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ype 2 diabetes has rapidly emerged
as a global health crisis. Because
population-level genetic changes
take many generations to occur, this
epidemic is almost certainly primarily a
consequence of recent environmental
changes; nonetheless, diabetes does ap-
pear to occur preferentially in genetically
predisposed populations, which suggests
that the effects of pre-existing suscepti-
bility genes have been triggered by recent
shifts in nongenetic factors.
Predisposition is influenced by the
level of certain environmental exposures,
personal factors, access to good-quality
primary care, and by genotype. Interac-
tions between genetic and nongenetic risk
factors are hypothesized to raise diabetes
risk in a synergistic manner; reciprocally,
health-enhancing changes in behavior,
body composition, or medication may
reduce the risk of disease conveyed by
genetic factors. Defining the nature of
these interactions and identifying ways
through which reliable observations of
gene-environment interactions (GEIs)
can be translated into the public health
setting might help 1) optimize targeting of
health interventions to persons most
likely to respond well to them, 2) improve
cost- and health-effectiveness of existing
preventive and treatment paradigms; 3)
reduce unnecessary adverse consequen-
ces of interventions; 4) increase patient

adherence to health practitioners’ recom-
mendations; and 5) identify novel inter-
ventions that are beneficial only in a
defined genetic subgroup of the popula-
tion. In this Perspective, we describe the
rationale and evidence relating to the ex-
istence of gene-environment and gene-
treatment interactions in type 2 diabetes.
We discuss the tried, tested, and often-
failed approaches to investigating gene-
lifestyle interactions in type 2 diabetes;
we discuss some recent developments in
gene-treatment interactions (pharmaco-
genetics); and we look forward to the
strategies that are likely to dominate
these fields of research in the future.
We conclude with a discussion of the
requirements for translating findings
from these future studies into a form
where they can be used to help predict,
prevent, or treat diabetes. Here we
describe the rationale and evidence con-
cerning GEIs and gene-treatment inter-
actions in type 2 diabetes, provide an
interpretation of current findings and
strategies, and offer a view for their fu-
ture translation.

What is GEI? —The definition of GEI
varies somewhat depending on the field
of diabetes research. In this review, we
adopt epidemiological definitions of in-
teraction, also known as effect modification
or effect modulation. For binary outcomes,
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an interaction would be present if the
combined risk attributable to genetic
and environmental exposures is signifi-
cantly greater or less than expected if their
effects were additive. For quantitative
traits, an interaction would be present if
the magnitude of the genetic effect esti-
mate differs across the range of an en-
vironmental exposure or treatment.
Although the word environment when
used in the context of GEI can relate to
any nongenetic factor to which a person is
exposed, extending from the macro (e.g.,
urban planning) to the micro (e.g., circu-
lating proteins) environment, in the fields
of complex disease research, the word en-
vironment has most often referred to life-
style behaviors (e.g., diet or physical
activity), although this view is evolving
(Fig. 1). The word interaction is some-
times used to describe the joint effects
of a genetic exposure and a second factor
that is positioned on the causal pathway
between the genetic exposure and a dis-
ease phenotype; in epidemiology, this
process is termed mediation, which differs
in meaning from interaction. The term
epistasis refers to the interaction between
two or more genetic loci.

Why do we think GEls cause
type 2 diabetes?—The cvidence
supporting the existence of gene-lifestyle
interactions in type 2 diabetes comes
primarily from 1) the pattern and distri-
bution of diabetes across environmental
settings and ethnic groups, 2) family-
based intervention studies, in which re-
sponse to interventions varies less between
biologically related individuals than
between unrelated individuals; and
3) animal studies in which genetic and en-
vironmental factors are experimentally
manipulated to cause changes in the ex-
pression of metabolic phenotypes. A brief
overview of pertinent literature from hu-
man studies is given below.

There is considerable global variation
in the prevalence and incidence of type 2
diabetes (1). In societies of European or-
igin, the prevalence of type 2 diabetes is
generally 10% or less, with the disease
confined primarily to overweight and
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Figure 1—The future of research on stratified diabetes medicine: a systems epidemiology ap-
proach to the discovery of interactions between the exposome (all nongenetic elements to which we
are exposed) and the quantifiable elements of the human physiome.

obese older adults. However, in some
nonwhite populations, including Native
Americans (especially Pima Indians),
Alaskan Natives, Micro-Indonesia island-
ers (especially Nauruans), and some Mid-
dle Eastern (esecially Saudis and Emiratis)
and Canadian First Nation populations
(2,3) (www.phac-aspc.gc.ca/cd-mc/
publications/diabetes-diabete/facts-
figures-faits-chiffres-2011/index-eng
.php), the prevalence of type 2 diabetes is
substantially higher than in the rest of
the world.

