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ABSTRACT

RIP-seq has recently been developed to discover
genome-wide RNA transcripts that interact with a
protein or protein complex. RIP-seq is similar to
both RNA-seq and ChIP-seq, but presents unique
properties and challenges. Currently, no statistical
tool is dedicated to RIP-seq analysis. We developed
RIPSeeker (http://www.bioconductor.org/packages/
2.12/bioc/html/RIPSeeker.html), a free open-source
Bioconductor/R package for de novo RIP peak pre-
dictions based on HMM. To demonstrate the utility
of the software package, we applied RIPSeeker and
six other published programs to three independent
RIP-seq datasets and two PAR-CLIP datasets cor-
responding to six distinct RNA-binding proteins.
Based on receiver operating curves, RIPSeeker dem-
onstrates superior sensitivity and specificity in
discriminating high-confidence peaks that are con-
sistently agreed on among a majority of the compari-
son methods, and dominated 9 of the 12 evaluations,
averaging 80% area under the curve. The peaks from
RIPSeeker are further confirmed based on their sig-
nificant enrichment for biologically meaningful gen-
omic elements, published sequence motifs and
association with canonical transcripts known to
interact with the proteins examined. While
RIPSeeker is specifically tailored for RIP-seq data
analysis, it also provides a suite of bioinformatics
tools integrated within a self-contained software
package comprehensively addressing issues
ranging from post-alignments’ processing to visual-
ization and annotation.

INTRODUCTION

Comprehensive transcriptome analyses suggest that only
1–2% of the human or mouse genome is protein coding,
whereas 70–90% is transcriptionally active, but do not
code for proteins, and thus denoted as non-coding RNA
(ncRNA) (1). Based on the loci of origin, the ncRNAs can
arise from literally anywhere in the genome (reviewed in
(2)). The lengths of these ncRNAs are extremely diverse,
ranging from 100 nucleotides (nt) to >100 kb (not con-
sidering small ncRNA such as microRNA). The
ncRNAs longer than 200 nt are commonly referred to as
long ncRNA (lncRNA). Mounting evidence suggests that
many of these lncRNAs are evolutionarily conserved,
functionally interacting with chromatin regulators and
participating in gene regulation (3–5). The protein–RNA
regulatory complexes are referred to as ribonucleoprotein
(RNP). For instance, the chromatin regulator polycomb
repressive complex 2 (PRC2) is responsible for histone 3
lysine 27 tri-methylation (H3K27me3), which is linked to
global gene silencing (6). Several lncRNAs such as
HOTAIR, Xist and Kcnq1ot1 bind to and target PRC2
to silence specific gene clusters. This RNA-mediated
gene regulation has been shown to be crucial for embry-
onic development, cell differentiation and tumor suppres-
sion (7).
As another example, P-TEFb (positive transcription

elongation factor b) is a protein complex that comprises
cyclin-dependent kinase 9 (CDK9) and a cyclin (T1 or T2)
(CCNT1 or 2) (8). P-TEFb phosphorylates (through
CDK9) RNA polymerase II (RNAP II) carboxyl-terminal
domain to initiate or restore transcription elongation in
human cells. However, binding of a small nuclear RNP
(snRNP) containing a �330-nt ncRNA 7SK or RN7SK
(chr6:52,860,418–52,860,749) to the P-TEFb subunit
CCNT1 associates with inhibition of the kinase activity.

*To whom correspondence should be addressed. Tel: +1 416 946 0924; Fax: +1 416 978 8287; Email: zhaolei.zhang@utoronto.ca

Published online 28 February 2013 Nucleic Acids Research, 2013, Vol. 41, No. 8 e94
doi:10.1093/nar/gkt142

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.bioconductor.org/packages/2.12/bioc/html/RIPSeeker.html
http://www.bioconductor.org/packages/2.12/bioc/html/RIPSeeker.html


The inhibitory RN7SK snRNP can be competitively
displaced by the nascent TAR (transactivation response)
HIV RNA bound with the Tat viral protein, activating
P-TEFb kinase and transcriptional elongation (9). In
other words, the association between P-TEFb and
RN7SK-snRNP competes with TAR-Tat for binding to
CCNT1, which may dictate efficient synthesis of viral
transcripts (8).
Despite tremendous efforts, our knowledge of ncRNAs

and their functions is still limited, which is largely due to
the lack of a systematic experimental approach. Recently,
RNP immunoprecipitation (IP) followed by high-
throughput sequencing (HTS) (RIP-seq) has been de-
veloped to capture genome-wide RNA transcripts that
physically interact with proteins or protein complexes
(4). RIP-seq is conceptually parallel to ChIP-seq (chroma-
tin IP followed by HTS), which is designed to identify TF
binding sites (TFBS) or histone modification patterns at
the genome scale (6). Both protocols use antibody to spe-
cifically pull-down a protein of interest from cell extracts
and generate sequence reads associated with that protein.
A control dataset is usually generated either by sequencing
mutant depleted of the protein of interest, a library
generated with non-specific antibody such as IgG,
or RNA/DNA input library. In ChIP-seq, fragments
(200–600 bp) of the protein-bound DNA are sequenced
from the 50 end on both strands. In principle, the
double-strandedness of the bound DNA entails strand-
dependent bi-modality (10). This property is widely ex-
ploited by many popular ChIP-seq algorithms such as
MACS (11) and QuEST (12) (Table 1) in genome-wide
search of bona fide TFBS.
Although RIP-seq experiments share similarities with

ChIP-seq and RNA-seq, it has a fundamentally different
goal: discovery of protein-associated RNA transcripts.
Several distinct properties and challenges need to be ad-
dressed in RIP-seq data analysis. Figure 1 illustrates the
following comparison between the three sequencing plat-
forms. First, because of the splicing events that commonly
occur in mammalian cells, RNA reads from RIP-seq need
to be aligned to the reference genome using a spliced
aligner such as TopHat (13). For the same reason, the
aligned RNA reads should not be extended further
along the genome, as commonly practiced by most
ChIP-seq analyses to increase detection power. Second,
as RNA molecules are single-stranded, the bimodal
property observed in ChIP-seq for double-stranded DNA
does not hold for RIP-seq. Consequently, the peak callers
that are designed to look for ‘twin peaks’ separated by a
distance depending on the cDNA fragment length do not
apply to RIP-seq analysis (Supplementary Figure S3).
Moreover, to detect strand-specific RNA such as
Kcnq1ot1 (an antisense transcript overlapping the coding
gene Kcnq1), read counts on each strand needs to be
modeled separately. Third, TFBS of DNA is usually
enriched for some consensus DNA sequence motifs.
RNA molecules, on the other hand, are likely to interact
with proteins through secondary or even tertiary structure
(e.g. repA stem loop of Xist) (7). Thus, there might not be
explicit primary RNA sequence motif that can be
identified directly by multiple sequence alignments.

Finally, RIP-seq aims at finding the entire transcripts
rather than punctuate binding sites, as in ChIP-seq or
PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced
Crosslinking and Immunoprecipitation), which is
another protocol designed to specifically detect direct
RNA–protein interaction sites (14). A suitable RIP-seq
‘peak caller’ needs to be adaptive to a wider and more
flexible range of regions due to various lengths of the
RNA transcripts. These fundamental differences render
many ChIP-seq algorithms unsuitable for RIP-seq
analysis.

Furthermore, programs for de novo transcript assembly
followed by differential expression (DE) analysis, such as
the Cufflinks/Cuffdiff suite (15,16), and for DE on a set of
known transcripts, such as DESeq (17), may appear ap-
plicable to RIP-seq analysis. Unlike peak-calling strategy,
however, the transcript-based methods assume the full
transcriptome being sequenced at a fairly deep coverage
(as usually the case in RNA-seq) and thus may be sensitive
to background noise typical to the IP-based protocols,
which is due to both the non-specific RNA interactions
with a protein of interest and the non-specific RNA input
from the pull-down of the (mutant) control
(Supplementary Figures S3 and S4).

Therefore, an effective approach for RIP-seq analysis
should (1) effectively model the distributions of reads
that arise from bona fide protein–RNA interactions
under considerable noise and (2) infer RIP regions
taking into account the adjacent regions. The aforemen-
tioned considerations will lead to a robust model, which is
tolerant to missing values and is discriminative between
noise and true signals.

