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Population heterogeneity is ubiquitous in social science. The very
objective of social science research is not to discover abstract and
universal laws but to understand population heterogeneity. Due to
population heterogeneity, causal inference with observational data
in social science is impossible without strong assumptions. Research-
ers have long been concerned with two potential sources of bias.
The first is bias in unobserved pretreatment factors affecting the
outcome even in the absence of treatment. The second is bias due to
heterogeneity in treatment effects. In this article, I show how “com-
position bias” due to population heterogeneity evolves over time
when treatment propensity is systematically associatedwith hetero-
geneous treatment effects. A form of selection bias, composition
bias, arises dynamically at the aggregate level even when the classic
assumption of ignorability holds true at the microlevel.

Two philosophical views have dominated the practice of science.
In the classic view, firmly established by Plato and still well

represented in physical science today, scientific discoveries consist
of abstract knowledge about observed phenomena that essentially
share the same properties. Plato (1) separated the “world of be-
ing” (or the world of forms) from the “world of becoming” (or the
world of things). The world of being is where true knowledge
resides. The world of becoming is what we actually observe in real
life. An alternative view, first developed by Charles Darwin and
now well represented in social science, holds that members of
a population are inherently different from each other and should
be studied as such. Ernst Mayr (2) called the first view “typological
thinking” and the second view “population thinking.”
Typological thinking has had enormous influence on physical

science and remains, arguably, the dominant view of what con-
stitutes scientific truths. According to typological thinking, science
should focus on the discovery of universally valid and unchanging
laws. Toward this end, scientists should extract abstract but con-
ceptually homogeneous relationships in the universe by eliminat-
ing the influences of extraneous, confounding factors, with the
objective being to obtain knowledge that would be valid anywhere
in the universe. A strong assumption that has worked well in
natural science is homogeneity: Once we obtain knowledge about
a type of phenomenon, we can generalize the knowledge to in-
dividual, concrete cases. Observed variation in the real world is
treated as apparent, and thus insignificant. Aided by measurement
theory, this view culminated in Adolphe Quételet’s “social phys-
ics,” which naively essentialized population averages, in the form
of the “average man,” as the main objective of social science (3, 4).
It was Charles Darwin who first challenged typological

thinking in a fundamental way (2). In fact, the proposition that
individual variability is real rather than apparent is essential to
Darwin’s theory of evolution by natural selection (5). Deviations
from the average in a population were no longer considered
scientifically trivial, as in typological thinking, but were seen as
the very basis of evolution. The importance of variation was
later introduced to social science by Francis Galton. Galton
departed from the typological tradition by concerning himself
with “how the quality is distributed” (ref. 6, pp. 35–36). A his-
torian of science characterizes Galton as someone to whom
“Individual differences. . .were almost the only thing of interest”
(ref. 7, p. 221).

Population thinking pioneered by Darwin and Galton led to
the emergence of a new kind of science: population science.
Instead of discovering universal laws, a population science is
concerned with the understanding of what Jerzy Neyman defined
as a population, “categories of entities satisfying certain defi-
nitions but varying in their individual properties” (ref. 8, p. 96).
Note that in a population science, the scientist no longer assumes
that all concrete units in a population are essentially the same, or
homogeneous. Rather, it is explicitly recognized that units of
analysis in a population are different from one another, or het-
erogeneous. In my view, most social science disciplines, including
economics, demography, psychology, sociology, political science,
and anthropology, are population sciences in that they cannot
afford to discard individual-level variation as a mere nuisance or
measurement error by assuming that all units of analysis are
essentially the same. The recognition of inherent individual-level
heterogeneity has important consequences for research practi-
ces. For example, because units of analysis in a population all
differ from one another, scientific (or random) sampling is im-
portant to ensure representativeness of a well-defined pop-
ulation. In this article, I will draw from a large existing literature
to illustrate some implications of this heterogeneity for causal
inference (9–13).