The Pima Indians of Arizona have the
highest recorded prevalence of type 2
diabetes, with more than half of the adult
population affected by the disease (3),
and diagnoses are often made in adoles-
cence and occasionally in childhood (4).
The damming of the Salt and Gila rivers
around 1911 brought an abrupt end to
the Pima’s traditional subsistence farming
lifestyle and with it a sharp reduction in
occupational physical activity and the
consumption of fresh produce. A second
group of Pima Indians live in the Sierra
Madre Mountains of northern Mexico. Al-
though Arizona and Mexican Pima are
phylogenetically similar (5), their life-
styles stand in stark contrast, with the
Mexican Pima still living a traditional
way of life left behind by Arizona Pima
almost a century ago. Probably because
of this, the prevalence of type 2 diabetes
in Mexican Pima is roughly five-times
lower than that seen in their Arizonan
cousins, with diabetes prevalence in the

Mexican Pima comparable to that of other
non-Pima populations of northern Mex-
ico (5). This observation emphasizes how
environmental changes can awaken an
underlying, possibly genetic, susceptibil-
ity to obesity and type 2 diabetes.

A popular yet contentious explana-
tion for why indigenous groups (whose
evolution has involved long periods of
migration, hunter-gatherer lifestyles, and
frequent famine) are so susceptible to the
adverse consequences of industrialized
environments is termed the “thrifty geno-
type hypothesis,” first proposed by Neel
in the 1960s (6). Whereas the original de-
scription of the thrifty genotype hypoth-
esis focused on the over-production of
insulin after meals and a corresponding
period of hypoglycemia that induces ap-
petite, the idea that efficient storage and
utilization of energy in adipose tissue is a
selected trait has also been widely dis-
cussed and attributed to thrifty genes
(7). The hypothesis hinges on the notion
that frequent exposure to famine and
other physiologically stressful events,
such as migration and cold temperatures,
over thousands of years of evolution may
have enriched certain populations with
gene variants that promote metabolic
thriftiness, which in turn conveyed a sur-
vival advantage during famine or other
periods of energetic stress. In the modern
world, however, where excessive auto-
mation and almost effortless access to
energy-dense foods are rife, calorie ac-
cumulation and storage may become

metabolically deleterious. Of note, how-
ever, there is little evidence of positive
selection genetic signatures around es-
tablished type 2 diabetes loci (8), suggest-
ing these diabetes loci at least are not
thrifty genes.

Caveats of the literature on
gene-lifestyle
interactions—A recent simulation
study on the role gene-gene and GEls
are likely to play in risk prediction and
targeted medicine reached a rather sober-
ing conclusion (9). The authors estimated
that the average improvement in predic-
tive accuracy, as defined by the area under
the receiver operating characteristic
curve, for type 2 diabetes was ~5%
when between 4 and 20 interactions
were added to a prediction model. To
conduct their simulations, Aschard et al.
(9) made a series of assumptions about
the magnitude and frequency of interac-
tion effects, based on published epidemi-
ological studies that had focused on
common diseases, common exposures,
and common variants; however, it is pos-
sible that as geneticists begin to study
lower frequency variants, fairly large mag-
nitude interaction effects may be discov-
ered, albeit affecting relatively few
individuals, which would likely increase
the value of data on interactions for dis-
ease prediction.

Epidemiological studies have been
the predominant source of literature on
gene-lifestyle interactions in cardiovascu-
lar and metabolic disease. Dozens of case-
control and cohort studies have been
published since the late 1990s purporting
to have identified gene-lifestyle interac-
tions in type 2 diabetes or related quan-
titative metabolic traits. Until recently,
however, most of these studies were small
and often relied on imprecise estimates of
environmental exposures and outcomes.
These are prone to error and bias, and
exposures may not be assessed at the time
when they conveyed their effects; for
example, the causative exposures may
have occurred very early in life, perhaps
even in utero. Moreover, the complexities
of modeling interaction effects have
forced geneticists to focus primarily on
very simple models of interaction,
whereas clinically relevant interaction ef-
fects likely involve multiple genetic and
nongenetic biomarkers. In addition,
barely a handful of studies have examined
incident type 2 diabetes as an outcome,
with most focusing on cross-sectional
measures of glucose and others relying
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on analyses that include prevalent cases of
diabetes; this may introduce labeling bias,
where the recall of well-known diabetes-
associated behaviors is less likely to be
accurate in individuals recently diag-
nosed with disease than in those who
have not been diagnosed with disease.

