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Abstract
Barrett’s esophagus (BE) is a metaplastic lesion of the 
distal esophagus arising as a consequence of chronic 
gastroesophageal reflux disease. Multiple studies show 
that BE is associated with increased risk of esophageal 
adenocarcinoma (EAC). Epidemiological studies and 
animal models demonstrate that chronic inflammation 
triggered by repeated exposure to refluxate predisposes 
to the development of BE and EAC. The chronic inflam-
mation is associated with cytokine alterations. Interleu-
kin 6 (IL-6) is a cytokine that stimulates cell prolifera-
tion and apoptosis resistance is frequently increased in 
different cancers. Importantly, IL-6 and transcriptional 
factor signal transducer and activator of transcription 3 
(STAT3) that is activated by IL-6 are also increased in 
BE and EAC. This review critically appraises the role of 
IL-6/STAT3 pathway in progression of BE to EAC from 
the published evidence currently available. 
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INTRODUCTION
Barrett’s esophagus (BE) is a condition where normal 
squamous epithelium is replaced by metaplastic intestinal-
like columnar epithelium containing goblet cells. This 
premalignant lesion is associated with a nearly 40-fold 
increased risk for the development of  esophageal ad-
enocarcinoma (EAC), a cancer with poor prognosis, and 
a median survival of  less than one year[1]. EAC is most 
common in the Caucasian population in the western 
countries. EAC incidence increased almost six fold be-
tween 1975 and 2001[2] and EAC mortality also increased 
more than sevenfold[2]. Currently, EAC has the fastest 
growing incidence rate of  all cancers in the United States. 
Approximately 17000 patients will be diagnosed with 
esophageal cancer in 2012 and about 14600 patients will 
die of  this cancer in the United States[3].

There is overwhelming evidence that BE arises as a 
consequence of  chronic gastroesophageal reflux disease 
(GERD). GERD is a very common medical condition in 
the United States affecting 40% of  the adult population 
at least monthly. One third of  these patients have erosive 
esophagitis and 6%-14% of  patients undergoing endos-
copy for symptomatic GERD have BE[1]. This repre-
sents about 2 million people in the United States alone[4]. 
The rate of  transformation to cancer is about 0.1%-0.2% 
per year[3].

Histopathologic steps in the progression of  BE include: 
(1) metaplasia of  the normal esophageal squamous epithe-
lium to a specialized intestinal glandular epithelium; (2) low-
grade dysplasia; (3) high-grade dysplasia; and (4) esophageal 
adenocarcinoma with invasive and metastatic potential. 
However, little is known, about the signaling pathways pro-
moting the development of  metaplasia and dysplasia. 
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ChRONIC INflammaTION aND 
CyTOkINe DysRegUlaTION IN Be
Epidemiological studies and animal models demonstrate 
that chronic inflammation predisposes to the development 
of  various forms of  cancer including gastrointestinal 
malignancies[5]. In the esophagus, chronic inflammation is 
triggered by repeated exposure to components of  reflux-
ate such as gastric acid and bile acids. Indeed, chronic re-
flux is the strongest risk factor for the development of  BE 
and EAC[6]. A major regulatory pathway linking inflam-
mation and cancer is activation of  nuclear factor kB (NF-
kB) signaling. The same pathway initiates transcription of  
cytokines. In agreement with the inflammatory hypothesis 
of  BE/EAC development, NF-kB is constitutively acti-
vated in BE or EAC but is not detected in esophagitis or 
the adjacent normal esophageal mucosa[7].

Esophageal mucosa damaged by refluxate is common-
ly infiltrated by inflammatory cells of  different lineages. 
First, the damaged site is infiltrated by neutrophils and 
monocytes (acute inflammation) followed by lympho-
cytes and plasma cells primarily at the site of  metaplasia 
(chronic inflammation)[8]. Cytokines that are produced by 
the inflammatory cells and by Barrett’s epithelium play a 
crucial role in BE carcinogenesis[9]. Furthermore, noxious 
compounds, such as reactive oxygen and nitrogen species, 
released during chronic inflammation may damage DNA 
and induce mutations that subsequently promote cancer 
development.