1. Causal Inference Under Population Thinking
Suppose that a whole population,U, is being studied. Let Y denote
an outcome variable of interest that is a real-valued function for
each member of U, and let D denote a dichotomous treatment
variable (with its realized value being d) with D = 1 if a member is
treated and D = 0 if a member is not treated. For clarity, let
subscript i represent the ith member in U. We further denote y1i as
the ith member’s potential outcome if treated (i.e., when di = 1)
and y0i as the ith member’s potential outcome if untreated (i.e.,
when di = 0). Due to the ever-present population heterogeneity,
we should conceptualize a treatment effect as the difference in
potential outcomes associated with different treatment states for
the same member in U:

δi = y1i − y0i ; [1]

where δi represents the hypothetical treatment effect for the ith
member. The fundamental problem of causal inference is that
for a given unit i, we observe either y1i (if di = 1) or y0i (if di = 0)
but not both (10). Holland (10) describes two possible solutions:
the “scientific solution” and the “statistical solution.”
Based on typological thinking, the scientific solution capitalizes

on homogeneity in assuming that all members in U are exactly the
same: y1i = y1j and y0i = y0j , where j ≠ i are different members in U.
This strong assumption would allow the researcher to identify
individual-level treatment effects. Indeed, one would need as few
as two cases in U (say, i and j with different treatment conditions)
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to reveal treatments effects for all members in the entire pop-
ulation, because the following would hold true:

δ = y1i − y0i = y1j − y0j = y1i − y0j ; [2]

for any j ≠ i, where we drop the subscript of δ because it does
not vary. However, heterogeneity is the rule rather than the
exception in social science. Thus, the scientific solution under
the homogeneity assumption (Eq. 2) is of no practical value in
social science.
In social science, the ubiquity of population heterogeneity dic-

tates the statistical solution as a necessity. One limitation of the
statistical approach is that we can compute quantities of interest
about causal effects only at an aggregate level. However, when we
estimate aggregate-level quantities of interest, we overlook within-
group, individual-level heterogeneity. Here, I hasten to distinguish
between inattention to within-group heterogeneity and the as-
sumption of within-group homogeneity. I do not believe that we
can ever assume within-group homogeneity in social science, but
we may choose not to analyze (say, by averaging over) within-
group, individual-level heterogeneity in a research setting for
practical reasons.
We have now come full circle. We began with the realization

that social science takes the view of population thinking, and
thus should consider individual-level variability. However, the
ubiquitous presence of individual-level variability makes it im-
possible to study individual-level causal effects. To draw a causal
inference, it is necessary to pool information from different
members in a population into aggregates. This constant tension
between the ontological reality of heterogeneity on the one hand
and the epistemological need for inattention to heterogeneity on
the other hand is the hallmark of empirical social science. Hence,
I propose the following fundamental paradox in social science:
Whereas there is always variability at the individual level, causal
inference always requires statistical analysis at an aggregate level
overlooking individual-level variability.
A common quantity of interest is the average difference between

a set of members in U who were randomly selected for treatment
and another set of members who were randomly selected for
control. Because this quantity is equivalent to the average effect of
treatment over the entire population, it is called the average
treatment effect (ATE):

ATE=E
�
Y 1 −Y 0� ; [3]

where E(.) is the expectation operator over the whole popula-
tion U.
Quantities of interest in the statistical approach can also be

defined for other groups (or subpopulations), as long as they are
well defined. For example, treatment effect of the treated (TT)
refers to the average difference in Y between treatment and
control among those individuals who are actually treated:

TT =E
�
Y 1 −Y 0jD= 1

�
: [4]

Analogously, treatment effect of the untreated (TUT) refers to
the average difference by treatment status among those indi-
viduals who are not treated:

TUT =E
�
Y 1 −Y 0

��D= 0
�
: [5]

Estimation of these quantities is a nontrivial matter. Let us
partition the total population U into the subpopulation of the
treated U1 (for which D = 1) and the subpopulation of the un-
treated U0 (for which D = 0). Selection bias arises if:

E
�
Y 1

��D= 1
�
≠E

�
Y 1jD= 0

�
≠E

�
Y 1� [6]

and

E
�
Y 0

��D= 1
�
≠E

�
Y 0

��D= 0
�
≠E

�
Y 0�: [7]

Observed data allow the researcher to estimate EðY 1jD= 1Þ−
EðY 0jD= 0Þ, which, however, differs from ATE. Let p be the
proportion treated (i.e., the proportion of cases in which D = 1)
and q be the proportion untreated (i.e., the proportion of cases
in which D = 0).
Using the iterative expectation rule, we can decompose ATE

as follows:

ATE=E
�
Y 1 −Y 0�

=E
�
Y 1 −Y 0

��D= 1
�
p+E

�
Y 1 −Y 0

��D= 0
�
q

=E
�
Y 1

��D= 1
�
−E

�
Y 0

��D= 0
�
−
�
E
�
Y 0

��D= 1
�

−E
�
Y 0

��D= 0
��

−
�
TT −TUT

�
q; [8]

where TT and TUT were previously defined in Eqs. 4 and 5.
Thus, as has long been known (14), Eq. 8 reveals two potential
sources of bias for using the naive estimator EðY 1 jD= 1Þ−
EðY 0 jD= 0Þ for ATE.
The average difference between the treatment and control

groups in outcomes if neither group receives the treatment is
EðY 0 jD= 1Þ−EðY 0jD= 0Þ. I call this the “pretreatment hetero-
geneity bias” or “type I selection bias.”
The difference in the ATE between the treatment and control

groups ðTT −TUTÞ, is weighted by the proportion untreated, q.
The weight of q results from our choice to define pretreatment
heterogeneity bias for the untreated state. I call this the “treat-
ment-effect heterogeneity bias” or “type II selection bias.”
Type I selection bias occurs if subjects are systematically dif-

ferent in relevant but unobserved pretreatment attributes be-
tween the treatment and control groups. Type II selection bias
occurs when treatment effect is correlated with treatment status.
When TT −TUT > 0, there is a sorting gain, so that the ATE for
the treated is greater than the ATE for the untreated. Con-
versely, if TT −TUT < 0, there is a sorting loss. The fixed effects
method widely used in social science is designed to eliminate
type I selection bias by differencing out unobserved, fixed at-
tributes common between a treated and control matched pair.
However, the method is powerless regarding type II selection
bias because it requires the assumption that treatment effect is
the same between a treated unit and its control unit, resulting in
TT =TUT. Type II selection bias does not exist if the research
interest centers on the TT.

2. Random Assignment, Ignorability, and Propensity Score
Social scientists study causal effects through either experimental
or observational data. An experiment eliminates both sources of
selection bias by random assignments: A unit in U receives either
the treatment or control condition by chance only. Let k denote
independence. Random assignment ensures:

�
Y 1;Y 0� k D; [9]

so that we can easily compute ATE, TT, and TUT as:

ATE=TT =TUT =E
�
Y 1jD= 1

�
−E

�
Y 0 jD= 0

�
:

In social science research, experimental studies are rare and
usually conducted at a local level. Generalizing experimental
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results at a local level to quantities of interest at the population
level requires additional assumptions (15). Even when assign-
ment into experimental conditions is random, subjects’ compli-
ance with assignments may not be random. In other situations,
often called “natural experiments,” it may be assumed that some
factors that affect treatment conditions may be random and ex-
traneous, although treatment conditions may not be independent
with respect to potential outcomes. This approach is called “in-
strumental variable (IV) estimation.” For a variable to qualify as
an IV, it must meet the exclusion restriction assumption: It
affects the likelihood of treatment condition (D) but affects the
substantive outcome variable (Y) only indirectly via the treat-
ment status (D) (11, 15–18). One limitation of the approach is
that if treatment effects are heterogeneous, IV only identifies
the average effect of a narrowly defined subpopulation that is
induced into treatment by the IV (17, 18).
Another common approach is to use observational data. The

basic idea is to collect rich data measuring population hetero-
geneity, called covariates, that pertain to potential systematic
differences between the treatment and control groups in either
the baseline level or the treatment effect. Because only cova-
riates that affect both the treatment assignment and the out-
come can cause biases to the observed relationship between
treatment and outcome, the researcher hopes that he/she can
adequately control for all covariates that simultaneously affect
the treatment assignment and the outcome. After controlling
for the covariates, the researcher hopes that treatment status
will be independent of potential outcomes. This conditional in-
dependence assumption is called “ignorability,” “unconfounded-
ness,” or “selection on observables.” Let X denote a vector of
observed covariates. The ignorability assumption states:

�
Y 1;Y 0� k DjX : [10]

Comparison of Eqs. 9 and 10 highlights the crucial role of
covariates X. Note that the ignorability condition is always an
unverifiable assumption. The plausibility of the ignorability as-
sumption depends on how rich the covariates are, and thus is
a substantive issue in actual research rather than a methodolog-
ical question that can be debated in general. Typically, the re-
searcher may tentatively consider the ignorability assumption
and then assess its plausibility in a concrete setting through
sensitivity or auxiliary analyses (19, 20).
Conditioning on X can be difficult in applied research if it is of

high dimension. However, under the ignorability assumption, it is
sufficient to condition on the propensity score as a function of X
(21, 22):

