
Pathway-based personalized analysis of cancer
Yotam Drier1, Michal Sheffer, and Eytan Domany2

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

Edited by Michael E. Fisher, University of Maryland, College Park, MD, and approved March 8, 2013 (received for review November 13, 2012)

We introduce Pathifier, an algorithm that infers pathway deregula-
tion scores for each tumor sample on the basis of expression data.
This score is determined, in a context-specific manner, for every
particular dataset and type of cancer that is being investigated. The
algorithm transforms gene-level information into pathway-level
information, generating a compact and biologically relevant repre-
sentation of each sample. We demonstrate the algorithm’s perfor-
mance on three colorectal cancer datasets and two glioblastoma
multiforme datasets and show that our multipathway-based repre-
sentation is reproducible, preservesmuchof theoriginal information,
and allows inference of complex biologically significant information.
We discovered several pathways that were significantly associated
with survival of glioblastoma patients and two whose scores are
predictive of survival in colorectal cancer: CXCR3-mediated signaling
and oxidative phosphorylation. We also identified a subclass of pro-
neural andneural glioblastomawith significantly better survival, and
an EGF receptor-deregulated subclass of colon cancers.
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The operation of many important pathways is altered during
cancer initiation and progression. Identifying the involved

pathways and quantifying their deregulation is a very important
step toward understanding the malignancy process (1–5). Because
advanced therapies target specific pathways, pathway-level un-
derstanding is a key step also for developing personalized cancer
treatments. Indeed, many methods, such as those described in
refs. 5–10, were developed for pathway analysis of high-throughput
data. Nearly all methods characterize a pathway’s activity for
an entire sample set and do not provide information on its
deregulation in a particular tumor. One prominent exception is
Pathway Recognition Algorithm using Data Integration on Genomic
Models (PARADIGM) (11), a tool that deduces for each pathway
and sample a score using the pathway’s known connectivity and
functional structure. Hence, it may not work well for many com-
plex pathways that play significant roles in cancer, for which either
the mechanism of pathway activity is not well known or essential
relevant data (such as protein abundance and phosphorylation
status) are unavailable.
We introduce a method to calculate, independently for every

pathway, a score that represents the extent to which the pathway is
deregulated in every individual sample. We quantify the level of
deregulation of a pathway in a sample by measuring the deviation of
the sample from normal behavior. We do not need detailed reliable
knowledge of the network or wiring diagram that underlies the
pathway’s activity. Hence, our estimates of pathway deregulation
in a given sample are not restricted to only simple pathways. The
method is knowledge-based, because we use generally well-known
external information on the identity of the genes that belong to each
pathway. Since the detailed interactions in each pathway are largely
unknown and are context-dependent, we derive our deregulation
scores in a “phenomenological” context-specific manner. Because at
every stage the analysis is performed in a relatively low-dimensional
space, we evade the “curse of dimensionality” stemming from using
a small number of data points in a larger dimensional space. Hence,
our results are more robust to perturbations such as removing some
of the pathways or samples from the analysis.
To demonstrate that the pathway deregulation scores obtained

this way indeed capture biologically and clinically relevant in-
formation in a sensible manner, and the validity and usefulness of
the method, we apply it on many pathways to generate a pathway-

level representation of every sample and show that our repre-
sentation generates clinically relevant stratifications and outcome
predictors for glioblastoma and colorectal cancer. Pathifier is
available at www.weizmann.ac.il/pathifier/.

Results
Brief Outline of Pathifier. Pathifier analyzes NP pathways, one at
a time, and assigns to each sample i and pathway P a score DP(i),
which estimates the extent to which the behavior of pathway P
deviates, in sample i, from normal. To determine this pathway
deregulation score (PDS), we use the expression levels of those
dP genes that belong to P, for example, using databases such as
those described in refs. 12–15. Each sample i is a point in this dP
dimensional space; the entire set of samples forms a cloud of
points, and we calculate the (nonlinear) “principal curve” (16)
that captures the variation of this cloud. Next, we project each
sample onto this curve; the PDS is defined as the distance DP(i),
measured along the curve, of the projection of sample i, from the
projection of the normal samples (Fig. 1). The variance of the
PDS of the normals is much lower than that of the tumors (SI
Appendix, Fig. S1). On the basis of genome-wide gene-level ex-
pression data we generate a pathway-level, biologically relevant
NP-dimensional representation of each sample and mine this
representation for insights.

