased
as |ρ1 − ρ0| increased, whereas the estimates obtained by our method were very close to the
true CACE regardless of the value of |ρ1 − ρ0|.

We applied our method to the flu shot data in Zhou and Li (2006). We assumed that the CN
missing-data mechanism satisfied Assumption 6. The observed data and the results are
reported in Table 3. Because the moment estimates might not be proper, we only summarize
the ML method. From the table, ρ̂0 = 1 and the estimated standard deviation was equal to
zero. This result means that all patients who were hospitalized must be observed.

The estimated CACE and its 95% confidence interval were −0.1393 and (−0.4808, 0.2022),
respectively. For comparison purposes, we listed the estimated CACE and its 95%
confidence interval from Zhou and Li (2006) under the LI assumption. Under latent
ignorability, the estimated CACE was −0.009, and the associated 95% confidence interval of
CACE was (−0.211, 0.229). Both methods reached the same conclusion that influenza
vaccination was not associated with reduced risk of hospitalization for respiratory illness.

There were several limitations related to these results. First, we ignored clustering effects in
the data, which might lead to violation of the SUTVA assumption. Second, because the
study was not double blind, the exclusion restriction assumption might be questionable,
particularly among the always-takers, who were probably at high risk for flu and, as a result,
might receive other interventions besides flu shots when their physicians received a
reminder about flu shots.

5. Conclusions
Under an ignorable missing-data mechanism, we could derive valid ML estimates without
modeling the missing-data mechanism. Hence, if enough information is available about the

Chen et al. Page 9

Biometrics. Author manuscript; available in PMC 2013 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



missing-data mechanism, the ignorability assumption can be made to hold. However, in
many studies, such as our flu shot study, not enough information about the missing-data
mechanism was available to make the ignorable assumption hold. Moreover, our simulation
results showed that the estimates of the CACE were biased when the assumed ignorable
missing mechanism was wrong. So, it is worthwhile to explore estimation methods under the
nonignorable missing mechanism assumption.

In this article, we discussed the problem of noncompliance and nonignorable missing
outcome mechanism. One major problem in dealing with nonignorable missing data is the
issue of parameter identifiability. We gave sufficient conditions for identifying causal effect
parameters under the CN missing-data mechanism, which was one type of nonignorable
missing-data mechanism and was different from the existing LI assumption. Under the CN
missing-data mechanism, we gave a theorem on parameter identification when the missing-
data mechanism depended only on outcomes. With the availability of a certain type of
covariate, we allowed the missing-data mechanism to depend on not only the missing
outcome variable but also the treatment assignment Z and the latent compliance status
variable U. From the simulation results, we concluded that the estimate of CACE was
sensitive to the missing-data mechanism assumption. Thus, we should pay attention to the
missing-data mechanism operating in a given research context. It is still an open problem as
to how to test which of the two nonignorable missing-data mechanisms, CN or LI, holds.
However, when the true CACE value was zero, from the simulation results, we concluded
that the CACE estimate was not sensitive to which of the two nonignorable missing-data
mechanism assumptions was true.

It is worth pointing out that the validity of our method requires finding a discrete covariate
X that satisfies the assumptions in our models. It may not be easy to find such covariates in
practice. Arguably, this is a problem that needs to be answered on a case-by-case basis.

Another problem in practice is whether it is of interest to explicitly ignore information on
the missingness process when such information is available, because we do not need other
covariates apart from X under our models. We suggest collecting this information, except
when we know the missingness process and such a covariate X before we collect the data.
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Figure 1.
Real model: CN; supposed model: LI.
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Figure 2.
Real model: LI; supposed model: CN.
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Table 2

Sensitivity analysis of CN and the method of ignoring incompletely observed subjects. Covariate X is binary
and N = 3000. The true value of CACE is 0.6.

CACE CACEignor

Value of ρ1 Mean Std. dev. Mean Std. dev.

ρ1 = 0.2 0.5923 0.0891 0.5621 0.0867

ρ1 = 0.3 0.5992 0.0795 0.5018 0.0715

ρ1 = 0.4 0.5977 0.0754 0.4474 0.0611

ρ1 = 0.5 0.6001 0.0695 0.3983 0.0547

ρ1 = 0.6 0.5987 0.0663 0.3595 0.0490

ρ1 = 0.7 0.5947 0.0636 0.3239 0.0455

ρ1 = 0.8 0.5965 0.0631 0.2998 0.0410

ρ1 = 0.9 0.6017 0.0545 0.2757 0.0376
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Table 3

Application to the flu shot data

Flu shot data (Zhou and Li, 2006)

Z = 0, D = 0 Z = 0, D = 1 Z = 1, D = 0 Z = 1, D = 1

R = 1 Y = 0 573 143 499 256

R = 1 Y = 1 49 16 47 20

R = 0 Y = ? 492 17 497 9

ML estimates of flu shot data

Parameters MLE Std dev. (bootstrap) 95% CI

ξ 0.5065 0.0097 (0.4874, 0.5255)

ωn 0.7839 0.0108 (0.7627, 0.8051)

ωa 0.1348 0.0091 (0.1170, 0.1525)

θ10a 0.1757 0.0234 (0.1300, 0.2215)

θ11n 0.5216 0.0143 (0.4936, 0.5495)

θ11c 1.379e-016 0.0268 (0.0000, 0.0526)

θ10c 0.1393 0.1722 (0.0000, 0.4768)

ρ0 1.0000 0.0000 (1.0000, 1.0000)

ρ1 0.1151 0.0095 (0.0965, 0.1337)

CACE −0.1393 0.1743 (−0.4808, 0.2022)
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