�
Y 1;Y 0� k DjPðD= 1jXÞ; [11]

where PðD= 1jXÞ denotes the propensity score of treatment
given X. In practice, the propensity score is unknown and can
be estimated from observed data. The propensity score serves to
balance out the distribution of observed covariates X between the
treatment group and the control group within a given level of the
propensity score. Given this function, what matters is the relative
magnitudes of propensity scores associated with different values
of covariates X. For this reason, it is legitimate to use response-
based samples in constructing propensity scores (23–25).
The result of Eq. 11 states that under ignorability, there is no

bias after controlling for the propensity score. Given our earlier
discussion stating that bias can manifest in two types, this is tan-
tamount to two “no-bias” conditions: There is neither type I nor
type II selection bias, conditional on p(X) (26). Thus, we have:

E
�
Y 1 −Y 0jpðXÞ�=E

�
Y 1jD= 1; pðXÞ�−E

�
Y 0

��D= 0; p
�
X
��
: [12]

3. Composition Bias
In this article, I show that “composition bias,” a type of selection
bias, arises through dynamic processes when treatment pro-
pensity is systematically associated with heterogeneous treatment
effects. By composition bias, I mean situations in which the av-
erage effect of treatment of the units being newly recruited for
treatment is not the same as TT, TUT, or ATE. Fundamentally,
composition bias results from aggregation across units with unit-
level heterogeneous treatment effects, even though the igno-
rability assumption is satisfied at the microunit level.
To understand composition bias, it is useful to conceptualize

selection into treatment as a dynamic process, akin to survival
analysis. A well-known property of a survival process is selective
attrition so that the composition of the remaining population at
risk for selection changes dynamically. We now introduce a time
variable T: Let us denote the treatment status as a function of
time: DðT = tÞ= 1 if a unit is treated at time t and DðT = tÞ= 0 if
a unit is untreated at time t. For simplicity, we make the treat-
ment condition an absorbing state, so that for t′> t, Dðt′Þ≥DðtÞ.
Substantively, this means that additional untreated units are
recruited into treatment over time, but a unit stays in the con-
dition of being treated once treated.
Situations like this in practical settings are abundant. I give three

simple examples for illustration. First, in a strictly qualification-
determined college admission system, an expansion of the admitted
slots means that additional, less qualified applicants are now given
admission, whereas those who had been admitted before stay ad-
mitted. Second, means-tested financial aid is typically given to
persons with the lowest economic resources in a pool. If a policy
expands the threshold for the means-tested financial aid, addi-
tional, relatively better-off persons would qualify. Finally, as a par-
ticular new technology (say, cell phones) penetrates a consumer
market over time, the price for using the technology tends to drop
as more consumers adopt it. If we assume that price is the only
factor determining adoption, it is thus reasonable that with time,
penetration increases incrementally, recruiting additional new
consumers as the price drops. In all three examples, we can assume
that treatment is an absorbing state, nondecreasing with time.
Let F(t) denote the proportion of treated units in U at time t.

Given the absorbing state assumption, F(t) is nondecreasing in t.
At any time t, the hazard of treatment probability is:

hðtÞ= F′
�
t
�

1−FðtÞ: [13]

Of course, F(t) results from the accumulation of past hazards:

FðtÞ= 1− exp

2
4−

Z t

0

hðuÞdu
3
5: [14]

Obviously, Fð0Þ = 0. For simplicity, I assume that all units
would potentially be treated so that FðtÞ→ 1; as t→∞. This
assumption is typically made in the causal inference literature, so
that we are only concerned with units that all have a nonzero
probability of treatment. When Fðt′Þ−FðtÞ> 0, I define a new
quantity of interest, “increment treatment effect” (ITE) as the
ATE for the subgroup that is recruited into treatment between
times t and t′ (t< t′ ):

ITEðt; t′Þ=E
�
Y 1 −Y 0 jDðtÞ= 0;D

�
t′
�
= 1

�
; [15]

where the expectation is over these incremental units with
treatment status changed from not being treated at time t to
being treated at time t′. Like TT and TUT, ITE is the average
effect of a group. However, whereas TT and TUT are defined by
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a unit’s observed status of treatment at any given time, ITE is
defined by a change in treatment status.
ITE is different from two related quantities of interest, the

local average treatment effect (LATE) (17, 18) and the marginal
treatment effect (MTE) (27–29). At first glance, ITE, as defined
in Eq. 15, appears very similar to LATE:

LATE
�
z; z′

�
=E

�
Y 1 −Y 0

��D�
z
�
= 0;Dðz′Þ= 1

�
; [16]

where z′ and z are two values of IV Z. The focus of ITE is on the
subgroup that changes treatment status when treatment propor-
tion is changed, regardless of source. When the change is in-
duced by an IV, ITE reduces to LATE. For example, if the
selection of additional units into treatment during the expansion
of the treatment pool from t to t′ is unrelated to potential out-
comes Y 1 and Y 0, as when they are time-invariant, T can be
considered as a valid IV, albeit an unusual IV. In this case, we
can estimate ITE:

ITE
�
t; t′

�
=
E
�
Y jT = t′

�
−EðY jT = tÞ

Fðt′Þ−FðtÞ : [17]

MTE is more structural, pertaining to the treatment effect of
a relatively homogeneous subgroup with an assumed latent fac-
tor of treatment being fixed at a particular point, the point at
which a unit’s treatment status does not favor either treatment or
control. In contrast, ITE is the ATE of heterogeneous units de-
fined by a change in treatment regimes over time. Like TT and
TUT, ITE is defined for a specific subpopulation with hetero-
geneous units for which treatment status is observed to have
changed between regimes over time.
Let Δt= t′− t. When T changes from t to t+Δt, there is

a corresponding change in the proportion of being treated: FðTÞ
changes from FðtÞ to Fðt+ΔtÞ. Now, further define ΔFðtÞ=
Fðt+ΔtÞ−FðtÞ. As ΔFðtÞ→ 0, we can define the limit form of
ITE(t) as:

ITEðtÞ= dE½Y ðtÞ�
dFðtÞ : [18]

We further demonstrate the relationships of ITE to TT and
TUT. Note that in our setup, TT and TUT are functions of T. The
following simple expressions link ITE to TT, TUT, and ATE:

TTðtÞ= 1
FðtÞ

Z t

0

ITEðuÞdFðuÞ: [19]

TUTðtÞ= 1
1−FðtÞ

Z∞

t

ITEðuÞdFðuÞ: [20]

ATE=
Z∞

0

ITEðuÞdFðuÞ: [21]

From these formulas, we may formally define composition bias
as the situation in which:

ITEðtÞ≠TTðtÞ≠TUTðtÞ≠ATE:

Of course, there would be no composition bias if the researcher
could appropriately condition analysis on either the propensity
score p(X) or its underlying full covariates X. However, composition
bias emerges if the researcher observes neither p(X) nor X but
conditions the analysis instead on time T.

As remarked earlier, if T only affects the proportion of the
treated pool but not the outcome Y directly, T can be considered
as an IV. The remainder of this article is devoted to the dis-
cussion of this particular situation, in which the proportion being
treated affects the actual propensities of all units being treated,
even though the intrinsic relative propensities of treatment for
individual units remain unchanged.
ITE is sensitive to the proportion being treated at both t and t′.

This occurs because selection into treatment is a dynamic pro-
cess (akin to survival analysis), so that net “composition” changes
with FðtÞ, the proportion of the subpopulation being treated
(30). When FðtÞ is small, an increment from FðtÞ to Fðt′Þ is likely
to recruit units with high propensities of treatment; ITE is then
an average of treatment effects weighted heavily by high-
propensity units. When FðtÞ is high, high-propensity units are
already in the treatment group; an increment from FðtÞ to Fðt′Þ
is likely to recruit units with relatively lower propensities of
treatment because the representation of high-propensity units
in the untreated subpopulation decreases with T. Consequently,
ITE is weighted toward low-propensity units as FðtÞ increases.
Because ITE, TT, and TUT all depend on the compositional
changes in the treated and untreated subpopulations, I call the
bias resulting from this dynamic process the composition bias.

4. Toy Example for Illustration
I now illustrate how the composition bias comes out in a dynamic
process with a simple toy example. I conducted a simulation with
a closed population of 1,000 units that are divided into 10 evenly
sized (n = 100) strata (denoted by j, j = 1. . .10). All 100 units in
each stratum have the same intrinsic propensity potential (P*

j )
and the same treatment effect ðδjÞ. In other words, I allow for
heterogeneity in both intrinsic propensity of treatment and
treatment effect across the 10 strata, but, for simplicity, I assume
homogeneity across the 100 units within each stratum. Let P*