PDSs Capture Biologically Relevant Information in Glioblastoma.
Pathifier was applied to expression data from 445 glioblastoma
multiforme (GBM) and 10 normal brain samples from The
Cancer Genome Atlas (TCGA) (17). The PDS for 548 pathways
from Kyoto Encyclopedia of Genes and Genomes (KEGG) (12,
13), BioCarta (14) and the National Cancer Institute–Nature
Pathway Interaction Database (15) are presented in a 548 × 455
table (Fig. 2A), representing the deregulation score of each
pathway in every sample and summarized in Fig. 2B. For 135 of
the 445 tumors, TCGA identified point mutations in key genes.
Ten genes (listed in Fig. 2C) were mutated in more than 5% of
the samples; 96 of the 135 sequenced samples had mutations in
one or more of these genes. Ninety-four pathways are signifi-
cantly related to a mutation [Mann–Whitney, false discovery rate
(FDR) < 1%]. These 94 pathways are partitioned, on the basis of
their PDS, into three clusters (Fig. 2C and SI Appendix, Table
S1). Pathways of cluster P1 are deregulated mostly in samples of
cluster S2, which comprises tumors with IDH1 mutation. All 32
pathways in P2 are activated by EGF. Indeed, they are highly
deregulated on sample cluster S5, which includes almost all
patients with EGFR mutations. The fact that our scores capture
the deregulation of EGF signaling pathways, expected in samples
with oncogenic EGF mutations (18), is reassuring and indicates
that Pathifier indeed captures relevant biological information.
Also note cluster P3, which contains many pathways with high
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PDS in tumors with NF1 mutations (mostly in sample cluster S4)
and low PDS in tumors with IDH1 mutation (mostly in S2).
Another indication of the biological relevance of the PDS is the
observed correlation of the scores of many cell death-related
pathways with the necrosis levels of GBM samples (SI Appendix,
Table S2).

PDS-Based Stratification of Glioblastoma. Hierarchical average-
linkage clustering according to PDS of the TCGA data (Fig. 2A)
generates (i) sample clusters, which are consistent with known
classification and extend it, and (ii) pathway clusters, with related
biological functions. The normal samples form cluster TgS7
(sample cluster 7 of the TCGAdataset); mesenchymal formTgS1–
3 and TgS11; classical cancers are in TgS8–9, and neurals and
proneurals are in TgS12–16. (Fig. 2A and Dataset S1). A concise
representation of the characteristic deregulation profiles of the
sample types over the pathway clusters (Fig. 2B), reveals further,
more subtle, substratification of the tumors.Mesenchymal samples
are mostly deregulated in TgP8–TgP16 (pathway clusters 8–16 of
TCGA). The main differences between the subtypes are (i) no
deregulation of TgP7–TgP9 pathways in the samples of TgS2 and
(ii) deregulation of TgP2 in TgS3 and (iii) of TgP4 pathways in
TgS11. TgS11 and TgS4 contain classical-like mesenchymals and
mesenchymal-like classicals; these intermediate tumor types are
deregulated on both the typical mesenchymal pathway clusters
TgP8–TgP15 and the characteristic classical TgP4 and TgP5. The
emergence of this “subclass” might be due to heterogeneous
samples containing both types of cells, or to a new subtype with
classical and mesenchymal features. The neural and proneural
samples appear mostly in TgS12–TgS16. Some neural/proneural
tumors, of TgS13 and TgS15, are normal-like and are not
deregulated on most pathways. To validate these results we used
data from the Repository of Molecular Brain Neoplasia Data
(REMBRANDT) (19) (Fig. 2D and Dataset S1). Fisher’s exact
test (P < 0.05) identified correspondence between pathway clus-
ters found in the TCGA data and in REMBRANDT (marked
RePi, where i is the cluster number); the main PDS-based features
and results are mostly reproduced (Fig. 2B and SI Appendix).

Pathway-Based Substratification of GBM Has Important Clinical
Implications. Neural and proneural samples are thought to have
better prognosis (20, 21); the pathway-based substratification
reveals, however, that this notion is due to a subset of better
survivors (logrank P value < 0.05). In the TCGA data, patients of
clusters TgS15 and TgS13, which have relatively few deregulated
pathways, survive significantly longer than other neural and pro-
neural samples (P = 0.009 for TgS15 and P = 0.015 for TgS13),
whereas patients from TgS12 have worse prognosis (P = 0.003,

Fig. 3A). If this group of good survivors is removed from the
neural and proneural samples, the remaining patients of these
classes do no better than patients with mesenchymal and classical
tumors. The separation between survival of the patients of TgS12,
13, and 15 remains significant even if the comparison is made only
for the proneural samples.
These results are reproduced on the REMBRANDT data as

well: Patients with neural or proneural tumors in cluster ReS2
(REMBRANDT sample cluster 2), the one for which only few
pathways are deregulated, have better prognosis than other
neurals and proneurals (P = 0.066, Fig. 3B). Cluster ReS1 con-
tains only normals and normal-like neural samples. Interestingly,
these normal-like neural tumors have worse prognosis than other
neurals (P = 0.032, Fig. 3C).