MATERIALS AND METHODS

RIPSeeker overview

To address the aforementioned RIP-seq specific issues, we
propose a novel statistical framework implemented as an
R software package called RIPSeeker. RIPSeeker
provides a comprehensive analytical suite for RIP-seq
analysis, not only including predicting RIP regions with
or without a control library but also processing align-
ments, automatic genomic annotation, visualization
from UCSC browser, etc. Figures 2 and 3 depict the
core idea and more detailed workflow of RIPSeeker, re-
spectively. Each computational step depicted in oval shape
in Figure 3 is detailed in the corresponding subsections
later. The input for RIPSeeker is a list of read alignments
in BAM/BED/SAM format. Mapping reads to the refer-
ence genome can be performed by any RNA-seq aligner,
such as TopHat (13). After post-processing the alignment
input (detailed in the next section), RIPSeeker first
stratifies the genome into non-overlapping bins of auto-
matically selected (Automatic bin size selection) or a fixed
user-defined size. Each bin may contain more than one
aligned read. Multiple bins may together correspond to
a single RNA transcript that binds to the protein of
interest. Thus, these bins when treated as individual ob-
servations are not independent identically distributed
(i.i.d.) and need to be treated as dependent events.
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Hidden Markov model (HMM) provides a sensible and
efficient way to probabilistically model the dependence
between sequential events through hidden variables
(18,19). The adaptation of HMM is inspired by HPeak,
which was specifically designed for ChIP-seq (20).

As an overview, RIPSeeker consists of two major steps:
probabilistic inference of RIP regions (HMM posterior
decoding and parameter optimization) and significance
test for the inferred RIP regions from HMM (Detect
RIP regions). In the first step, we apply a two-state

Figure 1. Simplified biological principles of (a) ChIP-seq, (b) RNA-seq and (c) RIP-seq. In ChIP-seq (a), double-stranded DNA bound with protein of
interest is pulled-down by an antibody, followed by HTS. Because the reads are usually shorter than the double-stranded DNA fragment, a true
binding site gives rise to symmetrical peaks observed on the+ and � strand separated by the distance approximately the same as the length of the
fragment. However, the same principle does not apply to (b) RNA-seq and (c) RIP-seq because the RNA transcripts are single-stranded. On the other
hand, noise or missing reads due to imperfect immunoprecipitation and non-specific protein–RNA interaction are intrinsically unique to RIP-seq.

Figure 2. The core idea of RIPSeeker. After IP and HTS, reads are aligned to the reference genome and tallied within non-overlapping bins of size
determined automatically for each specific chromosome based on the coverage and chromosome length. Considering the read count in each bin as
observed data point, a two-state hidden Markov model with negative binomial (NB) emission is used to infer the RIP bins (assumed to be) associated
with the hidden state corresponding to the NB with the larger mean. The inference step yields both the posterior probability of RIP state and the
optimized HMM parameters. Next, Viterbi algorithm is applied to derive the most probable hidden state sequence, with 1 denoted as the background
state and 2 as the RIP state. The merged adjacent RIP bins are subject to significance tests based on the posterior probabilities for the background
and enriched states.
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HMM to model the background and RIP distributions (or
emission probabilities) of RIP-seq read counts as negative
binomial (NB) distributions, which has been shown by
Anders and Huber (17) to be a more realistic parametric
model than Gaussian and Poisson models (detailed in
Supplementary Methods Section Negative binomial
distribution). The parameters of HMM are learned from
the data by expectation-maximization (EM). The inter-
mediate quantities required in the EM iterations are effi-
ciently computed using forward–backward algorithm.
After the optimization, Viterbi algorithm is applied to
derive the most probable sequence of hidden states,
which encodes whether each region is background (1) or
RIP (2) in the genome (Figure 2). The consecutive RIP
bins are merged into a single RIP region. In the second
step, we compute the statistical significance of each RIP
region with or without a control library based on the pos-
terior probabilities derived directly from the HMM.
RIPSeeker is able to detect strand-specific RIP regions

by running the same workflow on either plus and minus
strand separately, making use of the strand-specific infor-
mation retained in the original RIP-seq protocol (4,21). In
addition, RIPSeeker takes advantage of modern compu-
tational architecture equipped with multiple processors by
treating each chromosome as an independent thread and
computing multiple threads in parallel using mclapply

from parallel R package. Thus, the most time-consuming
step such as HMM inference operates on per-chromosome
basis, with each running on a separate CPU core. The
parallel computing is much more computationally and
memory efficient than computing the entire genome all
at once by treating it as a single concatenated sequence.
RIPSeeker has numerous other features, including
disambiguating multihits (i.e. reads mapped to multiple
loci), automatic annotation of RIP regions, gene
ontology (GO) enrichment analysis, and UCSC visualiza-
tion. All of these features are detailed in the following
subsections.

Processing alignment inputs

Unlike many existing peak-calling software, RIPSeeker
does not simply import the alignments, but rather uses
series of preprocessing procedures to address common
problems inherent to high-throughput sequencing data
as follows. Given a BAM/SAM/BED file, RIPSeeker by
default removes duplicate reads and flags multihits.
Duplicate reads are a set of reads that align to exactly
the same genomic coordinate. Because transcripts are
usually hundreds or thousands of nucleotides long, and
thus much longer than the read (25–100 nt), chances of
the same 25–100-nt portion of the transcript being
sequenced multiple times at exactly the same coordinate

Figure 3. Detailed workflow of RIPSeeker. RIPSeeker processes the input alignment files in BAM/BED/SAM format and determines the bin size
based on the unique read counts on each chromosome. The two-state HMM parameters are initialized by negative binomial (NB) mixture model and
optimized through EM. The two hidden states presumably correspond to the background and RIP regions. Optionally, each multihit is assigned to a
unique locus with the highest posterior probability for the RIP state among other loci (mapped by the same read). The HMM parameters are then
re-estimated with the augmented read count data. Viterbi algorithm running on the optimized HMM parameters yields the maximum likelihood
hidden state sequence across each chromosome. The (merged) RIP regions from the Viterbi predictions are further filtered by the statistical tests for
the model confidence based on the posterior encodings. Finally, annotated RIP regions are exported and programmatically uploaded to UCSC
browser for visualization.
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are small and may likely be due to PCR artifact. Multihits
represent multiple alignments of the same read due to gene
duplications or repetitive elements in the genome. Rather
than removing those multihits, which typically constitute a
substantial proportion of the total mapped reads,
RIPSeeker (by default) flags them but does not use them
for the initial training of HMM and in the later step,
assigns each of these reads to a unique region
[Disambiguate multihits using posterior decoding from
HMM (optional)] and then re-trains the HMM with aug-
mented data of unique read counts.

If multiple alignment files are provided as technical rep-
licates for RIP or control sample, RIPSeeker first applies
the aforementioned procedure to each alignment file and
then merges the preprocessed alignments. The output in
this step is an alignment object belonging to
GappedAlignments class defined in the GenomicRanges
library (22). The extensive use of the existing classes in
the popular GenomicRanges library allows RIPSeeker to
be easily incorporated into a custom computational
workflow constituting various other established
Bioconductor packages. Like ChIP-seq, a control library
representing background and non-specific binding events
is important in RIP-seq analysis to filter out false-posi-
tives. Accordingly, a control library is supported as an
optional (but not mandatory) parameter to RIPSeeker.
The control alignment file is distinguished from RIP
library by a user-supplied keyword in the main ripSeek
function; e.g., ripseek(bamPath=bamfiles, cNAME=
‘CTL’) for ‘lib_RIP.bam’ and ‘lib_CTL.bam’ as RIP and
control alignment inputs, respectively.

Finally, RIPSeeker supports paired-end alignments.
Briefly, paired-end alignment files are read in through
readGappedAlignmentPairs from GenomicRanges.
RIPSeeker then combines properly paired reads into a
single alignment record, making use of the CIGAR flag
‘N’ to indicate the number of bases between the mate pairs
(i.e. the length of the insert fragment). In other words, the
paired-end alignments are treated as gapped alignments of
long fragments. After converting the GappedAlign-
mentPairs object into GappedAlignments object, the align-
ments’ processing proceeds as described previously.

Automatic bin size selection

Based on the preprocessed alignments for a chromosome,
RIPSeeker divides the chromosome into non-overlapping
bins of equal size b and computes the number of reads
that fall into each bin, where b needs to be determined
either empirically (e.g. based on the gel-selected length
of the RNA fragment) or computationally. If the bin
size is too small, the read counts fluctuate greatly,
making it difficult to discern the underlying read
count distribution. Additionally, input size to HMM in-
creases as bin size decreases. A small bin size incurs a long
Markov chain of read counts to model, making the
computation inefficient. On the other hand, if a bin size
is too large, resolution becomes poor. Consequently, one
cannot detect the local RIP region with subtle, but intrin-
sic, difference from the background, and the RIP regions

tend to be too wide for designing specific primer for
validation.
Intuitively, selecting an appropriate bin size for each

chromosome is analogous to choosing an optimal interval
for building a histogram (23). Here we implement the al-
gorithm developed by Shimazaki and Shinomoto (2007)
(24), which is based on the goodness-of-the-fit of the time
histogram to estimate the rate of neural response of an
animal to certain stimuli in a spike-in experiment. This
approach has been successfully applied in a recently de-
veloped ChIP-seq program (23). Algorithm 1 describes the
pseudocode adapted from (24) that iteratively estimates
the cost C of increasing bin size b within a defined range
[default: (minBinSize=200 nt, maxBinSize=1200 nt)
with 5-nt increment] and finally selects the b� with
minimum cost. The default range was used in the tests
to achieve efficient computation and reflect the fragment
size or the band (200–1200 nt) selected from the gel elec-
trophoresis in the RIP-seq library construction (4).
Notably, consecutive RIP bins are merged, leading to a
wider RIP region (Detect RIP regions).