j , in
the second column, vary linearly from 0.05 to 0.95. In the third
column, we assign a series of arbitrary numbers to baseline
counterfactual outcome under control ðY 0Þ. We let δj increase
linearly from 50 to 950, as shown in the fourth column, resulting
in a correlation of 1 between the two parameters across the 10
strata. In this artificial example, ATE = 500. The detailed setup
for the toy example is given in Table 1.
For convenience of illustration, I also make increments discrete,

developing in 10 steps: [F(0) = 0.0, F(1) = 0.1], [F(1) = 0.1, F(2) =
0.2], [F(2) = 0.2, F(3) = 0.3], [F(3) = 0.3, F(4) = 0.4], [F(4) = 0.4,
F(5) = 0.5], [F(5) = 0.5, F(6) = 0.6], [F(6) = 0.6, F(7) = 0.7],
[F(7) = 0.7, F(8) = 0.8], [F(8) = 0.8, F(9) = 0.9], and [F(9) = 0.9,
F(10) = 1.0]. For the first round of increment [F(0) = 0.0, F(1) =
0.1], 100 units are moved from the untreated subpopulation (U0)
to the treated subpopulation (U1). However, the distribution of

Table 1. Setup of a toy example: A hypothetical population
(n = 1,000) with 10 strata

Strata (j)
Propensity

potential (Pj*)
Baseline

outcome (Y0)
Treatment
effect (δj)

No. of
units (nj)

1 0.05 100 50 100
2 0.15 100 150 100
3 0.25 200 250 100
4 0.35 200 350 100
5 0.45 300 450 100
6 0.55 300 550 100
7 0.65 400 650 100
8 0.75 400 750 100
9 0.85 400 850 100
10 0.95 400 950 100

The total population is set to be 1,000, with ATE = 500.
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these 100 units across the 10 strata is not even. For simplicity, I
use expected, rounded numbers rather than realized numbers
when utilizing the known stratum-specific intrinsic P*

j . For ex-
ample, 19 units in stratum 10 are recruited for treatment because
100P*

10P10

j=1
P*
j

≈ 19 at round 1. This strategy is tantamount to ignoring

the influence of the sample size, which is arbitrarily set at 1,000.
The first round of increments from F(0) = 0.0 to F(1) = 0.1 results
in 100 new units being treated. The detailed results for the first
round of increments are given in the first panel of Table 2.
In Table 2, U1,j and U0,j, respectively, denote the treated and

untreated groups in the jth stratum. ΔU1,j denotes the newly
recruited units from the jth stratum that changed the treatment
status from D= 0 to D= 1, or increments to U1,j. Because this is
the first round of increments from F(0) = 0.0 to F(1) = 0.1, ΔU1,j
(the increment to the treated), given in column 2, is identical to
U1,j itself (column 3). The untreated subpopulation, U0,j, is
simply the complement of U1,j, given in column 4. It is apparent
that the 100 newly treated cases (the second column, labeled
ΔU1,j) are not evenly distributed across the 10 strata, although
we started with equal-sized strata in the population. Because the
P*
j in a higher numbered stratum is greater than that in a lower

numbered stratum, the number of units recruited into treatment
in a higher numbered stratum is also higher than that in a lower
numbered stratum. In fact, for the first round of increments, the
ratio in the number being treated between two strata is exactly
the same as the ratio in P*

j . For example, the ratio in treated
cases between stratum 10 and stratum 1 is 19, reflecting their
ratio in P*

j : 0.95:0.05. In addition, ΔU1,j, U1,j, and U0,j are un-
equally distributed across strata. The uneven distributions con-
stitute different weights in the calculation of respective treat-
ment effects, given in the last row. For this round, ITE = TT at
665, which is much higher than TUT at 482. None of them is
equal to ATE at 500.
We now conduct the second round of increments, from F(1) =

0.1 to F(2) = 0.2. We use the same recruiting mechanism and
keep the intrinsic properties of all units intact. A key difference
between the second round and the first round of increments is
a compositional change in the exposure population from which
increments are drawn. For the first round, the exposure pop-
ulation is the original population with an equal distribution
across strata, shown in the last column in Table 1 (labeled nj). For
the second round, the exposure population is now changed to the

untreated subpopulation in the first round, shown in the fourth
column in Table 2 (labeled U0,j). Due to this difference in expo-
sure composition, the resulting increments in the second round,
shown in the fifth column (labeled ΔU1,j), have a different across-
strata distribution than their counterparts in the first round (sec-
ond column, also labeled ΔU1,j). Comparing strata 10 and 1 again,
for example, we see the ratio in ΔU1,j between stratum 10 and
stratum 1 reduced to 18, from 19 in the first round.
The reason for a decline in the representation of high-num-