In a systematic review published in
2006 (10), we found that almost all stud-
ies published at that time included fewer
than 1,000 participants and none in-
cluded more than 3,000 participants. Al-
though all studies lacked rigorous
replication, we identified four classes of
genes harboring loci that showed most
consistent evidence of gene-lifestyle inter-
actions in diabetogenic traits: the 2 ad-
renergic receptor (ADRB2), uncoupling
proteins (UCP) 1-3, lipid-related loci
(LIPC, LPL, FABP2, APOC3, and APOE),
and the peroxisome proliferator-activated
receptor-y (PPARG). Of these, PPARG (at
its common missense polymorphism
Prol12Ala) was perhaps the most promis-
ing candidate, with a number of studies
reporting interactions with dietary fatty
acids or exercise in relation to insulin con-
centrations (11-13), adiposity (12,14,15),
and type 2 diabetes (16). Studies examin-
ing interactions between dietary fats and
the Prol2Ala genotype have continued to
accrue, and attempts have been made to
formally summarize this literature
through meta-analysis. These attempts
have been unsuccessful, however, owing
to the challenges of pooling unstandard-
ized data and the inadequate descriptions
of the methods and results in many pub-
lished studies (17).

Other key caveats to small gene-life-
style interaction studies include their like-
lihood to be underpowered and that they
are prone to reporting biases (18). The
problems with measurement imprecision
in studies of gene-lifestyle interaction are
eloquently outlined and discussed by
Wong et al. (19), where the authors pro-
vided estimates of sample-size require-
ments to detect gene-lifestyle interactions
in the presence of varying degrees of envi-
ronmental exposure assessment and phe-
notyping measurement error. The authors
show that for the detection of fairly large
magnitude gene-lifestyle interactions
Bk = 2), a study of ~2,000 individuals
in which precise measures of environmen-
tal exposure and outcome had been made
would be adequately powered (95%
power, critical a P=1 X 10~ %): however,
studies that imprecisely estimated envi-
ronmental exposures and phenotypes, as
is often the case in epidemiological

studies, would require a sample collection
~50-fold larger to afford comparable
power.

Although the expected range of ef-
fects that are realistic for gene-lifestyle
interactions in type 2 diabetes remains
unclear, a doubling of the genetic risk
estimate in the group exposed to adverse
lifestyle factors compared with those who
are unexposed (Bgg = 2) is at the upper
end of the interaction effect estimate
ranges reported for common variants
and common exposures (10). It is reason-
able to conclude, therefore, that most of
the interaction studies published to date
report “lucky” true-positive results or
false-positive results that may be under-
pinned by analytical and reporting biases.
The replication of few examples of gene-
lifestyle interactions in type 2 diabetes
suggests that the literature is composed
largely of the latter. Despite this, recent
developments in the ways genetic associ-
ation studies are performed, such as
adoption of hypothesis-free approaches,
the availability of comprehensive geno-
type arrays in large sample collections,
global collaborations, and more rigorous
analysis and reporting of data, have led to
the emergence of many reproducible ge-
netic association signals for type 2 diabe-
tes and related glycemic traits, which has
spurred a number of large-scale studies of
gene-lifestyle interactions.

Using genome-wide
association studies to inform
the selection of loci for
studies of gene-lifestyle
interactions—The identification of
more than 50 genetic loci that are re-
producibly associated with type 2 diabe-
tes (20) (Fig. 2) and 53 additional loci for
glucose and insulin concentrations (21)
has fueled multiple studies in which these
loci have been tested for interactions with
lifestyle risk factors for type 2 diabetes.
One of the first publications of this kind
focused on the interaction between the
FTO 159939609 variant and physical ac-
tivity. Two cross-sectional cohort studies
(22,23) and one clinical trial analysis (24),
published at approximately the same
time, provided nominal evidence that
physical activity modifies the effects of
the FTO variant on BMI or adipose tissue
accumulation. Replication studies ach-
ieved mixed results; thus, we sought a
definitive answer by conducting a pro-
spective meta-analysis including 45 adult
(n = 218,166) and 9 pediatric (n =
19,268) cohorts (25). Although the study

