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ABSTRACT

The capacity of an organism to respond to its envir-
onment is facilitated by the environmentally induced
alteration of gene and protein expression, i.e.
expression plasticity. The reconstruction of gene
regulatory networks based on expression plasticity
can gain not only new insights into the causality of
transcriptional and cellular processes but also the
complex regulatory mechanisms that underlie biolo-
gical function and adaptation. We describe an
approach for network inference by integrating
expression plasticity into Shannon’s mutual infor-
mation. Beyond Pearson correlation, mutual infor-
mation can capture non-linear dependencies and
topology sparseness. The approach measures the
network of dependencies of genes expressed in
different environments, allowing the environment-
induced plasticity of gene dependencies to be
tested in unprecedented details. The approach is
also able to characterize the extent to which the
same genes trigger different amounts of expression
in response to environmental changes. We
demonstrated the usefulness of this approach
through analysing gene expression data from a
rabbit vein graft study that includes two distinct
blood flow environments. The proposed approach
provides a powerful tool for the modelling and
analysis of dynamic regulatory networks using
gene expression data from distinct environments.

INTRODUCTION

Network analysis using gene expression data has been
widely applied as an approach to studying the regulatory
causality of transcriptional processes involved in cell
survival and proliferation (1–4). In responding to
changes in environmental conditions, a functional cell
would modify the expression of particular genes through
signalling regulation to make it possible to preserve the
robustness of cellular processes (5). A comprehensive
characterization of regulatory networks behind such an
environment-induced response becomes essential in
studying how cells adapt and survive under non-ideal con-
ditions. However, current strategies for network construc-
tion from gene expression data in a single environment
are inadequate for our understanding of the complex regu-
latory mechanisms that underlie biological adaptation
and function. Furthermore, the static feature of these
strategies assumes that genes are expressed in a steady
state, making it infeasible to describe the dynamic
patterns of an evolving process (6).
The purpose of this article is to develop a computational

model for constructing regulatory networks of dynamic
gene expression in response to environmental changes.
The difference of expression for the same gene between
different environments is called expression plasticity
(7,8). As a new concept, expression plasticity has emerged
to be useful for studying the constraints for the evolution of
gene expression in fluctuating environments (9–11). Our
model for network construction capitalizes on gene expres-
sion plasticity, aimed at gleaning a better insight into the
regulatory mechanisms for an organism’s adaptation to

*To whom correspondence should be addressed. Tel: +1 717 531 2037; Fax: +1 717 531 0480; Email: rwu@phs.psu.edu

Published online 6 March 2013 Nucleic Acids Research, 2013, Vol. 41, No. 8 e97
doi:10.1093/nar/gkt147

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



environmental changes. The model is founded on mutual
information, a quantity that measures the mutual depend-
ence of the two random variables, particularly in terms of
positive, negative and non-linear correlations (12).
The approach for gene expression analysis with mutual

information is not entirely new. Michaels et al. (13)
attempted to cluster dynamic gene expression profiles
according to information theory. Butte and Kohane (14)
computed pair-wise mutual information for the expression
of all genes using a method of discretizating variable
domains. Steuer et al. (1) described the basic theory of
mutual information and pioneered its usage to detect
dependencies of different genes. Priness et al. (15)
compared the properties of different methods for cluster-
ing gene expression profiles based on mutual information
and classic Euclidean distance and Pearson correlation
measures. A path consistency algorithm has been de-
veloped to reconstruct gene regulatory networks based
on conditional mutual information (16). There are
several applications of information-theoretic approaches
for network reconstruction in a mammalian cellular
context (17) and Escherichia coli transcriptional studies
(18). Meyer et al. (19) packed mutual information into
an R package minet for inferring transcriptional
networks from microarray data. Rajapakse et al. (20,21)
used information theory to reconstructing gene regulatory
networks during the differentiation of a multipotential
haematopoietic progenitor.
Despite these developments, the use of mutual informa-

tion to reconstruct regulatory networks based on the
environment-induced plasticity of time-series expression
profiles has not been explored. The model presented in
this article will take advantage of mutual information
in measuring the non-linear dependency of different vari-
ables to unravel the dynamic changes of network architec-
ture in a response to the environment. The model was used
to analyse experimental gene expression data obtained from
rabbit vein grafts exposed to two different wall shear con-
ditions, where these different environments resulted in two
distinct adaptation phenotypes (22,23). Themodel has been
validated through a simulation study. By extending the
model to reconstruct a web of mutual relationships
among genes and the target phenotype, it provides a
useful tool for inferring the causality of gene regulation.

MUTUAL INFORMATION

Shannon (24) provided a mathematical theory of
measuring the amount of uncertainty and quantifying
the theoretical maximum capacity of information by a
communication system to eliminate such uncertainty.
This theory, called information theory, has been widely
applied in a variety of fields. In what follows, we imple-
ment Shannon’s information theory to reconstruct a regu-
latory network with gene expression plasticity data.

Expression plasticity entropy

In mutual information, we view gene expression profiles as
a discrete random variable. Suppose that expression
profiles of genome-wide transcriptional genes are

measured at the same series of time points for the same
organism that receives two different treatments. For a par-
ticular gene, the difference of its time-dependent expres-
sion curve between the two treatments describes the
pattern of how this gene responds to the change in the
treatment’s environment. Wang et al. (23) have developed
a dynamic model for clustering genes into distinct groups
based on the temporal patterns of their expression profiles
in a relation to specific biological functions.

Our model being developed here is to construct a regu-
latory network of these genes in terms of their dynamic
relationships formed in response to environmental change.
Mutual information allows the non-linear dependence
among different genes to be characterized. We define the
difference of the expression value of the same gene at
the same time point between the two environments as
the expression plasticity of this gene (7,8). Let �X
denote the time-dependent expression plasticity variable
of a gene at time points {1,. . ., T}, expressed as
�X= {�x1,. . ., �xT}.

Suppose that D is the value range of �X, and the
subinterval set {Dj}, j=1, 2, . . . , M, is a partition of D,
satisfying that [j{Dj}=D, and Dj\Dk=j if j 6¼ k. Note
that M is the number of subsections partitioned from the
domain D. For convenience, we denote the partition {Dj}
simply as D. Define the delta function as follows,

� �xi,Dj

� �
¼

1, if �xi 2 Dj,
0, else,

�

where i=1, 2, . . . , T, and j=1, 2, . . . , M. Then the prob-
ability of Dj according to the expression plasticity variable
�X is defined as,

p�X Dj

� �
¼

1

T

XT
i¼1

� �xi,Dj

� �
, j ¼ 1,2, . . . ,M:

Based on the probability defined above, in accordance
with Shannon (24), the entropy of �X with a given parti-
tion D is defined as

HD �Xð Þ ¼ �
XM
j¼1

p�X Dj

� �
log p�X Dj

� �
, ð1Þ

where the bottom of the logarithmic function, usually 2 or
e, could be any positive number without changing the
properties of entropy. In this article, we will use 2, in
accordance with the definition based on bits by
Shannon. If p�X (Dj)=0 in Equation (1), the expression
p�X(Dj)logp�X(Dj) is mathematically undefined. But it
can be redefined to be its limit 0 when p�X(Dj) goes to
0 from the right side of 0.

According to Faser and Swinney (25), when the
measurement is expressed as �X, we can describe the
expression plasticity entropy HD(�X) as the degree of
surprise, i.e. the elimination of uncertainty about �X.
Information entropy has many properties, several of
which are listed as follows:

(i) The entropy HD(�X) reaches its minimum 0 if the
expression plasticity �X as a variable is determined,
i.e. �X is no longer random. In this case, the
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probability of one element in {D1, . . . , DM} is 1 and
that of each of the other elements is 0.

(ii) If {D1, . . . ,DM} are equiprobable, then entropy
HD(�X) is maximized to the value logM. In this
case, the entropy HD(�X) is the most uncertain;
i.e. HD(�X) is the hardest to predict.

Conditional entropy of expression plasticity

Analogously to the delta function defined earlier in the
text, we can also define joint-delta function as follows.

� �xi, �yi,Dj,Dk

� �
¼

1, if �xi 2 Dj and �yi 2 Dk

0, else;

�

where i=1, 2,. . ., T, and j, k=1, 2,. . ., M. Then the joint
probability and the conditional probability of {Dj, Dk}
according to the expression plasticity variable �X and
�Y are defined as follows, respectively.

p�X,�Y Dj,Dk

� �
¼
1

T

XT
i¼1

� �xi, �yi,Dj,Dk

� �
, j, k¼1,2, . . . ,M:

p�Xj�Y Dj,Dk

� �
¼

PT
i¼1

� �xi, �yi,Dj,Dk

� �
PT
i¼1

� �yi,Dkð Þ

, j, k ¼ 1,2, . . . ,M:

According to information theory (24), we can calculate
the conditional entropy of the expression plasticity of
one gene �X, given the expression plasticity of another
gene �Y with time-series values {�y1,. . .,�yT}, which is
defined as

HD �X �Yjð Þ ¼ �
XM
j¼1

XM
k¼1

p�X,�Y Dj,Dk

� �
log p�Xj�Y Dj,Dk

� �
,

ð2Þ

where HD(�XjDY) is the conditional entropy measuring
the remaining uncertainty of �X if �Y vis determined,
which has the following property,

HD �X �Yjð Þ � HD �Xð Þ: ð3Þ

If �X and �Y are statistically independent of each
other, we have

HD �X �Yjð Þ ¼ HD �Xð Þ: ð4Þ

Joint entropy of expression plasticity

The joint entropy of expression plasticity for the
two genes, HD(�X,�Y), is defined, analogously to
HD(�X), as

HD �X,�Yð Þ ¼�
XM
j¼1

XM
k¼1

p�X,�Y Dj,Dk

� �
logp�X,�Y Dj,Dk

� �
,

ð5Þ

where p�X,�Y(Dj, Dk) is defined based on the expression
plasticity variables �x and �y for the two genes. The joint

entropy is not greater than the sum of the entropies of two
expression plasticity variables, i.e.

HD �X, �Yð Þ � HD �Xð Þ+HD �Yð Þ: ð6Þ

If�X and �Y are statistically independent, we have

HD �X, �Yð Þ ¼ HD �Xð Þ+HD �Yð Þ: ð7Þ

The relationship among the entropy, conditional entropy
and joint entropy is expressed as

HD �X, �Yð Þ ¼ HD �X �Yjð Þ+HD �Yð Þ: ð8Þ

Equation (8) implies that the uncertainty of the joint
system (�X, �Y) is the uncertainty of �Y, plus the con-
ditional uncertainty of �X given �Y.

Mutual information

The mutual information between two variables of expres-
sion plasticity �X and �Y according to a domain parti-
tion D is defined as

ID �X, �Yð Þ ¼ HD �Xð Þ+HD �Yð Þ �HD �X, �Yð Þ: ð9Þ

From Equation (6), we have

ID �X, �Yð Þ � 0: ð10Þ

Furthermore, from Equation (7), we obtain the conclusion
that, if �X and �