Interestingly, Barrett’s esophagus is characterized by a 
unique cytokine environment compared to erosive esoph-
agitis. While BE is associated with Th2 cytokines, erosive 
esophagitis is distinguished primarily by a Th1 cytokines 
profile[10]. This difference in the cytokine profile does not 
seem to be simply a result of  the development of  intes-
tinal metaplasia since the cytokine profile is completely 
different in the duodenum or the gastric antrum[10]. We 
analyzed multiple cytokines in human tissues using cyto-
kine arrays[11]. Interleukin-6 (IL-6) levels were consistently 
increased in BE compared to control tissues. The expres-
sion of  other cytokines, such as IL-8, was variable and 
inconsistent.

Il-6 aND CaNCeR
This review is focused on the IL-6/signal transducer and 
activator of  transcription 3 (STAT3) pathway. IL-6 is a 
potent, pleiotropic Th2 cytokine that regulates immune 
defense response. Its release is triggered by tissue damage 
or infection. IL-6 acts as both a pro-inflammatory and 
anti-inflammatory cytokine. IL-6 plays a central role in 
the transition from the acute to the chronic phase of  the 
inflammatory process[12]. Importantly, the IL-6 pathway 
is one of  the most important mechanisms linking inflam-
mation to cancer[13].

IL-6 overexpression is implicated in the pathogenesis 
of  different tumors, including cancers of  the ovary, pros-
tate, breast, kidney and lung[14]. IL-6 is also associated with 

the development of  colon cancer, predominantly colitis-
associated colon cancer. Recent in vivo evidence shows that 
IL-6 controls tumor formation and growth in a mouse 
colitis-associated colon cancer[15]. These studies indicate 
that the ablation of  IL-6 reduces tumor burden, while 
the elevation of  IL-6 levels accelerates tumor formation. 
The effects of  IL-6 are mediated by STAT3. As expected, 
STAT3 deficiency reduced tumor incidence and growth, 
while STAT3 hyperactivation had an opposite effect in this 
model[15]. These studies clearly indicate that IL-6/STAT3 
signaling is crucial in the carcinogenesis that is linked to 
inflammation, such as colitis-associated colon cancer. 

Only a few studies investigating the role of  IL-6 in 
esophageal carcinogenesis were reported[11,16,17]. We have 
shown that IL-6 is secreted from BE and EAC tissues 
and that phosphorylated STAT3 is expressed in BE and 
EAC[11,16]. These studies were confirmed by Zhang et al[17]. 
Non-transformed and transformed human Barrett’s epi-
thelial cell lines were used in this study. Phospho-STAT3 
was expressed only by transformed Barrett’s cells, which 
also exhibited higher levels of  IL-6 mRNA and of  IL-6 
and Mcl-1 proteins than non-transformed Barrett’s cells.

In a recent study, serum IL-6 was significantly in-
creased in esophageal cancer (86%) as compared to car-
cinoembryonic antigen (30%) and squamous cell cancer 
antigen (24%)[18]. This was noted for both squamous 
cell carcinoma of  the esophagus (87.1%, 23% and 33%, 
respectively) and EAC (7%, 39% and 13%, respectively). 
Interestingly, concentrations of  IL-6 depended on dis-
tant metastases and patient’ survival[18]. Importantly, both 
colitis-associated colon cancer and esophageal adenocar-
cinoma are associated with chronic inflammation. There-
fore, elevated IL-6/STAT3 signaling is one of  the key 
pathways involved in esophageal tumorigenesis.

aUTOCRINe pRODUCTION Of Il-6 By 
CaNCeR Cells
One strategy used by cancer cells to upregulate growth 
and survival pathways is through autocrine production of  
growth and survival factors. IL-6 is produced by different 
cells, including immune cells and epithelial cells[19]. Ex-
pression of  IL-6 by cancer cells suggests that IL-6 acts as 
an autocrine growth factor to promote tumorigenesis[20]. 