Algorithm 1: AutomaticBinSizeSelection

for b ¼ minBinSize! maxBinSize do
Divide chromosome sequence into N bins of width b.
Count number of read counts xi that enter the i’th
bin.

Compute: �x ¼ 1
N

PN
i¼1

xi and v ¼ 1
N

PN
i¼1

ðxi � �xÞ2.

Compute: CðbÞ ¼ 2 �x�v
b2

end for
Choose b� that minimizes C(b).

Bin count

Based on the defined bin size, the number of reads that fall
within each bin is computed using function countOverlaps
from IRanges package (25). The output is a
one-dimensional vector of integers sorted by the chromo-
somal coordinates.

NB mixture model initialization

Because the EM algorithm in HMM tends to fall into local
optimum with poor initialization, NB mixture model with
two mixture components (2-NBM) is first applied to the
data to obtain a reasonable estimate for the HMM par-
ameters. Essentially, one can think of 2-NBM as a special
case of two-state HMM with two distinct NB emission
distributions: the 2-NBM assumes that the data points
are not identically distributed but sampled independently
from a mixture of two NB distributions, whereas the
two-state HMM is a more general framework for non-
i.i.d data (addressing both mixture distribution and de-
pendence between data points).
Given a 2-NBM, the goal is to maximize the likelihood

function with respect to the parameters comprising ak and
bk for the two NB components (thus k ¼ f1, 2g) and the
mixing coefficients f�1, �2g, which are the priors
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fpðz ¼ 1Þ, pðz ¼ 2Þg. The maximum likelihood (ML) esti-
mators of aforementioned are:

ak
bk
¼ �k ¼

PN
n¼1

�ðzi ¼ kÞxi

PN
i¼1

�ðzi ¼ kÞ

ð1Þ

�k ¼

PN
n¼1

�ðzi ¼ kÞ

N
ð2Þ

where �ðzi ¼ kÞ (commonly referred to as responsibility)
denotes the posterior probability pðzi ¼ kjxiÞ and N is
the total number of bins. Because there is no analytical
solution for the aforementioned system equation, a
modified EM procedures called ECM (Expectation
Conditional Maximization) is used (19,26):

(1) For NB1ða1, b1Þ and NB2ða2, b2Þ corresponding, re-
spectively, to the background and RIP NB distribu-
tions, initialize the fa1, a2g as fq3, q4g (i.e. the second-
last and last quantiles of the non-zero read counts),
fb1, b2g as {1,1} and f�1,�2g ¼ f0:5, 0:5g.

(2) E step: Evaluate �ðzi ¼ kÞ for each bin (i 2 f1 . . .Ng)
using the current parameter values:

�ðzi ¼ kÞ ¼
�kNBðak, bkÞPK¼2
j¼1

�jNBðaj, bjÞ

ð3Þ

(3) M step: Re-estimate the mixing proportion using the
current responsibility based on (2):

�newk ¼

PN
i¼1

�ðzi ¼ kÞ

N
ð4Þ

(4) CM step: As we cannot evaluate ak and bk simultan-
eously, we turn to a variation of the M-step called
conditional maximization (26), where we fix variable
ak to evaluate bk using (1), and then use Newton’s
method to update ak:

aoldk

bnewk

¼

PN
i¼1

�ðzi, kÞxi

PN
i¼1

�ðzi, kÞ

ðbyð1ÞÞ

bnewk ¼

aoldk

PN
i¼1

�ðzi, kÞ

PN
i¼1

�ðzi, kÞxi

anewk ¼ aoldk �
f0ðaoldk , bnewk Þ

f00ðaoldk , bnewk Þ

ð5Þ

where fðaoldk Þ is the logarithmic posterior probability
of the data pðXjZÞ, which is the product of the con-
ditional probabilities based on the conditional

independence assumption; f0 and f00 are, respectively,
the first and second derivatives of f with respect to ak:

fðaoldk Þ ¼ ln
YN
i¼1

pðxijzi, kÞ ð6Þ

f0ðaoldk , bnewk Þ ¼ N½lnð
bnewk

1+bnewk

Þ �  ðaoldk Þ�

+
XN
i¼1

½�ðzi ¼ kÞ ðxi+aoldk Þ�

ð7Þ

f00ðaoldk , bnewk Þ ¼ �N 1ða
old
k Þ

+
XN
i¼1

½�ðzi ¼ kÞ 1ðxi+aoldk Þ�
ð8Þ

where  ðaoldk Þ and  1ða
old
k Þ are the di and trigamma

function, which are the first and second derivative of
the logarithmic gamma function computed by the R
built-in functions digamma and trigamma.

(5) Evaluate the log likelihood:

ln pðXjanew, bnew,�newÞ ¼
XN
n¼1

ln
XK¼1
k¼1

�kNBðak, bkÞ

( )

ð9Þ

If the fraction of increase for ln pðXjanew, bnew, �newÞ
(9) is less than a threshold (default: 0.01) comparing
with ln pðXjaold, bold,�oldÞ from the previous iteration,
then stop; otherwise repeat step 2–4.

HMM posterior decoding and parameter optimization

The two-state HMM is similar to the 2-NBM, except that
�ðziÞ in the E step (3) is computed using forward–
backward algorithm, taking into account the dependence
between consecutive latent variables in the hidden Markov
chain:

�ðziÞ ¼ pðzijXÞ ¼
�ðziÞ�ðziÞ

pðXÞ
ð10Þ

where

�ðziÞ ¼ pðxijziÞ
X
zi�1

�ðzi�1Þpðzijzi�1Þ ð11Þ

�ðziÞ ¼
X
zi+1

�ðzi+1Þpðxi+1jzi+1Þpðzi+1jziÞ ð12Þ

The M step computes an additional ML estimator for
the transition probability:

Aj, k ¼ pðzijzi�1Þ ¼

PN
i¼2

�ðzi�1 ¼ j, zi ¼ kÞ

PK
l¼1

PN
i¼2

�ðzi�1 ¼ j, zi ¼ lÞ

ð13Þ
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where

�ðzi�1, ziÞ ¼ pðzi�1, zijXÞ

¼
�ðzi�1ÞpðxijziÞpðzijzi�1Þ�ðziÞ

pðXÞ

ð14Þ

The CM step is the same as in 2-NBM. For a more
detailed description of the two-state HMM, readers are
referred to Section Negative Binomial Hidden Markov
Model in the Supplementary Methods or the more
general framework described in (18). The two-state
HMM generally performs better than NBM on simulated
count data with known hidden states and transition
probabilities. HMM with NBM initialization in turn
performs better than HMM alone (Supplementary
Figure S1). Some ideas on the HMM R implementation
are adopted from the MatLab functions (http://perso
.telecom-paristech.fr/ cappe/Code/H2m/).

Disambiguate multihits using posterior decoding from
HMM (optional)

Each multihit (i.e. read aligned to multiple loci) flagged in
the preprocessing step is assigned to a unique locus corres-
ponding to the jth bin with the highest posterior or respon-
sibility from the RIP state (Figure 4). Intuitively, the RIP
state corresponds to the read-enriched loci. Disambiguating
multihits in this way will potentially improve the power of
detecting more RIP regions, but may also introduce certain
bias toward the idea of ‘rich gets richer’. Thus, this step is
optional and controlled by the parameter assignMulthits in
the main function ripSeek (described in the manual and
vignette). After this step, RIPSeeker will rerun the steps
from Automatic bin size selection to HMM posterior
decoding and parameter optimization to improve the
model estimation with augmented read count data.
Optionally, user can choose not to reiterate the training
process to go straight to the next step to detect RIP regions.

Viterbi prediction of enriched bins

After learning the model parameters of HMM (and disam-
biguating the multihits), we can obtain the sequence of
hidden states for 1 . . .N latent variables that maximizes
the log joint likelihood ln pðx1, . . . ,xN, z1, . . . , zNÞ ¼
pðX,ZÞ using Viterbi algorithm based on dynamic
programming (18) (detailed in Supplementary Methods
Section Viterbi algorithm).