Franks and Associates

yielded a statistically significant interac-
tion summary statistic (Piyieraciion =
0.005), which was directionally consis-
tent with the original studies’ findings
(22), the effect estimate was heteroge-
neous (I” = 36%), suggesting the presence
of one or more latent effect-modifiers (i.e.,
unidentified factors that change the mag-
nitude of FTO’s effect on BMI). Further
data exploration determined that the
source of this heterogeneity was the geo-
graphic origin of the cohorts, with the in-
teraction effect being driven almost
entirely by the North American cohorts.
Although this geographic difference re-
mains unexplained, the observation
strongly suggests that physical activity is
not the causal effect-modifier; instead,
factors that correlate with physical activity
in North American but not in European
cohorts, such as specific dietary factors,
are likely to be the causal modifiers of
FTO’s obesogenic effects. It is also impor-
tant to bear in mind that almost all studies
reporting significant FTO-lifestyle interac-
tions are cross-sectional observational
studies, from which causal effects and
causal direction are almost impossible to
ascertain. Thus, even if a causal relation-
ship underlies the results reported above,
it is possible that the direction of effect is
reversed (i.e., a direct effect of FTO varia-
tion on lifestyle behaviors, which is stron-
ger in fatter compared with leaner people).
These alterative explanations are im-
portant to consider when discussing,
as many do, the potential translational
implications of studies of gene-lifestyle
interactions.

The first large-scale study examining
the interaction of established type 2 di-
abetes loci and physical activity included
16,000 men and women from southern
Sweden, of whom 2,200 went on to
develop diabetes during the ensuing 25
years of follow-up (27). Of the 17 estab-
lished diabetes loci examined, the study
identified a single locus, the noncoding
polymorphism rs4430796 at the diabetes
gene HNF1B, that interacted with baseline
physical activity levels as estimated
by questionnaire (Bonferroni corrected
Pinteraction = 0.015). In homozygotes for
the nonrisk allele (A), baseline physical
activity apparently protected against the
development of type 2 diabetes, as one
would predict from previous studies of
physical activity and diabetes; however,
in carriers of the rs4430796 risk allele,
the protective effect of physical activity
appeared to be diminished in a dose-
dependent fashion.
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Figure 2—The evolving landscape of established type 2 diabetes-associated genetic loci. Effect estimates and list of loci are adapted from reference
21. Variants in CCND2 and GIPR (not shown in Fig.) have sex-heterogeneous effects, with the former having a larger effect in males and the latter in
females (21). *This locus was initially associated with type 2 diabetes by Renstrom et al. (67).

In a separate cohort from southern
Sweden of ~25,000, two gene-diet inter-
actions have been reported in relation to
type 2 diabetes. Sonestedt et al. (28) re-
ported that dietary fat and dietary carbo-
hydrate intake obtained by questionnaire
modified the effect of the rs10423928
variant at GIPR on incident diabetes,
such that the odds of diabetes associated
with the established diabetes risk allele
(A) were highest in individuals who con-
sumed low levels of dietary fat or high
levels of dietary carbohydrate. In the sec-
ond study, Hindy et al. (29) reported that
the diabetogenic effect of the TCF7L2 var-
iant 157903146 was augmented in indi-
viduals consuming high levels of dietary
fiber; although the test of interaction
was nominally statistically significant
(Pinteraction = 0.049), it was no longer sig-
nificant after correction for multiple test-
ing. The findings of Hindy et al. contrast
with those reported earlier in the Nurses
Health Study, where Cornelis et al. (30)
reported that for a correlated variant
(rs12255372; 1> = 0.73 and D’ = 0.93
with the rs7903146 TCF7L2 variant in
white Europeans: www.hapmap.org),
the effect of the diabetogenic genotype
was greatest in women who reported con-
suming diets with a high glycemic load or
index (uncorrected Pjperaciion = 0.03). A
further study of 46,000 individuals (31)
reported no evidence of interaction

between the rs4506565 variant (> = 0.92
and D’ = 1.00 with the 157903146 TCF712
variant in Europeans: www.hapmap.org)
and dietary whole-grain intake in relation
to insulin or glucose concentrations (nom-
inal Pinteraction = 0.88).