bered strata in ΔU1,j in the second round compared with the first
round is simple: Because high-numbered strata have higher in-
trinsic P*

j , they are overrepresented in ΔU1,j in the first round, and
thus in U1,j . As a result, higher numbered strata are now under-
represented in U0,j, which serves as the exposure population for
the next round of increments. Given the fixed P*

j , a lower repre-
sentation in the exposure population results in a lower represen-
tation in the newly recruited units (i.e., ΔU1,j in the second round).
Now, let us pretend that we do not know the mechanisms

underlying the simulation, and thus treat the data as observa-
tional. From the observed data, we can compute both the aver-
age outcome value and the proportion treated at rounds 1 and 2.
Under the assumption that T can serve as an IV, we can then
apply the estimator of Eq. 17 to obtain ITE between the rounds:

ITEð1; 2Þ=EðY jT = 2Þ−EðY jT = 1Þ
Fð2Þ−Fð1Þ =

411:55− 346:5
0:2− 0:1

= 651;

a number that is only slightly different due to sampling from the
simulation result (ITE = 652) given in Table 2, because the simula-
tion does not allow the treatment of fractional units. Thus, we ob-
tain the same result from the ITE estimator for the observed data.
This dynamic process can continue and further compound the

compositional process. In general, units with higher intrinsic P*
j s

are likely to be recruited into treatment when F(t) is low,
whereas units with lower intrinsic P*

j s are likely to be recruited
into treatment only when F(t) is high. When intrinsic pro-
pensities and treatment effects are positively correlated, as is the
case in this toy example, a positive selection bias arises due to
sorting, so that TT > TUT. In Fig. 1, I present the full results
when I carried out the toy example to its end, all the way to
FðtÞ= 1:0. I present four quantities of interest as functions of the
proportion treated, FðtÞ.
ITE begins at a high level at 665 in the first round. It coincides

with TT in round 1 and then diverges from TT by moving
downward at a faster speed than that of TT. In the eighth round
[F(7) = 0.7 to F(8) = 0.8], ITE(8) is 423, substantially below ATE
(which is 500). This shows that ITE is highly sensitive to changes
in the composition of U0,j. In contrast, TT is cumulative as the
average of ITE in earlier rounds (Eq. 19), and it declines more
slowly. Note that TTðtÞ>ATE for all FðtÞ< 1 due to my setup for a
positive selection. However, the gap between TT and ATE dimin-
ishes gradually over FðtÞ, especially after the eighth round [Fð7Þ=
0:7 to Fð8Þ= 0:8]. Similarly, TUT is also cumulative but in reverse,
from Fð10Þ= 1:0 backward. By normalization, TUT(10) is un-
defined. I define ITE(t) in discrete time intervals, so that TUTð9Þ=
ITEð9; 10Þ. Note that TUTðtÞ<ATE for all t> 0. Furthermore, as
in the case of TT, TUT also trends downward with FðtÞ.
One way to evaluate the type II selection bias is to measure

composition bias, the difference between TT and TUT. Hence, in
Fig. 1, I present TT −TUT as a function of the treatment pro-
portion FðtÞ. A counterintuitive finding from this exercise is that
the amount of bias as measured by the sorting gain actually
increases, rather than decreases, as the proportion treated increa-
ses. This is due to the fact that the downward trend of TUT is
steeper than that of TT. This pattern results from the shape of ITE,
because the decline of ITE is slower when FðtÞ is small but
accelerates when FðtÞ is close to 1. The increasing trend in the

Table 2. Dynamic recruitment of treated units at the first
two rounds [first round: F(0) = 0.0 to F(1) = 0.1, second round:
F(1) = 0.1 to F(2) = 0.2]

Strata (j) ΔU1,j U1,j U0,j ΔU1,j U1,j U0,j

1 1 1 99 1 2 98
2 3 3 97 3 6 94
3 5 5 95 5 10 90
4 7 7 93 8 15 85
5 9 9 91 9 18 82
6 11 11 89 11 22 78
7 13 13 87 13 26 74
8 15 15 85 15 30 70
9 17 17 83 16 33 67
10 19 19 81 18 37 63