Detect RIP regions

To assess the statistical significance of the RIP predictions,
we assign each bin a RIPScore:

RIPScore

¼

log pðzi¼2jXRIPÞ

pðzi¼1jXRIPÞ
, if no controlðCTLÞ

log pðzi¼2jXRIPÞ

pðzi¼1jXRIPÞ
� log pðzi¼2jXCTLÞ

pðzi¼1jXCTLÞ
, if CTL availalble

8><
>:

ð15Þ

If control library is unavailable, the RIPScore is the log
odds ratio of the posterior for the RIP state (zi ¼ 2) over
the posterior for the background state (zi ¼ 1); otherwise,
the RIPScore is the difference between the RIPScores
evaluated separately for RIP and control libraries. The
scoring system (15) captures the model confidence for the
RIP state of each bin in the RIP library penalized by the
false confidence for the ‘RIP’ state of the same bin in the
control library. In addition, RIPScore obviates scaling of
read counts. As sequencing depth usually differs between
RIP and control libraries, scaling is necessary if the statis-
tical score was derived from the read count differences,
such as in MACS (11). However, simplistic linear scaling
may distort the data. This issue is effectively avoided by
RIPSeeker through the elegant use of posteriors (15).
The consecutive RIP bins predicted in the aforemen-

tioned Viterbi step are merged into a single RIP region.
An aggregate RIPScore as the averaged RIPScores (15)
over the merged bins is assigned to each RIP region. To
assess the statistical significance of the RIPScore for each
region, we assume (and indeed observe in Supplementary
Figure S2) that the RIPScore approximately follows a
Gaussian distribution with mean (RIPScore) and
standard deviation (stdðRIPScoreÞ) estimated using the
RIPScores over all of the bins. The rationale is based on
the assumption that most of the RIPScores correspond to
the background state and together contribute to a stable
estimate of the test statistics (TS) and P-value:

TS ¼
RIPScorei �RIPScore

stdðRIPScoreÞ
ð16Þ

p-value ¼ p½x > TSjN ðRIPScore, stdðRIPScoreÞÞ� ð17Þ

To correct for multiple testing, the standard Benjamini–
Hochberg method is used (27) with the R built-in function
p.adjust to compute the q-value.
In addition, if control is available, an empirical false

discovery rate (eFDR) is estimated based on the idea of
‘sample swap’ inspired by MACS (11). Briefly, at each
P-value, RIPSeeker finds the RIP regions over control
(CTL) and control regions over RIP. The eFDR is
defined as the number of ‘RIP’ (false-positive) regions
identified from CTL-RIP comparison over the number
of RIP regions from the RIP-CTL comparison:

eFDR ¼
# ‘‘RIP’’ regions from CTL vs RIP

# RIP regions from RIP vs CTL
ð18Þ

Figure 4. Disambiguating multihits based on posterior decodings from
HMM. Given more than one valid aligned loci on the same or different
chromosome (x-axis), the multihit read is assigned to the locus with the
highest posterior probability (y-axis) for the second state pðzi ¼ 2jXÞ
associated with the NB2ða2, b2Þ with the larger mean � ¼ a2=b2.
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The maximum value for eFDR is 1 and minimum value
for eFDR is max(P-value, 0). The former takes care of the
(rare) occasion when the numerator is bigger than the de-
nominator in (18), and the latter for zero numerator.

Genomic visualization

To make RIP-seq analysis more intuitive, RIPSeeker
provides a function viewRIP, which launches online
UCSC genome browser with programmatically uploaded
custom track corresponding to the loci of RIP regions and
scores [RIPScore, �log10(P-value), �log10(q-value),
�log10(eFDR)] generated from the aforementioned RIP
regions detection. This task is accomplished seamlessly
within the R console by making use of the available func-
tions from rtracklayer (28).

Genomic annotation and GO enrichment analysis

Given the genomic coordinates of each predicted RIP
region, RIPSeeker queries the Ensembl database whether
each region is nearby or overlaps any gene annotation
(including known ncRNAs). To access the up-to-date
Ensembl database, RIPSeeker uses useMart and
getAnnotation from biomaRt and ChIPpeakAnno
Bioconductor packages to dynamically establish Internet
connection to the database and retrieve the up-to-date
(or archived) annotations (29–31). Subsequently,
annotatePeakInBatch and getEnrichedGO from
ChIPpeakAnno (Bioconductor) (31) are used to efficiently
annotate all of the predicted regions and reports (if any)
enriched GO terms, respectively. A predicted RIP region
may overlap multiple known genes, all of which will be
reported as separate records.

RIPSeeker outputs

The final outputs of RIPSeeker consist of five useful files:
(1) a tab-delimited text file containing the statistics from
the previous section, genomic coordinates, spatial infor-
mation relative to the neighbor gene, gene symbol and
description for the gene; (2) and (3) the same information
in General Feature Format with and/or without gene an-
notations; (4) enriched GO in tab-delimited file; (5) all
intermediate and final results saved in RData that can
be imported directly into the R console by the load
command. File (1) provides the most detailed information
directly viewable in Excel. Files (2) and (3) can be
imported to a dedicated genome browser such as
Integrative Genomic Viewer (32) to visualize and
interact with the putative RIP regions with scores.

Combining biological replicates

In RIP-seq experiments, biological replicates are import-
ant, as they can increase detection power and further filter
out false-positives due to substantial background noise.
Thus, we provide a helper function combineRIP to facili-
tate user to intersect, merge or pool peaks in the General
Feature Format files generated previously.

Rule-based method

Furthermore, we implemented computeRPKM and
rulebaseRIPSeek as built-in functions in RIPSeeker by
following the original rule-based methods devised in (33)
and (4), respectively. The function rulebaseRIPSeek serves
both as a (baseline) comparison method (see later) and a
reasonable supplementary option for the RIPSeeker user
to query known genes’ or transcripts’ (relative) abundance
(in two conditions). Briefly, transcriptome annotation for
a given species is dynamically retrieved from Ensembl or
UCSC database using makeTranscriptDbFromBiomart
or makeTranscriptDbFromUCSC from R package
GenomicFeatures, respectively (34). Given a list of align-
ment datasets (BAM) (preprocessed by RIPSeeker) for
RIP and/or control libraries, the expression of each
annotated transcript is computed by computeRPKM as
‘reads per kilobase of exon per million mapped reads’
(RPKM). To compute read counts, computeRPKM uses
the function summarizeOverlaps from GenomicRanges
(22). A transcript is predicted as the protein interaction
partner if its RPKM expression and the ratio of
RPKM[RIP]/RPKM[control] (on either + or � strand)
are above t1 and t2. By default, t1 ¼ 0:4 and t2 ¼ 3:0, con-
sistent with the thresholds applied in the original study (4).
Pertinent to the data, Ensembl annotation version 65 and
69 are used for NCBIM37/mm9 mouse and GRCh37/
hg19 human genome assemblies, respectively.

Comparison with published methods

To compare RIPSeeker with other algorithms popular in
various high-throughput sequencing analyses, we at-
tempted to choose the best alternative approaches
despite that they were not specialized for RIP-seq
analysis (Table 1). Specifically, we chose three ChIP-seq
algorithms, including MACS, QuEST and HPeak; two
RNA-seq algorithms Cufflinks+Cuffdiff and Rulebased
and one PAR-CLIP algorithm PARalyzer. Except for ex-
plicitly mentioned, default cutoffs were used for each al-
gorithm. The specific settings for the aforementioned
programs are described in Supplementary Methods. The
cutoff for RIPSeeker’s predictions is set to eFDR �0.1
OR q-value �0.1 for the following tests.

ChIP-seq programs
MACS and QuEST represent parametric and non-para-
metric frameworks based on local Poisson model and
Gaussian kernel density estimation, respectively. HPeak
also uses a two-state HMM but differs from RIPSeeker
in many technical aspects. In particular, HPeak assumes
that read counts from ChIP and background, respectively,
follow generalized Poisson and zero inflated Poisson dis-
tributions and directly uses the Viterbi algorithm to train
the HMM. In contrast, RIPSeeker performs the exact in-
ference through forward–backward algorithm (10),
followed by Viterbi prediction, assuming distinct NB
emission probabilities for RIP and background. In
addition, HPeak identifies ChIP region using generalized
Poisson posterior probabilities, whereas RIPSeeker uses
log odd posterior (15) to derive (adjusted) P-value (17)
and eFDR (18). Unlike RIPSeeker, none of the three
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ChIP-seq algorithms have an option to identify
strand-specific peaks. To make fair comparison when
strand-specific sequencing data were used, alignments on
‘+’ and ‘�’ strands were extracted from the total align-
ments and provided as separate inputs to the three peak
callers. The peaks from the same program were then
pooled together to represent its predictions.

