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Small-cell lung cancer and other aggressive neuroendocrine can-
cers are often associated with early dissemination and frequent
metastases. We demonstrate that neurogenic differentiation
1 (NeuroD1) is a regulatory hub securing cross talk among survival
and migratory-inducing signaling pathways in neuroendocrine
lung carcinomas. We find that NeuroD1 promotes tumor cell
survival and metastasis in aggressive neuroendocrine lung tumors
through regulation of the receptor tyrosine kinase tropomyosin-
related kinase B (TrkB). Like TrkB, the prometastatic signaling
molecule neural cell adhesion molecule (NCAM) is a downstream
target of NeuroD1, whose impaired expression mirrors loss of Neu-
roD1. TrkB and NCAM may be therapeutic targets for aggressive
neuroendocrine cancers that express NeuroD1.

bHLH | SCLC

Based on histology, 15–20% of lung carcinomas are catego-
rized as small-cell lung cancer (SCLC) and 80–85% as non–

small-cell lung cancer (NSCLC) (1–4). Lung cancers with neu-
roendocrine features represent nearly 25% of all lung cancer
cases including all SCLC, a subset of NSCLC, and typical and
atypical carcinoids. SCLC is the deadliest histological subtype
because it is associated with high rates of metastatic disease at
time of diagnosis (1, 2). Mixed histological variants containing
both SCLC and NSCLC components have previously been linked
to a lower overall survival than SCLC alone (5). With neuro-
endocrine differentiation thought to occur spontaneously in
10–30% of all NSCLC (6), a subset of cells within a tumor may
promote poorer prognoses and responses than predicted by
original pathology.
The neuronal transcription factor neurogenic differentiation

1 (NeuroD1) is overexpressed in a variety of aggressive neural/
neuroendocrine carcinomas. NeuroD1 is important for the de-
velopment and function of several neural/neuroendocrine tis-
sues, the fate of specific neurons in the central and peripheral
nervous system and for insulin gene transcription in adult pan-
creatic beta cells (7, 8). NeuroD1 mutations can lead to maturity-
onset diabetes of the young 6 (MODY6) (Online Mendelian
Inheritance in Man 606394), the only setting in which NeuroD1
is thus far known to be critical to disease (9).
To investigate the role of NeuroD1 in tumorigenesis, we focused

on neuroendocrine lung cancer cells lines and isogenic normal
and tumorigenic immortalized human bronchial epithelial cells
(HBEC). We observed that down-regulation of NeuroD1 prevents
survival, invasion, and metastasis of several neuroendocrine lung
cancer cell lines. Tropomyosin-related kinase B (TrkB) and neural
cell adhesion molecule (NCAM) are prometastatic signaling mol-
ecules downstream of NeuroD1 and are responsible at least in part
for the phenotypic consequences of NeuroD1 expression.

Results
NeuroD1 Is Highly Expressed in Aggressive Neuroendocrine Lung
Cancers. NeuroD1 is overexpressed in several aggressive neural/
neuroendocrine cancers including SCLC, medulloblastoma, gastric

and prostate cancers, and pituitary adenomas (10–16). To charac-
terize the mechanisms of NeuroD1 action in lung tumor patho-
genesis, we analyzed a panel of lung cell lines. HBEC cell lines,
assigned a number to distinguish lines from different individuals,
are immortalized by overexpression of cyclin-dependent kinase 4,
and human telomerase reverse transcriptase (e.g., HBEC3KT) (17).
The immortalized HBEC3KT cell line was sequentially trans-
formed by knockdown of the tumor suppressor p53 and expression
of K-RasV12 (HBEC3KTRL53) (Table S1) (18, 19). Microarray
analysis of lung cell lines revealed that 11 of the 20 SCLC and 3 of
the 5 neuroendocrine NSCLC (NSCLC-NE) had significantly
higher expression of NEUROD1 compared with HBEC and
NSCLC (Fig. 1A and Fig. S1A). We confirmed the neuroendo-
crine cell lines generally expressed high levels of NeuroD1 com-
pared with HBEC and other lung cancer cell lines (Fig. 1 B and
C). We conducted further mechanistic studies in three SCLC cell
lines (H69, H82, and H2171) and one NSCLC-NE (H1155).
To investigate the indication that various NSCLC tumors