Pathways Associated with Survival in Glioblastoma. Seventy-seven
pathways are significantly related to survival on the TCGA data,
and 187 on the REMBRANDT data (FDR < 10%, from Kaplan–
Meier analysis, comparing the top one-third of deregulated sam-
ples to the bottom one-third, logrank P value). Thirty-seven of
these pathways overlap, constituting a significant intersection (P =
0.005). Higher PDSs were associated with bad prognosis on both
datasets for all but two pathways. Many of the other 35 pathways
(SI Appendix, Table S3)make biological sense: Some are related to
angiogenesis, critical to glioblastoma progression (such as VEGF
signaling, Fibrinolysis, PDGFRβ signaling, α4β1 integrin signaling,
and hypoxia-inducible factor 2-α pathway); many are known key
players in glioblastoma and cancer, have a prognostic value, and
are promising drug targets [such as MAP kinase (22, 23), Insulin
signaling and its components (24), RET tyrosine kinase (25),
EGFR/ERBB signaling (26), PDGF signaling (27), and integ-
rins (28)]. SI Appendix gives the full list of other survival-re-
lated pathways and their roles in glioblastoma.

Pathway Deregulation in Colorectal Cancer Is Associated with
Chromosomal and Microsatellite Instability. Two kinds of genetic
instabilities were identified in colon cancer: chromosomal in-
stability (CIN) and microsatellite instability (MSI-high). CIN
tumors (85% of colon cancers) exhibit abnormal numbers of
chromosomes, deletions and amplifications of smaller genomic
regions, and translocations, and tend to have p53 mutations (29,
30). MSI-high tumors (15% of colon cancers) have highly varying
lengths of short sequences of nucleotides, caused by dysfunctional
mismatch-repair genes, and usually display no large-scale deletions
and amplifications. High-CIN tumors are usually microsatellite-
stable (MSS).We applied Pathifier to the data of Sheffer et al. (30),
313 samples of normal colon, polyps, primary carcinoma, and
metastases, and validated the results on datasets of Sveen et al. (31)
and Kogo et al. (32), 89 and 141 samples, respectively (SI Appen-
dix). Notably, formany relevant pathways the PDS reflected disease
progression (Figs. 1 and 4). One hundred six pathways showed in-
creased deregulation with disease progression, that is, significant
(Mann–Whitney, 5% FDR) and consistent in all three transitions
tested: from normals to polyps, polyps to primary, and primary
tumors to metastasis (SI Appendix, Table S4). The deregulation
scores of many pathways are correlated with the level of chromo-
somal instability within the tumor, as measured by the CIN index.
Eighty-four pathways show increasing deregulation with increase of
the CIN index in all three datasets (SI Appendix, Table S5). This
level of overlap is highly significant (P < 4 × 10−4 for every dataset
pair), indicating that the correlation found is a robust, fundamental
aspect of colorectal cancer. These 84 pathways belong to many
biological functions, as expected, considering that many genes are
affected by the diverse chromosomal aberrations that characterize
colon cancer. Many pathways are differentially deregulated be-
tween MSS and MSI-high tumors (325 pathways in the Sheffer
data, with significant overlap to those in the Sveen data, P = 1.92 ×
10−5 for MSS deregulated pathways, P = 0.022 for MSI-high,
Fisher’s exact test; SI Appendix, Tables S6 and S7). The pathways
that were highly deregulated in MSI-high tumors, in both datasets,
included the mismatch-repair pathway and pathways related to
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Fig. 1. The principal curve learned for the apoptosis pathway [as defined by
the Kyoto Encyclopedia of Genes and Genomes (KEGG)] on the colorectal
dataset of Sheffer et al. (30). The data points (representing samples of dif-
ferent tissue types, colored accordingly) and the principal curve are pro-
jected onto the three leading principal components. (A) The principal curve
(in blue) going through the cloud of samples. The curve is directed so that
normal samples are near the beginning of the curve (Methods). (B) The
samples projected onto the curve. Each point carries its color from A.
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immune response. This is reassuring, because MSI-high tumors
have defective mismatch repair (33) and higher levels of in-
flammation and tumor-infiltrating lymphocytes (34). We also ob-
serve that pathways downstream of p53 were highly deregulated in
MSS tumors, where p53 mutations are frequent, whereas in MSI-
high tumors many pathways upstream of p53 are deregulated.