RNA-seq program
The RNA-seq software suite Cufflinks (15) was applied to
RIP-seq data, attempting to assemble de novo transcripts
from the alignments and compare their expression level in
RIP with control library using Cuffdiff. For brevity, the
Cufflinks+Cuffdiff approach is referred to as Cuffdiff
from now on. In addition, we included the Rule-based
method, also commonly used in RNA-seq analyses
(Section Rule-based method) as the baseline comparison
method.

PAR-CLIP program
PARalyzer is a recently developed program specifically
tailored for PAR-CLIP analysis (35). As PARalyzer is
the only other package that is designed for IP-based
RNA-seq data, it is highly relevant to compare it with
RIPSeeker. Besides read counts, PARalyzer uses the
thymine to cytosine conversion (T) C) induced by
cross-linking between the RNA-binding protein and its
target (14). However, the requirement for such induced
mutation in the sequencing data makes PARalyzer incom-
parable with other peak callers on RIP-seq data.
Conversely, however, RIPSeeker, MACS and HPeak,
which do not require an external control library, are in
fact applicable to PAR-CLIP data. Indeed, the authors of
PARalyzer show that the number of observed T) C con-
versions strongly correlates with the total number of reads
(addition file 1 from (35)). Accordingly, we applied
RIPSeeker, MACS, HPeak and PARalyzer to the
PAR-CLIP datasets. The former three only exploit the
read count information, and the latter exploits both the
read counts and the T) C conversions. Because no
external control library was used in the PAR-CLIP experi-
ments, RIPSeeker, MACS and HPeak will infer peaks

solely based on enrichment relative to the implicit back-
ground internal to the PAR-CLIP library. Notably, such
comparison may also indirectly examine the importance of
the conversion information on top of the single-nucleotide
resolution it provides.

Union of peaks
To facilitate some of the following comparisons, the peaks
or transcripts identified from multiple biological replicates
were pooled (and merged). No pooling is needed for
Cuffdiff because it uses biological replicates to estimate
the variance and outputs a single set of transcripts (16).
Thus, each method has a single representative set of pre-
dictions for the same dataset. Union rather than intersec-
tion among biological replicates was chosen to maximize
sensitivity, as we found that the same algorithm performed
differently on biological replicates, perhaps due to back-
ground noise and sequencing depths. For convenience, the
ChIP-seq algorithms and RIPSeeker are sometimes
referred to as ‘peak callers’ and the Cuffdiff and
Rule-based methods as ‘transcript-based’ methods.
Notably, we use the term ‘peak callers’ for any method
that predicts de novo regions mostly smaller than the
whole transcript, even though the ‘peaks’ in some cases
are large ‘regions’.

Receiver operating curve
To examine the sensitivity and specificity of each method,
we need a set of ‘gold-standard’ RNA-binding sites for the
proteins of interest, which is currently unavailable. To still
conduct a similar systematic test, we define the
‘gold-standard’ as a set of peaks consistently ‘agreed’ on
by the majority (>50%) of the tested programs on the
same dataset. Different peaks from two methods ‘agree’
if they overlap each other or are within 1000 nt distance.
To benchmark each method, the number of positive peaks
P is defined as the number of predictions that overlap with
the ‘gold-standard’ peaks. Similarly, the number of
negative peaks N is defined as the number of predictions
that do not overlap with the ‘gold-standard’ peaks. Given
a set of peaks that pass the cutoff according to the
program-specific scoring system (described later), the

Table 1. Comparison programs for RIP-seq or PAR-CLIP analysis

Methods Reference Specialization Implementation Version Strand-specific
scoring

False
discovery
rate

Compare with
control fit

Statistical model

MACS (11) ChIP-seq Python 1.4.1 No Yes Yes Local Poisson
QuEST (12) ChIP-seq Perl/C++ 2.4 No Yes Yes Kernela

HPeak (20) ChIP-seq Perl 3 No No No HMMb

Cuffdiff (15,16) RNA-seq C++ 1.3.0 Yes Yes Yes Cufflinks+Differential Testc

PARalyzerd (35) PAR-CLIP Java 1.0.0 Yes Yes No Kernela

Rule-basede (4) RNA-seq R 0.99.0 Yes No No FC and RPKMf

RIPSeeker Proposed RIP-seq R 0.99.0 Yes Yes Yes HMMg

aGaussian kernel smoothing.
bTwo-state HMM using Viterbi with generalized and zero-inflated Poisson emissions.
cDe novo transcript assembly using Cufflinks followed by differential test based on beta negative binomial distribution using Cuffdiff.
dSpecialized in PAR-CLIP data by taking into account both the read counts and T) C conversion.
eImplemented as a built-in function in RIPSeeker.
fFold change and RPKM thresholding on annotated transcripts (default: FC �3; RPKM �0.4).
gTwo-state HMM using forward–backward with NB emission followed by RIP detection using Viterbi and log odd posteriors.
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number of ‘true positive peaks’ TP (‘false positive peaks’
FP) is defined as the number of peaks that (do not) belong
to the positive peak list. Finally, we define the ‘true
positive rate’ TPR ¼ TP=P and the ‘false positive rate’
FPR ¼ FP=N. The receiver operating curve (ROC) is
plotted by iteratively evaluating TPR (y-axis) and FPR
(x-axis) based on an increasing cutoff of the
program-specific score. TP and FP at each cutoff are
computed using the function prediction from R package
ROCR, and the TPR and FPR are subsequently calculated
using function performance from the same package.
Except if mentioned otherwise, the program-specific

scoring systems used to construct the ROC are as
follows: for MACS, �10log10(P-value) (i.e. fifth column
of the peaks.bed output); for HPeak, the absolute
normalized cumulative log-transformed posterior prob-
ability (i.e. the last column of the all.regions.txt output);
for QuEST, the normalized enrichment fold at the
maximum position within the region (i.e. fifth column in
the output file ChIP_calls.filtered.bed); for Cuffdiff,
�log10(P-value) in isoform_exp.diff; for PARalyzer,
ModeScore [score of the highest signal / (signal+back-
ground) value] in output file named cluster; for
Published peaks from the ENCODE data,
�log10(P-value); for Rulebased, fold-change of RPKM
in RIP over control; for RIPSeeker, �log10(P-value) (17).

RIP-seq library construction for CCNT1

As a further proof-of-concept, we performed two in-house
RIP-seq experiments, both for CCNT1 in human HEK293
cells. Briefly, we generated tagged CCNT1 using a triple
tag system that supports lentiviral stable expression and
mammalian affinity purification (MAPLE) (36). The
HEK293 cells stably expressing tagged CCNT1 were
purified by M2 agarose beads, followed by RNA extrac-
tion by Trizol. The library synthesis was carried out ac-
cording to the RIP-seq protocol described in (4), except
that one of the two experiments was done with
non-strand-specific sequencing. CCNT1 is known to
only associate with RN7SK (8). Ideally, we expect that
each method in evaluation is able to exclusively predict
RN7SK from the RIP-seq data, and any prediction other-
wise is likely to be false-positive.

RESULTS

RIP-seq datasets

PRC2
The RIP-seq data from (4) for Ezh2 (a PRC2 unique
subunit) in mouse embryonic stem cell (mESC) were
downloaded from Gene Expression Omnibus (GEO)
(GSE17064). Briefly, there are, in total, five datasets.
Two datasets correspond to the non-specific and specific
negative controls using the antibody IgG and mutant
mESC depleted of Ezh2 (Ezh2�/�) (MT), respectively.
Only the specific negative control Ezh2�/� MT was
used in our test. The two and one remaining datasets cor-
respond to the libraries constructed from two biological
replicates of the wild-type mESC. Notably, the library
construction and strand-specific sequencing generated

sequences from the opposite strand of the PRC2-bound
RNA (4); consequently, each read was treated as if it were
reverse-complemented. After the quality control (QC) and
alignments (Quality Control of Raw Read Library and
Alignment of Filtered RIP-seq Read Library to
Reference Genome in Supplementary Methods), the tech-
nical replicates were merged, resulting in three test files—
RIP-biorep1, RIP-biorep2 and CTL with 1,022,474,
442,030 and 208,445 reads, respectively, mapped to
unique loci of the mouse reference genome (mm9 build)
(Supplementary Table S1).

CCNT1
The data for CCNT1 were generated from two RIP-seq
experiments. The pilot experiment generated 775,582 and
773,785 strand-specific raw reads, and 5853 and 4556
uniquely mapped reads remain after the stringent QC
for the CCNT1 and GFP control RIP RNA libraries, re-
spectively. Same as in the PRC2 data, the reads came from
the second strand of the cDNA synthesis opposite to the
original RNA strand. Because CCNT1 is known to only
interact with RN7SK, the low read count after filtering
perhaps implies the specificity of the RIP-seq data, as
other reads mapped elsewhere are likely to be background.
Among the 5853 and 4556 mapped reads in the RIP and
control library, respectively, 48 and 0 distinct reads, re-
spectively, were mapped to the 330-nt RN7SK
(chr6:52,860,418–52,860,749). Thus, the differential
signal should be fairly strong to be detected by a sensitive
peak-calling method.