spontaneously undergo neuroendocrine differentiation, micro-
array analysis was performed on an additional 275 NSCLC pri-
mary resected patient samples not previously annotated as
neuroendocrine (Fig. S1B). Validation of a subset of the NSCLC
tumor samples revealed several had relatively high NeuroD1
expression compared with H69, whereas the majority of tumor
samples expressed more NeuroD1 than HBEC (Fig. 1D). As we
suspected, several tumors annotated as NSCLC (specifically
adenocarcinomas and squamous cell carcinomas) may have un-
dergone neuroendocrine differentiation.

NeuroD1 Regulates Survival and Metastasis of Neuroendocrine Lung
Cancers. To test whether NeuroD1 was essential for tumorigen-
esis, we established SCLC and NSCLC-NE lines that stably
expressed shRNAs against NeuroD1 (Fig. S1C). Depletion of
NeuroD1 prevented survival of the neuroendocrine lung cancer
cells as measured by reduction of colonies in soft agar (Fig. 1E
and Fig. S1D). The residual soft agar colonies were less than
25% of the control colony size, suggesting defects in sustained
growth (Fig. S1E). This phenotype could be partially rescued by
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a shRNA-resistant mouse NeuroD1 plasmid (Fig. S1 F and G).
As many patients present with metastases at the time of di-
agnosis, we investigated the ability of NeuroD1 to regulate mi-
gration. Overexpression of NeuroD1 in HBEC3KT resulted in
a significant increase in the motility of the cells (Fig. 1 F and G
and Fig. S1H), whereas reduction of NeuroD1 in clone 5 resulted
in a significant decrease in motility, as well as decreased soft agar
colony formation (Fig.1I and Fig. S2A). To test the effect of
NeuroD1 on motility in a nonneuroendocrine NSCLC cell line, we
overexpressed NeuroD1 in the adenocarcinoma cell line H358 and
found a threefold increase in motility (Fig. 1H), suggesting over-
expression of NeuroD1 regulates cell migratory potential.
To investigate the tumorigenic role of NeuroD1, neuroen-

docrine lung cancer cells expressing shNeuroD1 or shControl
(pGIPZ) were injected s.c. or i.v. into immune-compromised
mice. In the s.c. xenograft model, knockdown of NeuroD1 in the
neuroendocrine lung cancer cells resulted in a substantially re-
duced rate of tumor growth and weight (Fig. 2A and Fig. S2B).
We next examined dissemination using H69 stably expressing
luciferase (H69-luc). H69-luc expressing shControl colonized to
multiple sites, brain, lung, kidney, and lymph nodes, following
tail vein injection, whereas knockdown of NeuroD1 prevented

colonization and metastasis (Fig. 2B and Fig. S2C). These results
provide evidence that NeuroD1 is necessary and sufficient for
not only anchorage-independent growth and motility but also
tumorigenic and metastatic potential.