Qi et al. (32) studied the interaction
of a Western dietary pattern assessed by
questionnaire and a genetic risk score
(GRS) consisting of 10 genetic loci that
had previously been reproducibly asso-
ciated with type 2 diabetes (20). Cross-
sectional analyses were conducted in a
cohort of 1,196 prevalent and incident
case participants with diabetes and
1,337 matched control participants from
the Health Professionals Follow-up Study
(32). The Western diet score was more
strongly associated with diabetes risk in
the health professionals with a higher
GRS and less so in those with a lower
GRS (Pieraction = 0.02). Interaction anal-
yses focusing on specific components of
the Western diet score indicated that con-
sumption of red and processed meat un-
derlies the interactions described above
and that heme iron intake, in particular,
may be the central component of the diet
score driving the interaction with the
GRS. However, an analysis of ~50,000
nondiabetic individuals by the Cohorts
for Heart and Aging Research in Genomic
Epidemiology consortium failed to find
any evidence that established glucose- or

insulin-associated loci modify the effects
of Western dietary pattern on fasting in-
sulin or glucose levels (33).

Individual groups and large consortia
have embarked on genome-wide associa-
tion study (GWAS) analyses stratified by
potential effect modifiers such as sex and
BMI. These studies are often much larger
than single-cohort analyses but are re-
stricted to cross-sectional data, which
may hinder the interpretation of results
for the reasons discussed above. This is
so, particularly when focusing on BMI,
because the onset of diabetes can corre-
spond with weight loss as a consequence
of lifestyle changes in the immediate after-
math of a diagnosis, treatment, or of the
disease process itself. Nevertheless, in an
analysis of 2,112 lean type 2 diabetes case
subjects, 4,123 obese type 2 diabetes case
subjects, and 54,412 unstratified non-
diabetic control subjects, Perry et al.
(34) identified a LAMA]I variant that
conveyed a significantly higher odds of
diabetes in lean compared with obese di-
abetic case subjects. Similar BMI stratum-
specific genetic effects were observed for
29 of the 36 type 2 diabetes loci (binomial
P =0.0002) that had been identified pre-
viously in unstratified GWAS meta-analyses
performed by the DIAbetes Genetics Rep-
lication and Meta-analysis (DIAGRAM)
consortium (20). These results indicate
that when diabetes develops in a person
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who is lean, genetic risk factors are more
likely to be present than in someone who
is obese and develops the disease or that
weight loss enhances the genetic risk of
diabetes.

Genetic analyses performed in clinical
trials involving intensive lifestyle modifi-
cation provide an important adjunct to
the epidemiological literature on gene-
lifestyle interactions in type 2 diabetes.
On one hand, a major advantage of ran-
domized controlled trials is that interac-
tion effects observed in trials are likely to
reflect causal processes, whereas those
observed in epidemiological investiga-
tions are more prone to confounding
and reverse causality. Other advantages
of well-designed clinical trials include rel-
atively precise estimates of the environ-
mental exposures (treatments) and of
the phenotypes, careful ascertainment of
participants, randomization of exposures,
close predetermined follow-up, and hy-
pothesis-driven design. On the other
hand, trials are often smaller than epide-
miologic cohorts, control poorly for
changes in behavior outside the interven-
tion sessions, and typically consist of in-
dividuals at high risk of diabetes; hence,
results may not be generalizable to other
population subgroups.

Only two randomized controlled tri-
als, the Diabetes Prevention Program
(DPP) from the U.S. (35) and the Finnish
Diabetes Prevention Study (DPS) (36),
have reported results for gene-lifestyle in-
teractions in relation to diabetes inci-
dence. Both studies focused on people at
high risk of developing type 2 diabetes
and implemented almost identical life-
style intervention protocols. The DPP
randomized 1,079 participants to an in-
tensive lifestyle intervention, 1,082 to a
placebo control arm, and 1,073 to met-
formin treatment. In the Finnish DPS,
522 participants were randomized to a
lifestyle or control intervention. The
DPP is well powered (~80%) to detect
genetic effects, with a hazard ratio of
1.2, but has appreciably lower power to
detect gene-treatment interactions
(37,38); statistical power to detect inter-
actions in the Finnish DPS is less than in
the DPP owing to its smaller sample size.