PDS-Based Stratification of Colorectal Cancer. Clustering analysis
of the PDSs of the Sheffer data identified 11 pathway clusters
(denoted by ShP1–ShP11) and 12 sample clusters (ShS1–ShS12)
(Fig. 4A, Dataset S1). The normal samples comprise cluster ShS1;
the polyps ShS2 (and ShS12), and metastatic samples belong
mainly to ShS3. High-CIN primary tumors belong to clusters
ShS3–ShS7 and ShS11. These samples are located mainly at the
distal part of the colon and are mostly MSS. Clusters ShS8–ShS10
are associated with lower CIN levels, showing mixed locations.
Clusters ShS9 and ShS10 include most of the low-CIN, MSI-high
samples. A concise coarse-grained representation of the charac-
teristic deregulation profiles is shown in Fig. 4B. Clusters ShP1
and ShP2 (immune response-related) are deregulated on a subset
of the polyps. Interestingly, normals have a midlevel score on
ShP2: Tumors (and polyps) can deviate along two distinct routes
from the normals. Samples in ShS10–12 have lower-than-normal
(negative) scores, whereas those of ShS3–ShS5 get positive PDS.
Negative PDS correspond to high expression levels of HLA class
II molecules and T- and B-cell receptors, which are responsible
for activation of the immune response, and hence are indicative
of high levels of tumor-infiltrating lymphocytes (similar results are
shown for Sveen and Kogo datasets, SI Appendix, Fig. S2).
We discovered a unique class of colon cancer, characterized by

high deregulation of cluster ShP3, which contains EGF signaling
pathways. This cluster is markedly deregulated in ShS8 and is
composed of nine tumors and two polyps. The main cause of the
deregulation is overexpression of EGF; no prior identification of
such a subgroup has been made, even though there are some
reports of EGFR mutations in colon cancer. Apparently about
5% of the tumors belong to this class; hence, relatively large
cohorts are needed to observe them. Identification of mutations
or amplifications associated with these tumors may provide a new
therapeutic strategy that targets the EGF pathway. Clusters ShP4
and ShP5, containing pathways known to play a role in cell mi-
gration and invasion (35), show marked deregulation in most
samples of ShS10, a unique subgroup of low-CIN tumors that
contains both MSS and MSI-high samples, and hence is probably
independent of the MSI status; the survival rates of this cluster
are not different from those of the high-CIN groups. Clusters
ShP6, ShP7, ShP9, and ShP10 show high deregulation in the
high-CIN clusters ShS3–4. Many of the pathways that show in-
crease of PDS with progression of the disease (see above)
belong to ShP8–10, suggestive of their role in cancer initiation
and development.
Repeating the analysis for the Sveen and Kogo datasets (SI

Appendix, Figs. S3 and S4), some of the pathway clusters signifi-
cantly overlap in their pathway content among the three datasets
(pairwise Fisher’s exact test, FDR < 1%; SI Appendix, Fig. S5 and
Dataset S2). We validated several aspects of the tumor stratifi-
cation of the Sheffer dataset. The pathway content of the im-
mune cluster ShP2 matches clusters SvP4 (Sveen Pathway
cluster 4) and KoP1 (Kogo Pathway cluster 1); all three show
consistent bimodal deregulation. ShP5 (migration, inflammation,

Fig. 2. (A) Pathway deregulation scores (PDSs) of the TCGA glioblastoma
(GBM) dataset (17). Each row corresponds to a pathway and each column to a
sample. Pathways and samples are clustered according to PDS. Blue color rep-
resents low score (“no deregulation”) and red high. The bottom bar represents
the GBM subtype. Notice that pathway-based clustering captures the subtypes
well and identifies a secondary substratification. (B) Summary of clustered PDS
for the TCGA (Left) and REMBRANDT (19) (Right) GBM datasets. Each row
corresponds to a pathway cluster and each column to a sample cluster, dis-
playing the median value of deregulation for each pair of clusters. Arrows
connect between pathway clusters that match (that is, the pathways in the
clusters have significant overlap). When several matches are significant (as for
ReP9 and ReP10) all are shown in dashed arrows, except for the extremely
significant ones (P < 10−5). Some of the neurals/proneurals are mostly not
deregulated, and some are deregulated on TgP1–TgP3 ormatching ReP1/ReP2/
ReP7. Classical tumors are deregulated on TgP4/TgP5 and possibly TgP6/TgP7 as
well asmatchingReP10 (andunmatchedReP6/ReP7).Mesenchymal samples are
highly deregulated on TgP8–TgP16 as well as matching ReP8–10/ReP3/ReP4
(and unmatchable ReP5). The classical-mesenchymal cluster TgS4 matches ReS8,
and indeed they are both deregulated on TgP4/TgP5/TgP10–12/TgP14/
TgP15 and matching ReP8–10/ReP3 (as well as unmatchable ReP5). (C)