NeuroD1 Downstream Targets, TrkB and NCAM, Regulate Survival and
Migration in Neuroendocrine Lung Cancer. Expression of both
NCAM and TrkB correlates with and is potentially regulated
by NeuroD1 during neuronal/neuroendocrine differentiation
(20–24). TrkB was identified in an unbiased screen for genes that
overcame anoikis and is implicated in metastases of several
cancers (25–27). NCAM, like TrkB, regulates neuronal differ-
entiation, cell survival, neurite outgrowth, and migration, and
also has been implicated in metastasis (28–31). NCAM and TrkB
both exhibited higher expression in neuroendocrine cancer cells
than in HBEC or NSCLC (Fig. S3A). Analysis of the NSCLC
lung cancer patient samples confirmed a significant correlation
between expression of NeuroD1 and both NCAM and TrkB
(TrkB) (Fig. 3A). In neuroendocrine lung cancer cells, expres-
sion of NCAM and TrkB was reduced following knockdown of
NeuroD1 (Fig. 3B and Fig. S3 B and C).
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Fig. 1. NeuroD1 regulates survival and metastasis
of neuroendocrine lung cancers. (A) mRNA expres-
sion in 86 cell lines, 8 HBEC, 56 NSCLC, and 22 SCLC,
was assessed using Affymetrix HG-U133A and B
GeneChips. Cell lines were categorized histopatho-
logically and by NEUROD1 expression (**P < 0.001,
***P < 0.0001; two-tailed t test). (B and C) NeuroD1
expression was validated via quantitative RT-PCR
(qRT-PCR) and immunoblotting in cell lines from
each type noted above; 50 μg of protein was loaded
per lane, and NFAT was used as loading control.
Pancreatic beta-cell lines are positive controls.
(D) Thirty-five adenocarcinoma and squamous pa-
tient samples analyzed via qRT-PCR to confirm
NEUROD1 expression. Values were normalized to
H69 values. The arbitrary line compares expression
of NEUROD1 in the normal bronchial epithelial cell
line HBEC30KT. (E) Soft agar assays of H69, H82,
and H2171 and H1155 infected with shControl or
shNeuroD1. Cells were sorted by expression for GFP
on the GIPZ plasmids. Plotted are average number
of colonies after 2 wk. Error bars represent ±SD of
four independent experiments in triplicate (**P <
0.001; one-way ANOVA). (F–H) HBEC3KT and H358
cells were transfected with pCMV-Neurod1, and
then subjected to Transwell or wound-healing as-
say. Graph represents mean ± SD of three in-
dependent experiments in duplicate for HBEC3KT
(**P < 0.001; one-way ANOVA). (I) Clone 5 cells
infected with shNeuroD1 or shControl were sub-
jected to Transwell assay. Graph represents mean ±
SD of three independent experiments in triplicate
(**P < 0.001; one-way ANOVA).
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We confirmed that endogenous NeuroD1 bound to the
expected E box of the TrkB promoter in the neuroendocrine
cancer cell lines (Fig. 3C). Because the correlation between
NCAM and NeuroD1 expression has been made via overexpression
data and promoter binding predicted in silico, we investigated
whether endogenous NeuroD1 directly bound NCAM promoter
elements (24, 32–34). We found 10 consensus E-box CANNTG
binding sites upstream of the transcriptional start site in the NCAM
promoter. Two of the E boxes (located at −50 and −2350) were
NeuroD1-preferred binding sites (24). Enhanced NeuroD1 binding
was observed on both sites in the neuroendocrine lung cancer cell
lines, whereas no binding was observed in HBEC3KT (Fig. 3D).
Next, we inquired whether loss of NCAM or TrkB would

phenocopy loss of NeuroD1. Reduction in expression of either
TrkB or NCAM also led to a decreased ability of neuroendocrine
cell lines to form colonies in soft agar (Fig. 3 E and F and Fig. S3
D and E). Additionally, as with NeuroD1, overexpression of
TrkB in HBEC3KT and HBEC30KT led to twofold and fivefold
increases in motility, respectively, compared with controls (Fig.
3G and Fig. S3F). Loss of TrkB also led to a decrease in the
sustained rate of tumor growth (Fig. 3H). To further explore the
relationship between NeuroD1 and TrkB, we knocked down
either NeuroD1 alone or NeuroD1 in conjunction with TrkB.
Loss of NeuroD1 alone or together with TrkB decreased the
ability of the cells to invade through Matrigel (Fig. 3I and Fig.
S3G). The loss of invasion caused solely by NeuroD1 depletion
was substantially restored by overexpression of TrkB. However,
complementation with mouse Neurod1 did not restore invasion
caused by depletion of both proteins (Fig. 3I and Fig. S3G),
confirming that NeuroD1 acts mostly through TrkB.
Lestaurtinib, an inhibitor of Trk and certain other tyrosine