But why is IL-6 a crucial factor in tumorigenesis if  
STAT3 can be activated by other cytokines? Grivennikov 
et al[21] suggested that tumors choose IL-6 to constitu-
tively activate STAT3, because immune cells together 
with malignant cells are capable of  producing massive 
amounts of  “start-up” IL-6 (but not other family mem-
bers) required for tumor progression. Indeed, both IL-6 
and the IL-6 receptor are expressed in intestinal epithelial 
cells and these proteins are also increased in colorectal 
cancers[22]. Importantly, our studies indicate that premalig-
nant BE tissue expresses membrane-bound IL-6 receptor 
as well as soluble IL-6 receptor (sIL-6R) and secretes in-
creased amounts of  IL-6 as BE progresses to esophageal 
adenocarcinoma (unpublished data)[11,16].
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sTaT3 aND CaNCeR
IL-6 activity is mediated through activation of  at least 
three different pathways. First, IL-6 binds to either cog-
nate IL-6 receptor (IL-6Ra) or sIL-6R. Followed by bind-
ing to the receptors: (1) IL-6 induces association of  signal 
transducer gp130 and ErbB, which leads to the activation 
of  the MAP kinase pathway and activation of  transcrip-
tion factor NF-IL-6; (2) IL-6 promotes activation of  
Phosphatidylinositol 3-kinases, a prominent kinase associ-
ated with NF-kB activation and apoptosis resistance[23]; 
and (3) IL-6 signaling is primarily mediated by the Janus 
kinase (JAK)/STAT pathway (Figure 1). In this pathway 
the complex of  IL-6 and its receptor interacts with the 
membrane bound gp130[24]. This event leads to the phos-
phorylation of  JAKs and subsequent phosphorylation of  
the transcription factor STAT3. Activated STAT3 then 
forms dimers and translocates from the cytoplasm to the 
nucleus. In the nucleus, STAT3 activates the transcription 
of  specific genes by binding to consensus DNA elements.

There are six essential alterations to normal cell physi-
ology, which together define a cancer cell. These include: 
evasion of  apoptosis, self-sufficiency in growth signals, 
insensitivity to growth-inhibitory signals, limitless replica-
tive potential, tissue invasion and metastasis and sustained 
angiogenesis[25]. STAT3 participates in the regulation 
of  these processes[26]. Particularly, STAT3 increases the 
expression of  genes that are required for angiogenesis, 
uncontrolled proliferation and survival[27]. These include 
genes such as anti-apoptotic genes (Bcl-xL, Mcl1 and sur-
vivin), or genes involved in proliferation (c-MYC, cyclin D1) 
or angiogenesis (vascular endothelial growth factor). All 

these proteins are associated with tumorigenesis and they 
are expressed in BE or EAC[11,28-31]. 

In addition, STAT3 contributes to constitutive NF-kB 
activation in tumor cells. Recent studies show that STAT3 
prolongs NF-kB nuclear retention through acetyltransfer-
ase p300-mediated RelA acetylation, thereby interfering 
with NF-kB nuclear export and thus inducing permanent 
NF-kB activation. Another important effect of  STAT3 is 
that STAT3 negatively regulates the expression of  tumor 
suppressor gene p53[27]. Importantly, p53 activity can be 
restored in cells by inhibiting STAT3 signaling[27].

sTaT3 RegUlaTION
The activation of  STAT3 is regulated by suppressors 
of  cytokine signaling (SOCS) and protein inhibitors of  
activated STATs (PIASs). These proteins are often de-
regulated in different cancers. SOCS-3 negatively regulates 
activated receptor complexes by inactivating JAKSs or 
by blocking recruitment sites for STAT3[32]. It also target 
signaling complexes for ubiquitination and degradation. 
PIAS3 blocks the DNA-binding activity of  STAT3 and 
inhibits STAT3-mediated gene activation[33]. Silencing of  
SOCS3 expression due to aberrant methylation of  the 
gene in various cell lines and cancers was reported by He 
et al[34]. Inactivation of  SOCS-3 is frequently observed 
also in dysplastic Barrett’s esophagus and EAC due to 
promoter hypermethylation[35]. In normal squamous epi-
thelium and normal gastric mucosa, SOCS-3 methylation 
was not observed. The expression of  PIAS3, another in-
hibitor of  activated STAT3 protein, was also decreased in 
various cancers including prostate, colon, gastric or brain 
cancer[36]. However, such studies have not been performed 
in BE or EAC. 