Normalized PDS of 94 pathways correlated with mutations. The bottom bars
display the mutation status, each bar for one gene (samples with mutation
are marked in black). Cluster S1 corresponds to normal samples, S2 mostly to
samples with IDH1 mutations, S4 mostly to samples with NF1 mutations, and
S5 mostly to samples with EGFR mutations. Notice pathway cluster P2, which
consist mostly of EGF-activated pathways, and is highly deregulated on the
EGFRmutated samples. (D) Normalized PDS of the REMBRANDTGBMdataset.
As in A, the pathway clusters correspond to the known subtypes but offer
additional substratifications.
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and angiogenesis) matches SvP9 and KoP10. These clusters have
high PDS in low-CIN tumors in all three datasets. The cluster
ShP8 (cAMP-dependent signaling) matches SvP10 and KoP7,
and ShP11 (cell cycle) matches SvP14 and KoP15.

Survival Analysis of Pathways in Colorectal Cancer. Thirteen path-
ways are significantly related to survival in the Sheffer data (FDR<
10%, comparing primary tumors with the top one-third de-
regulation scores to the bottom one-third, logrank P value). For
three of these pathways the same comparison yields significant
association (logrank P value < 0.01) with disease-free survival in
the Sveen dataset (no survival information was given by Kogo
et al.). The first is oxidative phosphorylation (logrank P value <
1.98 × 10−3 for Sheffer, P < 0.027 for Sveen; Fig. 4C and SI Ap-
pendix, Fig. S3B). Indeed, deletions of genomic regions enriched
by oxidative phosphorylation genes were associated with survival
and progression (30), consistent with the Warburg effect and with
HIF1 activation that leads to angiogenesis, invasion, and metastasis.
A significant finding is the prognostic value of the CXCR3 path-
way (P < 3.28 × 10−5 for Sheffer, P < 1.13 × 10−3 for Sveen; Fig.
4D and SI Appendix, Fig. S3C); this is a chemokine receptor
expressed by activated T cells and natural killer (NK) cells (36). In
both datasets, deregulation of the CXCR3 pathway is governed by
the expression levels of four chemokine ligands: CXCL9,
CXCL10, CXCL11, and CXCL13, all located at chromosome
4q21. CXCL9–11 bind CXCR3 and show involvement in immune
cell recruitment and antiangiogenesis (36). CXCL13 is a chemo-
kine that binds CXCR5, and high CXCL13 expression levels
showed improved outcome in early HER2-positive breast cancer
(37). In the Sheffer and Sveen datasets, these genes are down-
regulated in tumors with poor outcome, suggesting that higher
expression of these ligands is associated with recruitment of
T cells andNK cells and angiogenesis inhibition that lead to better
prognosis of the disease. The third is the IL22BP pathway, which
may play a role in anti-inflammation (P < 1.41 × 10−3 for Sheffer,
P< 0.014 for Sveen). Notably, both oxidative phosphorylation and
CXCR3 remained significant in both datasets, even when we
considered only MSS andMSI-low tumors (CXCR3: P < 2.5 × 10−4

Sheffer, P< 0.043 Sveen; oxidative phosphorylation: P< 7.34× 10−3

Sheffer, P < 0.035 Sveen), suggesting that these pathways are
related to survival in colorectal cancer independently of micro-
satellite stability.