kinases, has progressed to phase II clinical trials for the treat-
ment of acute myelogenous leukemia (35, 36). Subnanomolar
concentrations of lestaurtinib reduced the ability of NeuroD1-
expressing cell lines to form colonies in soft agar (Fig. 4A and
Fig. S4A). In comparison, 1,000-fold higher drug concentrations
were required to perturb colony formation by HBEC3KT or
NSCLC with little NeuroD1 (Fig. 4 A and B and Fig. S4B), sug-
gesting the potential for a therapeutic window to treat properly

selected neuroendocrine cancers in a clinical setting. Treatment
with lestaurtinib resulted in a significant reduction in the rate of
tumor growth in xenografts, consistent with a reduction in phos-
phorylated TrkB (Fig. 4C and Fig. S4C). We also found that les-
taurtinib significantly decreased the ability of the cells to invade
Matrigel, indicating the importance of TrkB activity in neuroen-
docrine lung cancer invasion (Fig. 4D).
NCAM signaling was initially thought to occur via tyrosine

phosphorylation by the fibroblast growth factor receptor (10, 37,
38) and recently by TrkB (39). We investigated whether chang-
ing TrkB signaling would alter NCAM modification in SCLC.
Treatment with the TrkB ligand, brain-derived neurotrophic
factor (BDNF), increased tyrosine phosphorylation, whereas
treatment with lestaurtinib decreased its tyrosine phosphoryla-
tion, consistent with the evidence that TrkB can phosphorylate
NCAM in neuroendocrine lung cancers (Fig. 4E). Taken to-
gether, these data suggest this interaction may rely on the initia-
tion or maintenance of NCAM and TrkB expression by NeuroD1.

Discussion
NeuroD1 and other factors such as the lineage-restricted onco-
gene Achaete-scute complex homolog 1 (ASCL1) have been
shown to be anomalously expressed in a several aggressive
neuroendocrine tumors (15). Initial examination of microarray
data revealed that subsets of aggressive SCLCs and certain
neuroendocrine NSCLCs have high expression of NeuroD1
compared with HBECs and other NSCLCs. Mechanism of action
of NeuroD1 is carried out by downstream targets, which include
the signaling molecules, the tyrosine kinase TrkB and NCAM.
Neuroendocrine differentiation of tumors has become a topic of
interest as differentiation of these tumors from epithelial cells
has been hypothesized to be involved in acquisition of invasive/
metastatic phenotypes (12, 14, 16). NeuroD1 expression has re-
cently been speculated to contribute to the transformation of
epithelial cells to neuronal-like cells (12); this transformation
may be the onset or termination neuroendocrine differentiation
of prostate and other neuroendocrine cancers. We find that
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depletion of NeuroD1 reverses or suppresses neuroendocrine
characteristics, for example, a reduction in NCAM expression.
TrkB induces neuronal migration and, similar to NeuroD1,

neuronal differentiation (20, 40, 41). TrkB has also recently been
implicated in invasion and metastasis of pancreatic, prostate, and
colorectal cancers (26, 42). TrkB is mutated or overexpressed in
certain NSCLCs and ovarian, prostate, pancreatic, and gastric
cancers, and can suppress cell death caused by loss of cell-
substratum contacts. NCAM, like TrkB, also regulates survival,
differentiation, and migration of neurons (10, 31, 39, 43). NCAM is
highly expressed in neuroendocrine lung tumors and immunother-
apy using an antibody targeting NCAM linked to the microtubule-
depolymerizing agent BB10901 has entered phase II clinical trials
for SCLC (44). We hypothesize that overexpression of NeuroD1
may contribute to the development and metastasis of extremely
aggressive SCLC, via regulation of each of these downstream fac-
tors involved in differentiation, cell survival, and invasiveness.