The non-strand-specific library from the second screen
has deeper coverage with 1,647,641 and 2,369,271 raw
reads, and 26,859 and 45,024 uniquely aligned reads
under QC for CCNT1 and GFP, respectively (Supplemen-
tary Table S1). Because the two experiments were per-
formed with slightly different protocols, we treated them
as two separate biological replicates for the following
analyses. The data have been deposited in GEO and are
accessible through accession number GSE43170
(http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE43170).

ENCODE RIP-seq data
As the third RIP-seq test data, we downloaded the
RIP-seq data (GSE35585) provided by Dr. Scott
Tenenbaum laboratory at the ENCODE Consortium (1).
The data correspond to RNA-binding signals from
proteins ELAVL1 (also known as Hu antigen R or
HuR) and PABPC1 (polyadenylate-binding protein, cyto-
plasmic 1), both measured in cell lines GM12878 and
K562, each in two biological replicates. For each cell
line, two negative control libraries associated with
non-specific antibody against T7 Tag and RIP total
input RNA were generated. Similar to DNA input
commonly used in the ChIP-seq experiment, the RIP
input controls for input expression levels. The two
control libraries may be complementary to each other.
On one hand, the T7 Tag may result in low-complexity
library with potential PCR and sequencing artifacts, and
will likely introduce more false-positives than using the
RIP input as the background control. On the other
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hand, the RIP input is essentially RNA-seq with no polyA
selection and thus reflects the native transcriptional levels
of the cell. Consequently, comparison of RIP-seq signals
against RIP input signals may lead to false-negatives by
missing some transcripts that weakly interact with the
protein of interest AND express at a detectable level. To
examine the robustness of each method, we applied the
aforementioned algorithms to each RIP treatment using
T7Tag and RIP input as separate controls. For the same
RIP treatment in the same cell line, a robust method
should have a high proportion of overlap using the two
different controls.

Applying the same pipeline as for PRC2 and CCNT1,
we obtained at least 3.4 and 1.3 million distinctly mapped
reads for the RIP and control libraries, respectively
(Supplementary Table S1). Besides applying the aforemen-
tioned programs, we also downloaded from the UCSC
Genome Browser, the peaks predicted by the Dr. Tenen-
baum group themselves (http://genome.ucsc.edu/cgi-bin/
hgTrackUi?db=hg19&g=wgEncodeSunyRipSeq). In
their analysis, however, only T7 tag was used as negative
control in the one-tailed t-test making use of the biological
replicates to estimate sample variance within each defined
genomic regions. In the following comparison, their
results are referred to as ‘Published’.

PAR-CLIP data

As a further demonstration, we downloaded two
PAR-CLIP datasets from GEO for protein Pumilio 2
(PUM2) (GSM545210) and Quaking (QKI)
(GSM545211) generated by (14). The two proteins were
chosen to simplify the comparison because they have de-
finitive motifs and pronounced preferences to intronic and
30 untranslated regions (UTR), respectively. Other
proteins examined by the authors appear to be more pro-
miscuous in binding to variety of genomic regions.
Following the alignment approach recommended
by PARalyzer’s manual, we obtained 885,967 and
365,203 distinct alignments after pooling the technical rep-
licates for PUM2 and QKI, respectively (Supplementary
Table S1).

Total predictions, reproducibility and robustness

The total number of peaks or transcripts reported by each
program greatly differ (Supplementary Figure S5),
perhaps due to the different scoring schemes used by
each method and the differing peak lengths (Supple-
mentary Figure S6). For instance, the fact that MACS
predicted many more peaks than other methods on the
ENCODE data may be largely due to the punctuate
peaks that would have been merged into a single contigu-
ous region by the other peak callers (Supplementary
Figure S19). The overall reproducibility in terms of the
pairwise overlap percentage between the two biological
replicates is generally higher than 50% for RIPSeeker
and several other methods (Supplementary Figure S5).

For the ENCODE data, RIPSeeker (among other com-
parison methods) also demonstrated its robustness in
terms of the overlap percentage (60–80%) of pooled
peaks between the same RIP treatment in the same cell

line using the two different controls T7Tag and RIP input
(Figure 5 and Supplementary Figure S10). As mentioned
earlier, the result also implies that the two types of control
may be used interchangeably. As expected, the overlap
percentages drop drastically (but still much higher than
random) when comparing peaks predicted from the two
different cell lines for the same RIP treatments
(Supplementary Figure S10).

Peak lengths

The peak length distributions are presented in boxplots in
Supplementary Figure S6a–l, and as reference, we also
included the lengths of known transcripts from mouse
and human (Supplementary Figure S6m and n). For
RIP-SEQ data (Supplementary Figure S6a–j), we consist-
ently observe that RIPSeeker, HPeak and QuEST predict
peaks having lengths within the range from 100 to
10,000 nt, demonstrating their dynamic ranges in predict-
ing relatively short and long transcribed regions. Although
the underlying algorithms considerably differ among these
programs, each of them has the ability to infer read-
enriched regions based on adjacent signals using either
transition probability from the HMM (HPeak and
RIPSeeker) or the Gaussian kernel smoothing technique
(QuEST). In contrast, the ranges of peak lengths predicted
by RIPSeeker on the PAR-CLIP data (Supplementary
Figure S6k and l) are much smaller, ranging from 50 to
800 nt. Indeed, the PAR-CLIP aims to identify at
single-nucleotide resolution, the direct protein–RNA
interaction sites through T) C conversion induced by
the cross-linking around the binding sites. To this
regard, the software MACS and PARalyzer seem to
achieve a more focused range than RIPSeeker and
HPeak. Nonetheless, it is still remarkable to observe that
the HMM-based models are able to adapt to the variable
signal ranges intrinsic to the experimental protocols.

Overlap between predictions

To examine the overall agreements between the compari-
son algorithms on the same datasets, we computed the
pairwise overlaps between the (pooled and merged) peak
lists from any two methods. The two peaks or transcripts
are considered overlapped if they share at least one nu-
cleotide. These comparisons are presented in
Supplementary Figure S7 as the percentage of peaks
from one method (row) that overlap with any peak from
another method (column) (10). Overall, we observe rea-
sonably good pairwise overlap percentages (generally
>50%) between RIPSeeker and other methods and
between other pairs as well. In addition, substantial
overlaps are observed beyond pairwise comparison, as
illustrated in the three-way and four-way comparison
diagrams for select RIP-seq and PAR-CLIP datasets
(Supplementary Figures S8 and S9).

ROC evaluation on sensitivity and specificity

The substantial pairwise and multi-way overlaps observed
above provided the ground for a more rigorous compari-
son among the candidate methods using ROC plot
(Section Receiver operating curve). Figure 6 presents the
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ROC plots of each method as unbiased quantitative
benchmarks on their performances on each of the 12
tests derived from the 12 RIP versus control comparisons.
The intuition behind such comparison is that peaks con-
sistently agreed on among the majority of the methods
convey higher confidence of being the bona fide
protein-RNA binding sites and deemed to be the
‘gold-standard’ despite the lack of experimental valid-
ation. By continuously relaxing the scoring cutoff, each
method will have a strictly increasing number of ‘true
positive’ peaks over all of the ‘positive’ peaks it has in
common with the ‘gold-standard’ set (i.e. True-positive
rate TPR on the y-axis), and, meanwhile, a strictly
increasing number of ‘false positive’ peaks over all of
the negative peaks it has that are not in the ‘gold-standard’
set (i.e. False positive rate FPR on the x-axis). Thus, each
method with at least one TP and one TN will eventually
reach 100% TPR and FPR when the cutoff is relaxed to
the minimum (i.e. all of the peaks from that method are
included).
However, a sensible method will have TPR increasing

much faster than the FPR with relaxing cutoff. The result-
ing ROC will cross the second quadrant of the plot (i.e.
the top left corner) and have area under the curve (AUC)
much greater than 50%. This is the case for RIPSeeker in
all of the 12 ROCs and other methods such as QuEST and
HPeak in most of the tests. Remarkably, RIPSeeker dom-
inates the majority of the tests (9 of 12) in terms of AUC,
with large leading margin ahead of the second best
method in most of the cases. Together, RIPSeeker has
consistently demonstrated its superiority over other
methods in terms of sensitivity and specificity in identify-
ing confidence peaks.