Discussion
Pathifier performs pathway-level analysis of an expression dataset
of tumors and determines for each sample a set of PDSs. These
PDSs are calculated separately for each pathway using genes that

are known to take part in its functioning. The approach can be
used with any other kind of data with known pathway assignments
(not just mRNA). The approach is data-based: For each pathway
we construct a principal curve that captures the variation of the
data. All samples are projected onto this curve, and for each
sample the distance between this projection and that of the nor-
mal samples is measured along the curve. This distance represents
the level of deregulation of the pathway. The method copes suc-
cessfully with the biggest challenges of expression-based pathway
analysis: (i) knowledge of biological pathways is partial, (ii)
pathway deregulation is context-specific, and (iii) available data
contain only part of the relevant information. Using expression
values of the genes that were labeled by different studies as be-
longing to a pathway, measured on the very tissues we wish to
study, we are able to define a context-specific PDS. This is ac-
complished without relying on (incompletely known) underlying
network connectivity and function. Even though having more
information can only improve the inference made, in most cases
one must deal with the absence of relevant information (e.g.,
posttranslational modifications and protein localization); we do
this by projecting the very complex (and unavailable) parame-
terization of the “biological state” onto expression space, where
deregulation is defined by the deviation from the signature of

Fig. 3. Kaplan–Meier plots for neural and proneural substratification. (A)
Patients in TCGA clusters TgS13 and TgS15 have better prognosis. Neural and
proneural tumors were divided into three groups, cluster TgS12 (in black),
TgS13 (in purple), and TgS15 (in green), and all “others” (in red). Kaplan–
Meier plots show clear separation between the four, where cluster TgS15
patients survive the longest (P = 0.009) and cluster TgS13 a little less, but still
better compared with the others (P = 0.015); those in TgS12 survive less than
the others (P = 0.003). The prognosis of the other neural and proneural
tumors is similar to classical and mesenchymal tumors (blue). (B) In the
REMBRANDT dataset, neural and proneural tumors were divided into two
groups: those in cluster ReS2 (in red) and all others (in green). Kaplan–Meier
plots show clearly better survival of the ReS2 patients (P = 0.066). (C ) In
the REMBRANDT dataset, cluster ReS1 contains only normal samples and
normal-like neural samples. Interestingly, these neural patients (in red) have
significantly worse prognosis (P = 0.032) than other neurals (in green).

Fig. 4. (A) Clustered normalized PDS of the Sheffer dataset. Pathways and
samples are clustered according to PDS. For most pathways the PDS of the
normal samples are minimal (dark blue), and hence the higher the PDS are the
more deregulated the pathway is. For a few pathways (mostly in ShP2) tumors
deviate from normals in both directions; PDSs of normal samples have PDS ∼
0 (green); both highly positive PDS (dark red) and highly negative PDS (dark
blue) correspond topathwayderegulation, but in different directions. The color
bars at the bottom correspond to the sample type (met denotesmetastasis), the
MSI status [normal, low, high, MSS, and not available (NA)], p53 mutation sta-
tus, anatomic location of the tumor, and the CIN index (equally distributed into
20 bins). (B) Summary of clustered pathway scores for the Sheffer dataset. Each
row corresponds to a pathway cluster and each column to a sample cluster,
displaying the median value of deregulation for each pair of clusters. The color
bar indicates the major groups of samples. (C) Oxidative phosphorylation
pathway is associated with survival. Kaplan–Meier plots for groups defined by
thederegulation scores ofoxidativephosphorylation in the Sheffer dataset. The
primary tumor samples were divided into three equal groups, based on their
level of deregulation (high, medium, and low). Low deregulation scores are
associatedwith better prognosis. (D) CXCR3 pathway is associatedwith survival.
Kaplan–Meier plots for the deregulation scores of CXCR3 pathway in the
Sheffer dataset. The primary tumor samples were divided into three equal
groups, based on their level of deregulation (high, medium, and low). High
deregulation scores are associated with better prognosis.
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normal samples, measured along a trajectory that reflects context-
specific deregulation.
The conceptual aim of defining these scores is to incorporate

a large body of prior biological knowledge (in the form of as-
signment of genes to pathways) to allow further analysis on
a “higher” (pathway) level, instead of analyzing the expression
levels of thousands of genes, in a brute-force, “ignorance-based”
manner. Because this high dimensionality is the cause of many of
the challenges and failures of predicting prognosis and response
to therapy (38–40), we believe that switching to pathway repre-
sentation is of key importance for development of reliable clini-
cally relevant prognostic and predictive methods.
We showed for glioblastoma and colorectal cancer that the