Experimental Procedures
Plasmids, Primers, and Luciferase Assays. Stable shNeuroD1 and shTrkB
cells lines were generated via infection of human pGIPZ lentiviral shRNA
plasmids created by the RNAi Consortium. These were purchased by Uni-
versity of Texas Southwestern as a library [TRC-Hs1.0 (human)] from Open

Biosystems. NeuroD1 short hairpins V2LHS_152218 (shRNA-1), V2LHS_152220
(shRNA-2), TrkB short hairpins, V2LHS_63731, and NCAM short hairpins
V2LHS_111710 were used (sequences are available online at Open Biosystems
website). SCLC cell lineswere selected in puromycin (<2mg/mL) for 6 d. Plasmids
were transfected into 293T cells for viral production using FUGENE 6. Oligo-
nucleotides used were as follows: NeuroD1-1, sense, CGAAUUUGGUGUGG-
CUGUA, and antisense, UACAGCCACACCAAAUUCG (QIAGEN); NeuroD1-AB,
sense, GGAUCAAUCUUCUCAGGCA, and antisense, UGCCUGAGAAGAUUGA-
UCC (Ambion); NTRK2-5, sense, GACGAGUUUGUCUAGGAAA, and antisense,
UUUCCUAGACAAACUCGUC (QIAGEN). For p53 experiments, cells were trans-
fected with pCMV5, SV40 (internal control), pcDNA.1-p53, or pGL3-NeuroD1
constructs using Fugene HD. Luciferase assays used the Promega dual lu-
ciferase kit according to manufacturer’s protocol.

Quantitative Real-Time PCR. Total RNA fromxenograft tumors and cell lineswas
isolated with TRI Reagent. RNA from tumor samples was fromM. D. Anderson
Cancer Center. cDNA was synthesized using iSCRIPT cDNA Synthesis Kit
(Bio-Rad). RNAs for mouse and human NeuroD1, TrkB, NCAM, and 18s
ribosomal RNA were quantified by RT-PCR with iTaq (Bio-Rad) master mix
using TaqMan probes (Applied Biosystems) on an ABI 7500 thermocycler.
Relative transcript levels were normalized to 18s rRNA. Transcript amounts in
knockdown cells were plotted as fold change relative to control. Data were
analyzed using ABI 7500 system software.
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Fig. 3. TrkB and NCAM are down-
stream targets of NeuroD1 that pheno-
copy loss of NeuroD1. (A) XY scatter
plots of 35 adenocarcinoma and squa-
mous patient samples examining corre-
lation betweenNEUROD1,NRTK2 (TrkB),
and NCAM. P values and R2 values were
obtained by Pearson’s test. (B) qRT-PCR
analysis ofNRTK2,NCAM, andNEUROD1
in lung cancer cells with stable knock-
down of NeuroD1. (C) ChIP of NeuroD1
on NTRK2 promoter in cell lines ex-
pressing shNeuroD1 or shcontrol (GIPZ).
One of four independent experiments
in duplicate. (D) ChIP of NeuroD1 on two
E boxes in the NCAM promoter with
NeuroD1 consensus binding sites in
HBEC3KT, three SCLCs, and a NSCLC-NE.
NeuroD1 immunoprecipitation values
were compared with input, and then
plotted as percentage chromatin fold
enrichment normalized to HBEC-3KT. (E)
Soft agar assay of SCLC and NSCLC-NE
lines infected with shControl or shTrkB.
The average numbers of colonies after
2 wk are shown. Error bars indicate ±SD
from the mean of four independent
experiments in triplicate (***P < 0.001;
one-way ANOVA). (F) Cell lines were
infected with shControl or shNCAM and
subjected to soft agar assay. The average
numbers of colonies after two weeks
are shown. Error bars indicate ±SD from
the mean of two independent experi-
ments in triplicate. (G) HBEC3KT and
HBEC30KT cells were transfected with
a plasmid encoding human TrkB, and
then subjected to Transwell assay. Graph
represents fold mean ± SD of four and
three independent experiments, re-
spectively (**P < 0.005, *P < 0.05; one-
way ANOVA). (H) Mice were injected
with 106 H1155 cells infected with
shNeuroD1 or shControl. Tumors were
measured until maximum tumor burden
was reached (n = 10, 5 mice per group). P
values were computed by linear regression (of slopes) for volume measurements. Means are ±SEM. (I) H69, H82, and H1155 were cell lines were subjected to
knockdown of NeuroD1 and/or NeuroD1/TrkB. Knockdown cells were then subjected to overexpression of either NeuroD1 or TrkB. Cells were then embedded in
growth factor-reduced Matrigel, for Transwell migration assays as described in Experimental Procedures.
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Statistical Analyses. Student t test, one-way analysis of variance (ANOVA),
Pearson’s test, and linear regression were used to determine statistical sig-
nificance. Statistical significance for all tests, assessed by calculating the
P values, was defined as <0.05.