Genomic composition of peaks

To further compare the plausibility of the peaks identified
by each method, we examined the proportion of peaks
overlapping with basic genomic elements. Similar to that
described in (35), each peak is assigned with exactly one
genomic feature according to the following order of pref-
erence: 50-UTR, coding sequence (CDS), 30-UTR, intronic
and intergenic regions based on Ensembl 65 and 69 for
mouse and human, respectively.
Except for PRC2 and CCNT1, we found biologically

meaningful and statistically significant binding preference
toward one or two genomic elements for the proteins

examined based on hypergeometric test (Supplementary
Figure S11). Such preference is consistently agreed on
among the methods, which performed competitively in
the ROC test (Figure 6). Specifically, ELAVL1 exhibits
significant bias toward intronic and 30-UTR regions
(P< 2.2e-308 and P< 8.0e-55, respectively, for the
RIPSeeker peaks) regardless of the distinct cell lines and
negative controls (Supplementary Figure S11c–f). Indeed,
ELAVL1 (or HuR) has been implicated in regulation of
multiple alternative pre-mRNA splicing and also func-
tions by interacting with AU-rich sequence elements
(ARE) frequently found within 30-UTRs (37). For
PABPC1, on the other hand, we observe consistently sig-
nificant enrichment for 30-UTR among the peaks from the
competitive methods (Supplementary Figure S11g–j).
Indeed, PABPC1 predominantly acts at the 30-UTR for
poly(A) shortening (38). Binding of PABPC1 is also re-
sponsible for ribosome recruitment and translation initi-
ation, which may explain the seemingly (but not
statistically) significant enrichment for CDS (38).

For the other two well-studied proteins PUM2 and
QKI, all of the four comparison methods (MACS,
HPeak, RIPSeeker and PARalyzer) have PAR-CLIP
peaks significantly enriched for 30-UTR and intronic
elements, respectively, and both having P-value
<2.2e-308 based on hypergeometric tests (Supplementary
Figure S11k and l). Indeed, PUM2 is known to regulate
the translation and stability of mRNA through binding to
their 30-UTR regions; QKI is well-characterized splicing
regulator found in intronic regions (35). Together, the
results suggest that the peaks identified by the methods
promising in the ROC evaluation (Section ROC evalu-
ation on sensitivity and specificity) are enriched for
common biologically meaningful genomic elements ac-
cording to the literature, further demonstrating the sens-
ibility of these methods.

Motif enrichment of top peaks

To examine whether the peaks identified by each program
are enriched for any meaningful motif, we applied
MEME-ChIP (39) to up to 5000 top peaks from each
program ranked by the program-specific scoring schemes
described in Section Receiver operating curve, except that
we used RIPScore to rank the peaks for RIPSeeker. The
results from the motif analyses are inconclusive for most
proteins, except for PUM2 and QKI, which have

Figure 5. Overlap of peaks from RIPSeeker for the same protein between different controls. The primary goal of this analysis is to examine the
robustness of RIPSeeker on data generated for the same protein using two different controls. Specifically, protein–RNA interaction sites for protein
(a1, a2) PABPC1 and (b1, b2) ELAVL1 were predicted as peaks in cell lines GM12878 and K562 by comparing the RIP signal with the background
generated from either non-specific antibody against T7-tag (T7Tag) (red) or RIP total input RNA (RIPInput) (blue) as two different types of
negative control library for the protein–RNA-specific interactions. A high proportion of overlap is expected between different controls within the cell
line for the same protein. For an alternative representation of a full four-way comparison, please refer to Supplementary Figure S10.
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Figure 6. Receiver operating curve (ROC). To examine the sensitivity and specificity of each method, we define the ‘gold-standard’ as a set of peaks
consistently ‘agreed’ on by the majority of the tested programs on the same dataset. Different peaks from two methods ‘agree’ if they overlap each
other or are within 1000 nt distance. For each of the 12 RIP versus control comparisons (a)–(l), the ROC corresponding to each method is plotted by
iteratively evaluating true-positive rate (y-axis) and false-positive rate (x-axis) based on the increasing score-specific cutoff for each program. Except
for (b) RIP-seq CCNT1, where RIPScore was used, �log10(P-value) was used to construct the ROC for RIPSeeker. ROC for Cuffdiff is absent in
some plots due to insufficient data to have at least one TP and one FP. Please refer to Receiver operating curve for more details.
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predicted motifs published in (35) that can be used as a
reference. Remarkably, the top 5000 peaks from
RIPSeeker, MACS and PARalyzer on PUM2 PAR-
CLIP data are enriched for the exact PUM2 published
motif in (35) as the top prediction by DREME with
highly significant E-values (1e-60, 3.7e-201 and 3.3e-161
for RIPSeeker, MACS and PARalyzer, respectively)
(Supplementary Figures S12–S14), whereas the top 5000
peaks from HPeak have much less significant E-values

(1e-6) (Supplementary Figure S15). Notably, the PUM2
motif is not the top-ranked motif based on DREME for
MACS and HPeak. Similar results are observed for QKI
motif comparison, where the top 5000 peaks from each
method, except HPeak, are clearly enriched for the pub-
lished QKI motif, although not as strong as in the case for
PUM2 (Supplementary Figure S12–S14). Notably, only
PARalyzer uses the T) C conversion information in
the alignments. The results together with the consistent
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Figure 6. Continued.
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genomic composition analysis on the PAR-CLIP data
(Section Genomic composition of peaks) suggest that the
read alignments information alone is likely to be sufficient
to uncover meaningful motif patterns (if any) with a
reliable peak-calling algorithm. A systematic comparison
between RIP-seq and PAR-CLIP analyses on a common
set of proteins is needed to confirm our findings.
Nonetheless, the T) C conversion enables PARalyzer
to identify at the single-nucleotide resolution the
protein–RNA binding sites, whereas other methods are
unable to do so.

For PRC2, we found the top 1000 peaks from
RIPSeeker and QuEST (the two favorable methods in
the ROC test) to contain GA-rich motifs with E-values
<9.5e-274 and <2.2e-162, respectively, in both biological
replicates (data not shown). Interestingly, it has been
shown that JARID2 (a recently identified PRC2 subunit)
appears to particularly prefer GC- and GA-rich motifs in
the DNA (40), but it is not clear whether the DNA-
binding motif has any correlation with the RNA-binding
preference and whether Ezh2 and JARID2 interact with a
similar set of transcripts.

Performance on predicting known transcripts

In mESC, PRC2 is known to associate with Tsix, Xist,
Kcnqo1t1 and Meg3 on+ and � strands (also known as
Gtl2) (4). Indeed, RIPSeeker identified all of the five tran-
scripts with substantial base coverage by the long peaks
from the PRC2 and CCNT1 datasets (Supplementary
Figure S19). Furthermore, all of the RIPSeeker’s predic-
tions fall into the correct strands of the transcripts.
QuEST is also able to identify all of the positive hits
with comparable coverage as RIPSeeker. In contrast,
HPeak and MACS predict much shorter peaks (Supple-
mentary Figure S19a) or miss some of the targets at the
correct strand orientation (Supplementary Figure S19d).
Cuffdiff failed to predict any of the five transcripts.
Supplementary Figure S19a clearly illustrates that
RIPSeeker’s predictions cover substantial proportion of
the exonic regions belonging to Xist on the ‘�’ strand.
In addition, RIPSeeker seems to suggest the existence of
the longer isoform of Xist (third transcript in the ‘Refseq
genes’ track), as its predictions cover the unique exonic
portion of that isoform. In contrast, predictions on the
same gene are much more segmented for QuEST and
HPeak and punctuated for MACS.

For CCNT1, all methods, but Cuffdiff and MACS, are
able to predict RN7SK on the correct strand (i.e.
the+strand) (Supplementary Figure S19d). MACS is
able to detect the correct loci but not the strand. It is
worth emphasizing that unlike RIPSeeker, the other
tested ChIP-seq algorithms do not have the ability to
model strand-specific library, but rather through manipu-
lation of input alignments (ChIP-seq programs).
Additionally, RIPSeeker is the only de novo algorithm
that exclusively predicts RN7SK on the+strand locus
(rather than on both or on� strand), whereas QuEST
and HPeak predict peaks on the� strand, likely due to
the second non-strand-specific library. To our knowledge,

there is no well-characterized lncRNA for the other
proteins examined.

Other criteria considered

We also compared the enrichment for different biotype
categories (protein coding, lincRNA, etc) (Supplementary
Figure S18), averaged conservation (Supplementary
Figure S16) and RNA local folding energy (Supple-
mentary Figure S17) for the peaks identified by each
method. The results are inconclusive and omitted from
the main text.