Total 100 100 900 100 200 800
Effect measures ITE TT TUT ITE TT TUT

665 665 482 652 659 460

U1,j and U0,j, respectively, denote the treated and untreated groups in the
jth stratum. For each round of increments, ΔU1,j denotes the newly recruited
units from the jth stratum that change the treatment status from D = 0 to
D = 1 (i.e., increments to U1,j).
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amount of type II selection bias depicted in Fig. 1 is surprising
because one might think that as treatment extends to a larger and
larger portion of a population, treated units should become less
and less selective (which we show is true); thus, selection bias
should decline (which is not true). Of course, my conclusion is
based on using TUT instead of ATE as the reference for measuring
the amount of composition bias. As FðtÞ increases, units being
treated become less positively selective but units not being treated
become more negatively selective. Although the two trends are in
the same direction, the decline in selectivity among the treated is
slower than the change in selectivity among the untreated. In other
words, by the time almost every unit in a population is treated, only
those with extremely low intrinsic propensities of treatment remain
in the untreated subpopulation (i.e., severe selectivity).

5. Discussion and Conclusion
Due to the ubiquity of heterogeneity in social phenomena, it is
impossible to draw causal inferences at the individual level. All
efforts to draw causal inferences in social science must take place
at the group level. However, comparison of groups requires
classification of intrinsically heterogeneous individuals into
seemingly homogeneous groups. This is a fundamental dilemma
facing all researchers in social science.
It is a truism that any group-level comparison can be further

decomposed into comparisons of subgroups. For causal inference,
it is now well established that a useful dimension for decomposition
is the propensity score, which summarizes information in a multi-
dimensional space from multiple covariates into a single variable.
Therefore, one potential source of heterogeneity that should re-
ceive particular attention in causal inference is the interaction
between the treatment effect and the propensity score (31). Such
interactions can be detected without any new requirement, because
this can be done under the assumption of ignorability. When such
interactions are found, however, the interpretation of the results
may differ. If the researcher believes that ignorability is true, the
estimated heterogeneous treatment effects may be generalized.
However, the researcher may alternatively interpret the heteroge-
neous pattern in the estimated effects as an indication that the
process of assigning treatment may be selective, driven by un-
observed factors (32).
All quantities of interest at the group level, such as TT and TUT,

are essentially weighted averages of treatment effects across sub-
groups. Therefore, composition is important in causal inference.
Understanding the potential role of composition is important for
policy evaluations of intervention programs when we wish to

generalize results from particular study settings to target pop-
ulations because composition may differ between study settings
and target populations. In this article, I have shown the presence
of composition bias, a form of selection bias. This composition bias
is generated by a dynamic process when the treatment proportion
changes. Interestingly, this form of selection bias can be generated
at the aggregate level even when the ignorability assumption holds
true at the microlevel. All that is required is a combination of three
things: (i) substantial intrinsic heterogeneity in treatment pro-
pensity, (ii) substantial intrinsic heterogeneity in treatment effects,
and (iii) nontrivial correlation between heterogeneity in treatment
propensity and heterogeneity in treatment effects. Under these
simple conditions, a classic scenario for selection bias may arise:
Units more responsive to treatment are more likely to receive
treatment early than units less responsive (26).
A composition bias is essentially driven by the fact that units

with a higher intrinsic propensity of treatment are likely to be
overrepresented when the treatment proportion is small. As the
treatment proportion expands, the degree of overrepresentation of
units with high intrinsic propensities among the newly recruited
into treatment declines. A general lesson is that researchers should
always be mindful of the population or subpopulation of interest
when deriving and interpreting average causal estimates from
potentially heterogeneous subgroups.
A substantive example would be the administration of a med-

ical treatment or social intervention on a graduated schedule.
Assume that participation is need-based, with the poorest per-
sons being most eligible and thus chosen first, and, further, that
the poorest persons would also stand to benefit most from
treatment. Under these conditions, individuals selected at later
stages (i.e., becoming eligible only after the eligibility cut-point is
moved up) would exhibit lower ATEs simply by virtue of coming
from a less responsive subpopulation.
For the same reason, it is always dangerous to extend research

results from a particular study, be it observed or experiment,
beyond the setting in which the study was conducted. Population
heterogeneity means not only that treated units may be in-
comparable to untreated units in the study, an issue of internal
validity, but that external validity can be difficult to establish.
Because the researcher generalizes results from a particular
study to the general population, we cannot know whether the
subjects in the study are comparable to those in the population.
The potential systematic differences between the subjects in the
study and the general population may dramatically alter the ATE
due to compositional biases.
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Fig. 1. Treatment effects by increment rounds.
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