PDSs successfully reflect deregulation of pathways and constitute
a compact and biologically relevant representation of the samples,
that retains most of the essential information present in the
original data. We stratified tumors into subtypes, interpretable in
terms of biologically meaningful and relevant pathways. Whereas
the resulting tumor groups were consistent with previously iden-
tified clinical classes of glioblastoma and colon cancer, we also
identified subclasses with important clinical characteristics.
For glioblastoma we found a clinically relevant substratification

of neural and proneural samples, separating them into poor and
good survivors, as well as a robust substratification of the mesen-
chymal subtype. We showed that the method is robust and vali-
dated the results on an additional dataset. We showed that
important recurrent mutations in glioblastoma have a clear impact
on the deregulation scores of the relevant pathways. Some samples
without the mutation exhibit deregulation profiles similar to those
of the mutated ones, suggesting alternative equivalent deregula-
tionmechanisms.We find 35 pathways whose deregulation score is
significantly correlated with survival, with higher levels of de-
regulation indicative of poor survival in both datasets. This high
overlap [in contrast with the low overlap between prognostic gene
lists derived using gene-level analyses (38–40)] demonstrates the
robustness of the pathway-level findings. Some of these pathways
(such asMAP kinase) were previously known to be associated with
survival in glioblastoma patients, whereas several others constitute
unique findings (such as PDGFRβ and WNT signaling), that may
serve as hypotheses for glioblastoma research.
For colorectal cancer we showed that CXCR3-mediated sig-

naling and oxidative phosphorylation pathways are significantly
predictive of survival in two different datasets. Furthermore, we
suggest a classification of tumors based on their CIN status, high
and low, which is broader than the known partition into MSS and
MSI-high. Many of the pathways show differential deregulation
between these two CIN-based classes of tumors, which cannot be
explained solely by their MSI status, emphasizing the important
effect of CIN on tumor development. Within the class of low-CIN
tumors we found a subgroup, composed of both MSI-high and
MSS, that show high deregulation of pathways related to migra-
tion, inflammation, and angiogenesis, and indeed these tumors
have survival rates similar to those of the group of high-CIN
tumors. We also discovered a subclass of tumors related to ab-
errant EGF signaling that comprise about 5% of the patients.

Methods
Scoring a Gene Set. Denote by SP the dP-dimensional space, where each co-
ordinate is the expression level of a gene that belongs to a given pathway P,
and represent each sample by a point in this space. We look for a one-
dimensional curve in SP (or in a subspace of SP) that best describes the
variability (e.g., due to disease progression) of the samples across SP (16).
That is, we look for a curve that passes through the “middle of the cloud” of
samples, and we assume that any two points (samples) that have proximal
projections onto the curve also share similar pathway functionality.
Variance stabilization. Because for some genes we can observe large variation
of expression, whereas for others a similar effect on a pathway’s functionality
may be induced by a smaller variation, we do not use the absolute expres-
sion values. Rather, we divide a gene’s expression values by the SD of its
expression in some normalization set of samples (such as normal samples, or
all the samples). To avoid genes whose entire variation is due to noise, we
keep the 5,000 genes of the highest variance over all samples.

Correlations.Many of the genes in the gene set of a pathway might be highly
correlated, conveying the same information, whereas some other important
information might reside in a single gene in the set. To counter this effect,
and to improve the running time, we do not actually search for a curve in SP,
but in a space SP′ of smaller dimensionality k, identified as follows. First, we
perform principal component (PC) analysis and keep only PCs along which
the variance exceeds by more than 10% that of the normalization set. The
number of such PCs is k and the entire ensuing computation is done in the
space SP′ spanned by these components.
Principal curve. We use Hastie and Stuetzle’s algorithm (16) to find a principal
curve in SP′ (Fig. 1). After such a curve is found, we project each point xi, that
represents sample i in SP′, onto fi, its closest point on the curve. The de-
regulation score DP(i) of sample i is defined as the distance along the curve
between fi and a reference point r, defined as the centroid of some refer-
ence set of samples. The reference set is used also to define the curve’s di-
rection, by making sure the point representing the median coordinates of
the reference set is closer to the beginning of the curve (flip the curve’s
direction otherwise). In this study, the reference set is composed of the
healthy samples from the same tissue (henceforth “normal samples”), which
indeed tend to concentrate on one side of the curve, due to the high simi-
larity among normal samples and the large difference from tumor samples.
The distance DP(i) provides a measure of the extent to which the expression
levels of the genes associated with pathway P were perturbed in sample i by
the disease.

In some cases the normal samples fall roughly in the middle of the curve.
When this happens, the curve captures two different kinds of deregulation,
with tumors moving away from the normal samples along two distinct paths.
In principle one can use other (than normal) samples as reference, although
doing this makes sense only in cases when the inner variability of the new
reference set is considerably smaller than the overall variability.