DISCUSSION

In this article, we described RIPSeeker, an HMM-based R
software package specifically tailored to analyze RIP-seq
data with statistical rigor. As a proof-of-concept, we first
tested RIPSeeker’s performance on the simulated data
generated from a two-state HMM with known NB par-
ameters and observed, on average, 85–100% accuracy
(Supplementary Figure S1). To demonstrate the utility
of the software package in the real-world application, we
made use of three independent RIP-seq datasets and two
PAR-CLIP datasets, including, in total, 12 sample com-
parisons corresponding to six distinct proteins (RIP-seq:
PRC2, CCNT1, ELAVL1 and PABPC1; PAR-CLIP:
PUM2 and QKI). As comparisons, we applied to the
same datasets, six state-of-the-art algorithms, including
three ChIP-seq algorithms (MACS, QuEST and HPeak),
two RNA-seq methods (Cuffdiff and Rulebased) and one
PAR-CLIP program (PARalyzer) (Table 1). We also
tested DESeq (as the third RNA-seq strategy) on these
datasets and decided not to include it in the subsequent
comparisons due to the small number of significant tran-
scripts identified by the method (detailed in
Supplementary Methods Section Bioconductor package
DESeq settings and results). Based on the pairwise and
multi-way overlap analyses (Supplementary Figures
S7–S9), RIPSeeker not only has generally good agree-
ments (�50% on average) with the ChIP-seq or
PAR-CLIP algorithms in their predictions on the 12
sample comparisons, but also demonstrated its robustness
in the consistent predictions using distinct negative
controls (T7-tag and the RIP RNA input) for the same
RIP treatments in the same cell line corresponding to the
protein ELAVL1 or PABPC1 (Figure 5).
The observed good agreements among most of the

tested methods prompted us for a more rigorous and
quantitative comparison based on AUC derived from
the ROC plots (Section Receiver operating curve). Due
to the insufficient canonical transcripts (‘gold-standard’)
known to associate with the six available proteins, we con-
structed for each of the 12 sample comparisons, a list of
confidence peaks overlapped by peaks from the majority
(at least half) of the tested methods and used such a list to
benchmark each method based on their sensitivity and
specificity as functions of decreasing score-specific cutoff
in discriminating the confidence peaks from other peaks
within their own predictions. The resulting AUCs from
the ROCs were then used to evaluate and compare the
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performances of the comparison methods on each sample.
RIPSeeker demonstrated superior performances by
having the highest AUC, averaging >80% in 9 of the 12
tests (Figure 6). The results from these unbiased analyses
not only consistently favor the proposed RIP-seq program
but also suggest a sensible way for the users to prioritize
RIPSeeker predictions based on the corresponding statis-
tical confidence.
Some explanations are needed for some methods falling

below the diagonal line of the ROC plots in some tests,
which may seem worse than random. As the true-negatives
TN are unknown, we used as proxy, the predictions from
each method that are not in the consensus peak list
(defined as the peaks consistently agreed on by a
majority of the methods). Thus, the ROC is relative to
each method, with the TP and TN defined as the
number of predictions from that method that have
overlap and no overlap with the consensus peak list, re-
spectively. Consequently, the TP and TN are not neces-
sarily equal. Thus, a method can have most of its peaks
not in the consensus set, leading to TN much greater than
TP. Moreover, if the scores from that method do not
properly favor the minority of the TP, then we will
observe a ROC lying at the lower triangle portion of the
plot leading to <50% AUC, which can be seen with the
Rulebased method and several other methods in some
panels (e.g. Figure 6b–d). Conceptually, the peak callers
here can be considered as ‘unsupervised classifiers’ that
call peaks directly from the genome. To some extent, a
completely insensible method would be equivalent to
randomly sampling genomic regions from the genome.
Thus, the ‘random peaks’ will unlikely to have any
overlap with the peaks from other sensible methods. As
a result, ROC corresponding to that method will have a
flat curve along the x-axis (FPR), resulting in a zero AUC.
Thus, given the large search space of a mammalian
genome, a method having an AUC �0.5 in the current
comparison is actually much better than random. If the
test itself were insensible, especially when the comparison
methods generally disagree, then all of the methods will
have AUC �50% or less, which is not the case because we
observe good pairwise and multi-way overlaps among the
comparison methods in all of the 12 tests (Supplementary
Figures S7–S9), and there are more than one method in
each panel having AUC much higher than 50% (Figure 6).
Furthermore, we demonstrated at the genome scale that

the peaks from RIPSeeker and other comparison methods
such as QuEST and HPeak that performed competitively
in the ROC evaluations are biologically meaningful. In
particular, the peaks for four of the six proteins, namely,
ELAVL1, PABPC1, PUM2 and QKI, are significantly
enriched for genomic elements, implicating their functions
suggested in the literature (Supplementary Figure S11).
Moreover, the top 5000 peaks from RIPSeeker for
PUM2 and QKI are the most significantly enriched for
the previous published motifs. Finally, RIPSeeker demon-
strates its sensitivity by identifying the canonical PRC2
and CCNT1 interacting ncRNAs with high statistical con-
fidence and peak length close to the natural length of the
lncRNAs (Supplementary Figure S19).

In terms of usability, the front-end main function
ripSeek is sufficient for most applications. The function
takes as the only required argument the path to alignment
files (BAM/BED/SAM) and outputs predicted RIP
regions. Optionally, user may indicate through cNAME
which among the input file(s) is (are) control to enable
eFDR calculation. If the arguments biomaRt_dataset
and/or goAnno are set, ripSeek will return the annotated
RIP predictions and the enriched GO terms, respectively.
RIPSeeker also supports paired-end read alignments.
However, there are currently no paired-end RIP-seq
data available. For the interest of space, many other
features such as paired-end support (using RNA-seq
data), visualization of read coverage (Supplementary
Figures S3 and S4), GO enrichments (Supplementary
Tables S2 and S3) and programmatic access to the
UCSC genome browser for visualization (Supplementary
Figure S20) are not demonstrated in the main text. For
more details, please refer to the R documentation and vi-
gnette that come with the package. Moreover, the mixture
NB and HMM functions in RIPSeeker package are imple-
mented as general purpose function, which can be used to
model any sequential count data with arbitrary number of
hidden states. In fact, most functions provided in
RIPSeeker can be used as standalone functions, allowing
flexible customization to suit user’s own workflow. For
instance, user can choose to run HMM functions
followed by disambiguating multihits to just save the
alignment output as GappedAlignments object for other
analyses within R. As another example, user could
estimate the known transcript or gene expression in
RPKM or FPKM (fragments per kilobase of million
mapped reads for paired-end reads) from the RNA-seq
data using computeRPKM function. Together,
RIPSeeker serves as a bioinformatics suite for various
computations.

Because the RNA–protein interaction may arise from
associations generated after cell lysis, further experimental
validation is required to confirm that the protein indeed
interacts with the predicted transcript in vivo (41). Ideally,
validating functional association can provide strong
support to the physical interaction observed from the
RIP-seq analyses. For instance, based on their RIP-seq
results, Zhao et al. (4) validated the interaction between
PRC2 and Meg3 (or Gtl2) through RNAi knockdown and
over-expression experiments to support their hypothesis
that Meg3 recruits PRC2 to repress the upstream
imprint gene Dlk1.

Biological replicates are an important addition to the
RIP-seq analysis to further filter out false-positives.
Currently, we only provide a helper function to combine
peaks identified separately from the biological replicates.
As future works, RIPSeeker will incorporate biological
replicates into the framework in fitting the HMM model
and in hypothesis testing taking into the sample variance.
Additionally, the peaks obtained by RIPSeeker may be
further trimmed up to where the alignments occur and
end within that region to refine the peak resolution,
which facilitates accurate primer design for experimental
validation. Another useful future addition will be to add
an input option for RNA-seq alignments assumed to come
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from the same sample desirably under similar conditions
as the RIP-seq experiment. In that case, RIPSeeker will
weigh the peaks based on the model trained on RNA-seq
data assuming a positive correlation between the RIP-seq
and RNA-seq signals. Finally, the parallel computing
option speeds up the computation by a factor propor-
tional to the total number of CPU cores but may
impose larger memory overhead than the singe-threading
approach. Performance optimization is needed to
minimize memory trace.

In perspective, RIP-seq analysis provides information
for transcripts that physically interact with a regulatory
protein. As the ENCODE data recently become available
(1,42), it is possible to correlate the RNA mediators from
RIP-seq results with the known gene targets implicated in
the ChIP-seq data based on their co-expressions measured
by RNA-seq across experimental conditions. With analyt-
ical frameworks currently under active development for
sequencing data, an integrative approach as such is at
the horizon to elucidate the global RNA regulatory
network.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3, Supplementary Figures 1–21,
Supplementary Methods and Supplementary References
[43–48].
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