Chromatin Immunoprecipitation. ChIP was performed as previously described
(45). TrkB primers were as described (22). NCAM E-box primers were as
follows: −2350 forward, GGGGAGAGAGGTCCAGTGA; −2350 reverse, TTCTA-
GAATGCTGCCCCAGT; −50 forward, ATCAAAATATGCAAACTGCTGATTA;
and −50 reverse, CGAACATCAAGGAGGTAAGAGA.

Colony Formation and in Vivo Assays. Soft agar and liquid colony assays were
as described previously (18). As indicated, lestaurtinib was added once for
24 h 1 d after seeding. In vivo experiments were performed in 6- to 8-wk-old
nonobese diabetic (NOD)/SCID female mice. Viable cells from subconfluent
cultures in normal growth medium were counted using Trypan Blue (Invi-
trogen). Subcutaneous tumors were elicited by injecting 1.0 × 106 cells in
0.2 mL of PBS into the flank of mice and monitored every 2–3 d. Tumor size
was assessed with digital calipers; tumor volume was taken to be equal to
the width × length2 × π/6. The effect of lestaurtinib (LC Laboratories) was
determined on tumors grown as above. Lestaurtinib or vehicle treatment
commenced once tumor volume reached ∼200 mm3. Lestaurtinib was dis-
solved in 40% (wt/vol) polyethylene glycol, 10% (wt/vol) polyvinylpyrrolidone,
and 2% (vol/vol) benzyl alcohol (all from Sigma-Aldrich) in distilled water and
administered s.c. at 20 mg/kg once daily, 5 d a week. Tail vein injections of
1.0 × 106 cells in 0.1 mL of PBS were used to compare the metastatic capacity of
H69 cells expressing luciferase driven by the CMV promoter (H69-luc). Tumor
growth was monitored every week with bioluminescence imaging follow-
ing s.c. injection of 450 mg/kg D-luciferin offline (Biosynth) in PBS into
anesthetized mice (46). Images were captured 10 min after D-luciferin injection
with a 60-s exposure using a CCD camera (Caliper Xenogen). Animal care was
in accord with University of Texas Southwestern Medical Center guidelines and
approved Institutional Animal Care and Use Committee protocols.

Reagents, Antibodies, Immunoblotting. Immunoblot analyses were as pre-
viously described using equal amounts of protein from each sample (45). The
following antibodies were used for blotting, immunoprecipitation, and ChIP:
goat NeuroD1 (N-19), rabbit pan-phospho-Trk (E-6), synaptophysin (H-8),
mouse pTyr (PY20), p53 (DO-1), GAPDH (FL-335) (Santa Cruz); mouse ASCL1,
mouse N-cadherin, mouse E-cadherin (BD Biosciences); rabbit TrkB (Chem-
icon), mouse CD56/NCAM rabbit β-catenin (Cell Signaling), and α-tubulin
hybridoma (The Hybridoma Bank Studies at University of Iowa) were pur-
chased. Lestaurtinib was purchased from LC Laboratories, and BDNF, from
R&D Systems. Band intensities were quantified using LI-COR Odyssey In-
frared Imaging System.

Immunoprecipitation of NCAM. SCLC cells were lysed in 0.1% SDS, 1%
Nonidet P-40, and 1% sodium deoxycholate with phosphatase inhibitor
mixture (Sigma). NCAM was immunoprecipitated from lysates with anti-
NCAM overnight.