INCRease IN Il-6 assOCIaTeD wITh 
CaNCeR IN male
The reasons for the higher prevalence of  BE in males are 
not clear. Similarly to esophageal adenocarcinoma, hepa-
tocellular carcinoma (HCC) is more prevalent in the male 
population. Recently, Naugler et al[37] identified a possible 
mechanism for this gender disparity in HCC. They found 
in a mouse model of  HCC that administration of  dieth-
ylnitrosamine induced an increase in serum IL-6 in males 
compared to females. In wild type animals the incidence 
of  HCC was 100% in males and only 13% in females. 
In contrast IL-6-/- males and females exhibited a similar 
very low incidence of  HCC and longer survival[37]. The 
absence of  IL-6 resulted in almost complete inhibition 
of  diethylnitrosamine-induced hepatocarcinogenesis. 
Their study indicated that estrogen mediated suppression 
of  IL-6 is crucial in preventing hepatocellular carcinoma. 
Perhaps, a similar mechanism is involved in esophageal 
tumorigenesis, and that is why males are affected by this 
disease more often than women. 
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Figure 1  Interleukin 6 signaling scheme of the interleukin 6/signal trans-
ducer and activator of transcription 3 signaling pathway. IL-6: Interleukin 6; 
STAT3: Signal transducer and activator of transcription 3; sIL-6R: Soluble IL-6 
receptor; IL-6R: IL-6 receptor; JAK: Janus kinase; MAPK: Mitogen-activated 
protein kinase; VEGF: Vascular endothelial growth factor; ANG: Angiopoietin.
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Hydrophobic bile acids also generate ROS by activa-
tion of  nicotinamide adenine dinucleotide phosphate-
oxidase, phospholipase A2, and by damaging mito-
chondria[44]. Our studies showed that deoxycholic acid 
significantly increases levels of  superoxide, hydrogen per-
oxide and peroxynitrite[45]. Furthermore, we reported that 
human esophageal biopsies produce ROS after exposure 
to acidified medium containing bile acid cocktail[46]. It 
was shown that in esophageal cells ROS produced by bile 
acids directly activate the redox sensitive transcriptional 
factor NF-kB[47]. Consequently NF-kB upregulates pro-
duction of  different cytokines, such as IL-6, which leads 
to an increase in STAT3 signaling and expression of  anti-
apoptotic and prosurvival proteins. Indeed, a recent study 
showed that IL-6 and activated STAT3 were increased in 
transformed Barrett’s cells (transfected with H-ras and 
p53 siRNA)[17]. 

In addition, Quante et al[48] recently developed L2-IL-
1b transgenic mouse model of  BE/EAC. In this model 
human IL-1b is overexpressed in mouse esophagus and 
forestomach to mimic chronic esophageal inflammation. 
Furthermore, L2-IL-1b mice were fed 0.2% deoxycholic 
acid to accelerate the development of  BE and EAC. In-
terestingly, when these transgenic mice were crossed with 
IL-6-/- mice no metaplastic and/or dysplastic lesions were 
found[48]. These studies confirm our previous results indi-
cating the importance of  IL-6 in BE/EAC development. 

DIsCUssION 
This review provides an evidence for a strong link be-
tween chronic inflammation, IL-6, STAT3 activation 
and esophageal carcinogenesis. IL-6 is a cytokine that is 
frequently increased in different cancers. Bile and gastric 
acid in the refluxate are two of  the major factors involved 
in the pathogenesis of  BE. We hypothesize that repeated 
exposure of  esophageal tissue to bile acids leads to IL-6 
upregulation, increased activation of  STAT3, apoptosis 
resistance and cancer development. This hypothesis is 
consistent with the studies demonstrating that tissue 
biopsies from BE patients (1) secrete large amounts of  
IL-6; (2) are resistant to apoptosis induced by bile ac-
ids; and (3) express activated STAT3 and anti-apoptotic 
proteins regulated by IL-6/STAT3 signaling, Bcl-xL and 
Mcl-1[11,16,40].
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