Notwithstanding the sample size con-
straints of the DPP, a number of interest-
ing findings relating to gene-treatment
interactions have emerged from the trial.
For example, lifestyle intervention offsets
the risk conveyed by the diabetogenic
alleles at the TCF7L2 rs7903146 (39) and
ENPP]1 K121Q (40) loci, or by a genetic

risk score consisting of 34 type 2 diabetes-
associated variants (41). Elsewhere, the
DPP investigators reported that the
CDK2NA/B 1510811661 variant dimin-
ishes the effects of lifestyle intervention
on diabetes risk and on estimated insulin
secretion (Pinteraction = 0.05) (37);
interestingly a subsequent cohort study
of 8,600 nondiabetic Swedish adults re-
ported directionally consistent interac-
tions between the same genotype and
physical activity levels on the odds of
impaired glucose regulation and on
continuous 2-h glucose concentrations
(Pimeractian = 0015) (27)

Hypothesis-free discovery

of gene-lifestyle interaction
effects—The decision to carry forward
findings from conventional GWAS ex-
periments to detect gene-lifestyle interac-
tions is a simple, pragmatic, and relatively
cost-efficient strategy. However, of the
many loci associated with cardiometa-
bolic traits, few have been reproducibly
shown to interact with environmental
factors; FTO (physical activity interac-
tions in obesity) (25), chromosome
9q21 variants (prudent diet interactions
in cardiovascular disease and myocardial
infarction) (42), and an obesity GRS
(sugar-sweetened beverages interaction
in obesity) (43) are rare examples of
gene-lifestyle interactions in cardiometa-
bolic traits that have been robustly repli-
cated.

The paucity of replicated examples of
GWAS-derived loci that interact with
lifestyle factors may be due to the low
prioritization of follow-up studies by in-
vestigators and journal editors or that not
all GWAS-derived loci have been exam-
ined for interactions in well-designed
studies. Alternatively, it is possible that
the statistical approaches used in conven-
tional GWAS experiments bias against the
detection of variants that interact with
environmental factors that are reasonably
prevalent within the populations in which
the GWAS are performed. Indeed, the
GWAS ranking system is typically based
on the P value derived from the main ef-
fect regression model for each single nu-
cleotide polymorphism (SNP). Of note,
common, disease-associated variants
have relatively small effect sizes (typically
odds ratios <1.4 per risk allele); thus,
for a genetic association signal to exceed
the conservative genome-wide probabil-
ity threshold used in most GWAS (P =
5% 10~9), the estimates of the genetic ef-
fect are relatively consistent in magnitude

Franks and Associates

within and between the populations in-
cluded in GWAS meta-analyses, as re-
flected in the narrow Cls for the
odds ratios of the top-ranked loci and low
heterogeneity estimates. Broadly speak-
ing, one would expect that the larger the
magnitude of a GEI or gene-gene effect,
the greater the variance associated with
the main effects for the genetic and/or en-
vironmental components (44). Hence,
with some exceptions (25,27), it is likely
that the gene variants that are most rele-
vant for GEI are those that rank poorly in
most GWAS meta-analyses.
Genome-wide interaction studies
have potential to identify gene variants
that influence diabetes risk that might not
be detected using hypothesis-driven ap-
proaches. However, the statistical power
limitations of such studies when applying
conventional tests of interaction, com-
bined with the challenges of identifying
large cohort collections with appro-
priately characterized environmental,
genetic, and phenotypic data, pose chal-
lenges that conventional genetic associa-
tion studies do not face. Several methods
have been developed to mitigate these
challenges; among the most promising is
the joint meta-analysis approach, which is
derived from the model with two degrees
of freedom popularized by Kraft et al. (45)
and developed further by Manning et al.
(46). Manning et al. (47) went on to apply
the joint meta-analysis approach in a
genome-wide study of 52 cohorts in
which they tested for SNP main effects
and interactions (with BMI) on fasting glu-
cose and insulin levels. The analysis
yielded novel experiment-wide associa-
tion signals for main effects, but none
was discovered for interactions.
Recognizing that heterogeneous ef-
fect estimates are a signature of loci in-
volved in interactions, Paré et al. (48) and
Visscher and Posthuma (49) developed
methods that model genetic associations
with genotypic variance estimates rather
than with phenotypic means, as is the case
in conventional GWAS experiments. Both
approaches involve two key steps: in step
1, a phenotypic variance estimate is ob-
tained for each of the genotypes at a SNP
locus. A statistical comparison of these
variance estimates is then made and a P
value obtained. These P values are ranked
from lowest to highest, and those that ex-
ceed an experiment-wide threshold are
carried forward to step 2, where conven-
tional, pairwise tests of GEI are performed
for an array of environmental exposures,
with the intent of identifying one or more
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that underlie the SNP’s heterogeneous ef-
fect estimate revealed in step 1. Ina recent
application of method described by
Visscher and Posthuma, Yang et al. (26)
performed a meta-analysis for height and
BMI in 170,000 samples and identified a
single locus for BMI that met the genome-
wide significance threshold; intriguingly,
this locus was FTO, the most plausible
candidate for GEI in obesity currently
known. There was no genome-wide sig-
nificant discovery for height, which is
perhaps unsurprising given that this trait
is under much tighter genetic control
than weight and varies much less than
weight across the adult life span.