Cell Culture. Min6 cells were grown in Dulbecco’s modified Eagle medium
with 10% FBS. SCLC and NSCLC lines were from the Hamon Cancer Center
Collection (University of Texas Southwestern). SCLC, NSCLC-NE, HBEC3KTRL53-
clone 5 were cultured in RPMI 1640 with 10% FBS. Immortalized HBECs
(except HBEC3KTRL53-clone 5) (18) were cultured in keratinocyte serum-free
medium (KSFM) (Invitrogen) with 5 ng/mL epidermal growth factor and 50
μg/mL bovine pituitary extract. The lung cancer cell lines were DNA finger-
printed using the PowerPlex 1.2 kit (Promega) and confirmed to be the same
as the DNA fingerprint library maintained either by ATCC or the Hamon
Cancer Center. The lines were also tested to be free of mycoplasma by
e-Myco kit (Boca Scientific).

Migration Assays. Formigration assays, cells were seeded 48 h following either
transient expression of mouse NeuroD1 (pCMV-Neurod1) or human TrkB-YFP
in HBEC3KT and HBEC30KT or transient knockdown of NeuroD1 (shNeuroD1)
in clone 5. Transwell migration was assayed in a 10-well Boyden chamber
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Fig. 4. Lestaurtinib regulates survival and invasion.
(A) Soft agar assays of SCLC and NSCLC-NE cells
treated with 10, 100, and 1,000 nM lestaurtinib. (B)
Liquid colony assays of HBEC3KT and the NSCLC cell
line H322 exposed to increasing concentrations of
lestaurtinib. (C) A total of 106 H69-Luc cells was s.c.
injected into the flank of mice and monitored every
2–3 d. Lestaurtinib or vehicle treatment commenced
once tumor volume reached ∼200 mm3. n = 10 for
each group. The tick marks represent treatment
days (*P ≤ 0.05; Student t test). (D) Transwell assays
of H69, H82, and H1155 embedded in a 1-mm-thick
layer of growth factor-reduced Matrigel with or
without 100 μM lestaurtinib. (E) SCLC were serum
starved for 8 h, and then treated with 100 ng/mL
BDNF without or with 1 μM lestaurtinib for 30 min.
NCAM was immunoprecipitated and blotted with
anti-phosphotyrosine. Representative of four inde-
pendent experiments.
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(Neuro Probe) or Transwell permeable supports (Corning; no. 3422). Clone 5,
H358, and HBEC3KT cells were seeded in the top chamber in either RPMI with
1% FBS or KSFM without FBS, respectively, and allowed to migrate along
a concentration gradient through a polycarbonate membrane with 8-μm
pores to the bottom chamber containing medium with 10% FBS. For TrkB
studies, HBECs transfected with TrkB or empty vector were treated with
100 ng/mL BDNF. After 24 h, cells were fixed, stained (with hematoxylin and
eosin stain), and counted. For invasion assays, 1.5 × 105 cells were imbedded
in growth factor-reduced Matrigel in the presence or absence of 100 nM
lestaurtinib in Transwell permeable supports. Cells were allowed to migrate
for 48 h across membranes with a gradient of 10% serum in the bottom
chamber. In the wound-healing assays, 2 × 105 HBEC3KT cells were seeded in
six-well dishes in KSFM and grown to confluence for 24–48 h. A wound was
created in confluent monolayers using a sterile pipette tip; cell migration
was quantified using ImageJ software after 8 h.

Microarray Analysis. RNA from tumor samples was from M. D. Anderson
Cancer Center. RNA was prepared using the RNeasy Midi kit (Qiagen) and
analyzed for quality on RNA 6000 Nano kit (Agilent Technologies) with
Agilent Bioanalyzer software. Five micrograms of total RNA were labeled
and hybridized to Affymetrix GeneChips HG-U133A and B according to the
manufacturer’s protocol (www.affymetrix.com), whereas 0.5 μg of total

RNA was used for Illumina BeadChip HumanWG-6 V3 (www.illumina.com).
These data are available in the Gene Expression Omnibus database (ac-
cession nos. GSE4824 and GSE32036). Array data were preprocessed with
MAS5 (Affymetrix algorithm for probe summarization) or MBCB [Illumina
algorithm for background subtraction (47)], quantile-normalized, and log-
transformed.
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