Stability and Robustness of the PDS. Finding a stable gene set.Often some of the
genes in the gene set are noisy (in the sense that their variation does not
reflect information relevant to the biology we are trying to capture; Dis-
cussion), and we would rather omit them. Because we work in SP′ and not in
SP, we actually omit metagenes (linear combinations of genes), but similar
considerations imply that some of the metagenes might be noisy and should
be omitted. This is partly taken care of by omitting genes and metagenes
that do not vary much, but some of the noise might be due to highly varying
metagenes, where most of the variation is unrelated to the biological
information captured by the gene set.

To find out which metagenes should be omitted, we select, one at a time,
those along which the samples are farthest from the curve, as expected for
noisy metagenes, and find after each omission the new corresponding
principal curve. To assess which curve is the best, we check the sensitivity of
the gene set’s scores to sampling noise (the variance over 100 repeats of 80%
of the samples selected randomly each time). If there is a significant im-
provement in the stability, we omit the metagene whose omission yields the
most stable curve and continue in a greedy fashion. If the improvement is
not significant (or stability actually becomes worse), we stop.
Stability against dilution of the normal samples. To test for sensitivity of the PDS
with respect to the reference used (the mean of the normal) we excluded
from the analysis 20% (selected at random, 10 times) of the normal samples
and recalculated the PDS. For a large majority (but not all) of the pathways
and for nearly all of the samples the correlations between the new scores and
the old ones are high, indicating robustness of the PDS against such dilution
of the data (SI Appendix, Fig. S6).

Comparison with Alternative Methods. We compared our method with three
simpler ones and with PARADIGM. The first, by Segal et al. (3), was not
designed to provide individual pathway deregulation scores. Nevertheless,
such scores were calculated by Segal et al. as interim results, derived by
counting the number of significantly up- and down-regulated genes and
performing gene set enrichment analysis (separately for the two gene
groups), assigning scores of ±1 or 0 to each pathway and sample. These scores
have low correlationwith those of Pathifier (SI Appendix, Figs. S7 and S8). This
method detects only extreme changes; the resulting deregulation score
matrix (SI Appendix, Fig. S9A) is very sparse and most of our observations
reported above are missed: Only two pathways were found to be related to
gene mutations in glioblastoma, known subtypes were not well separated by
the scores, and no subtle substratification was identified (except, perhaps, for
mesenchymals). No pathway score is correlated with survival for any of the
datasets of glioblastoma, and only two survival-related pathways were
found, for only one of the colorectal cancer datasets (at FDR < 10%).
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The second method is a linear version of Pathifier, with scores defined as
the Euclidean distance of a sample to the normals (without first projecting to
a principal curve). These scores have a wide dynamic range and separate
known GBM subtypes well (SI Appendix, Fig. S9B). In fact, the scores are quite
correlated to those of Pathifier (SI Appendix, Figs. S7 and S8); however,
Pathifier captures more subtle changes, and, importantly, captures clinical
relevance better. When the linear scores are used, none of the pathways is
found to be related to survival (at FDR < 10%) for the GBM TCGA dataset.
On the REMBRANDT dataset Pathifier discovered 187 survival-related
pathways and the linear version only 54 (8 of which were not identified by
Pathifier). In the colorectal Sheffer dataset no pathway related to survival
was discovered (at 10% FDR) by the linear scores.

The third method we tested was the MAPPFinder module of GenMAPP (6),
which we adapted to provide a score for every pathway in each sample (this
algorithm was also designed to yield a single score per pathway for an entire
cohort). This was done by calling differentially expressed genes for every
sample by Z-test comparedwith the normal samples (instead of t test over the
entire cohort). The average correlation of the pathway profiles with those of
Pathifier is around 0.30 (SI Appendix, Figs. S7 and S8). For GBM (SI Appendix,

Fig. S9C), no pathways having significant correlations with mutations were
found (at FDR< 1%), the scores do not separate the clinical subtypes well, and
no pathway is found to have significant correlation with survival (at FDR <
10%). We found only one pathway whose MAPPFinder scores were positively
correlated with the chromosomal instability index in all three colon cancer
datasets; one pathway showed correlationwith survival in the Sheffer dataset
(at FDR< 10%), but it was not significant in the Sveen dataset and no pathway
was correlated with progression (at FDR < 5%).

Despite the differences in the approaches, we also compared the results of
Pathifier to those of PARADIGM for TCGA GBM (SI Appendix, Text and Fig.
S10). Some of the results of the two methods were in agreement, but some
findings of Pathifier were not detected by PARADIGM.
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