Pharmacogenetics—Pharmacoge-
netics is a specialized example of GEL
Here, the environmental exposure is drug
treatment; by studying interactions be-
tween gene variants and treatment, inves-
tigators seek to identify variants that are
associated with adequate or inadequate
response to diabetes therapies. The phar-
macogenetics of diabetes therapies have
been extensively reviewed elsewhere (50—
52). However, three examples illustrate
successful approaches and the potential
clinical utility of pharmacogenetics in
diabetes:

Firstly, studies of HNF1A mutations
that cause a form of maturity-onset diabe-
tes of the young showed that carriers of
these mutations, who are often misdiag-
nosed as having type 1 or type 2 diabetes,
respond better to sulfonylureas than met-
formin, thus facilitating their transition
off insulin or metformin (53,54).

Secondly, common genetic variation
in the gene that encodes a transporter
responsible for disposing of metformin
(MATEL, encoded by SLC47A1) has been
associated with metformin response in a
retrospective patient cohort (55), a pre-
liminary finding corroborated in the
DPP clinical trial (56).

Finally, in a discovery GWAS of
1,000 metformin-treated patients from
the Genetics of Diabetes Audit and Re-
search Tayside (GoDARTS) study, a locus
including the ATM gene was associated
with metformin response. This discovery
was initially replicated in independent
GoDARTS and UK Prospective Diabetes
Study cohorts (57) as well as subsequent
cohorts that were similarly ascertained
(58); however, it was not reproduced in
the DPP clinical trial, which differs from
the earlier studies by its experimental,
prospective design and its enrollment
of nondiabetic participants in whom

metformin was used for diabetes preven-
tion (56). If ATM is eventually established
as a causal regulator of metformin re-
sponse, this will provide a novel unex-
pected role for this established oncogene
in diabetes treatment. The challenge for
pharmacogenetics is to establish clinical
utility, which in adult diabetes is cur-
rently limited to the HNFIA paradigm.
An elegant example of how pharmacoge-
netics influences therapy in neonatal di-
abetes has been reviewed by Greeley et al.
(59).

Future directions—\We have em-
phasized GEI in this Perspective because
this is where most of the published re-
search has been focused to date. A com-
plementary set of disease predictors is
being generated with the emergence of
comprehensive metabolomic approaches,
in which circulating small molecules
present in human fluids are assayed in a
high-throughput manner through liquid
chromatography and mass spectroscopy.
These molecules represent metabolic
readouts of cellular states at a systems
level and reflect the output of gene prod-
ucts and also their interactions with the
environment. Using these platforms, in-
dependent groups have established a me-
tabolomic signature of branched chain
and aromatic amino acids as associated
with obesity and insulin resistance (60)
as well as future diabetes (61). How genes
regulate circulating levels of these mole-
cules, what they tell us about gene
function, how much they reflect environ-
mental factors, and to what extent they
provide orthogonal information for dia-
betes prediction and treatment response
is the subject of intense investigation. The
participant-level integrated assessment of
variation in the genome, metabolome,
and other aspects of the physiome (e.g.,
microbiome, transcriptome, and pro-
teome) in large cohorts has not previ-
ously been possible, but with recent
advances in technology and analytical
methods, and cost reductions, this is
now feasible and is evolving into a new
field called systems epidemiology (Fig. 1).
This topic is eloquently reviewed else-
where (62,63).

Although recent genetic discoveries
in metabolic traits have typically illus-
trated novel pathways, pointed toward
fundamental biology, confirmed prior
epidemiological observations, high-
lighted the role of B-cell dysfunction in
type 2 diabetes, and provided possible
targets for pharmacotherapy, their role

in genetic prediction is less clear. This is
partly so because even in aggregate, they
only explain a relatively small fraction of
the disease’s heritability (41,64-66). The
latter is likely due to insufficient sample
sizes to detect small effects, a nearly ex-
clusive focus on populations of European
descent, an imperfect capture of infre-
quent genetic variants, an incomplete as-
certainment of alternate (non-SNP) forms
of genetic variation, and the limited ex-
ploration of additional genetic models,
including those involving GEI. As the
community embraces complementary ap-
proaches that include systematic fine-
mapping, custom-made replication,
denser genotyping arrays, platforms
that focus on functional variation, next-
generation sequencing techniques, ex-
pansion to non-European populations,
and integration of other global biological
measurements with genetic data, the
coming years will continue to elucidate
the genetic architecture of metabolic
phenotypes and its interaction with the
environment. A more refined characteri-
zation of the molecular basis of type 2
diabetes can then be translated into
more detailed disease nosology, appro-
priate targeting of more effective and
better tolerated therapeutic or preven-
tive strategies, more rational and effi-
ciently designed clinical trials, and
stratification of risk groups so that costly
public health interventions can be de-
ployed intelligently.

We speculate that the future of di-
abetes medicine may involve genetic and
molecular biomarker screening in pa-
tients to inform the prescription of life-
style or drug therapy for diabetes
prevention or management. However,
the translation of this vision into clinical
practice will require structured research
programs that combine observational ep-
idemiology to generate relevant hypoth-
eses and experimental studies that test
these hypotheses and demonstrate cause
and effect. When reliable and causal
interactions are discovered, it will be
necessary to conduct studies proving
that the inclusion of this information
into conventional risk prediction algo-
rithms improves predictive accuracy and/
or reclassification, or that stratified med-
icine informed by biomarker data im-
proves treatment outcomes; in addition, it
will also be necessary to show that these
strategies are cost-effective compared
with conventional approaches.

The concept of stratified medicine
(otherwise known as personalized or
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precision medicine) is an area of consider-
able research interest both within the
pharmaceutical industry and academia.
The European Union-Innovative Medi-
cines Initiative (IMI)-funded DIabetes
REsearCh on patient sTratification (DIRECT)
study (www.direct-diabetes.org) is an
academic-industry program that ad-
dresses most of these questions, spanning
a discovery phase of comprehensive phe-
notyping, and large-scale omic analysis
through to a validation and clinical trial
phase to establish utility of a biomarker-
stratified approach to diabetes medicine.
The study focuses on two phenotypes
where stratification approaches can be ap-
plied (glycemic deterioration of prediabe-
tes and diabetes) and therapeutic response
(to sulfonylureas, metformin, GLP-1R
agonists, and obesity surgery). For each
phenotype, the plan is to integrate physi-
ological parameters with lifestyle mea-
sures, genetic (GWAS and sequencing),
transcriptomic, metabolomic, proteomic,
and metagenomic data to enable a com-
prehensive analysis for discovery of strat-
ification and surrogate biomarkers.
Biomarker stratified clinical trials will
then be done to establish the utility of bio-
marker led therapeutics over traditional
nonbiomarker led studies.

Similar technologies can be applied in
the framework of comparative medicine.
The National Institutes of Health-sponsored
Glycemia Reduction Approaches for Di-
abetes: A Comparative Effectiveness Study
(GRADE) trial will for the first time per-
form head-to-head comparisons of repre-
sentative agents from four major drug
classes for type 2 diabetes treatment—the
sulfonylurea glimepiride, the DPP-4
inhibitor sitagliptin, the GLP-1 agonist
liraglutide, and the basal insulin
glargine—as adjuncts to metformin in
achieving glycemic control. This large ran-
domized clinical trial, planning to enroll
6,000 participants in 40+ centers through-
out the United States, will be launched in
the spring of 2013 and will collect pheno-
types, covariates, end points, and bioma-
terials on all participants to enable the
deployment of omics techniques to exam-
ine prediction and response to pharmaco-
logical manipulation.

Conclusions—\We are witnessing a
time in biomedical research when systems
can be queried globally to establish the
metabolic state of the organism in a single
experiment. Such technologies can also be
deployed across populations, tissues, and
environmental conditions. The integration

of all thisinformation and its interpretation
into a cogent vision presents enormous
challenges, not least of which is the scien-
tific imperative of reproducibility. As
rigorous analytical standards are imple-
mented and international collaborations
enable the pursuit of these fundamental
questions at an adequate scale, we stand on
the verge of a true transformation of med-
icine as applied to the individual patient.
While discovering and replicating evi-
dence of GEIs is proceeding, the process
of discussing and planning how such data
can be translated into the clinical arena
should already be underway. Current dis-
coveries should also prompt us to consider
the benefits and challenges (e.g., ethical,
economic, logistic) that using genetic in-
formation in diabetes medicine is likely to
present, which may enable the rapid trans-
lation of human genetics research into
clinical practice.
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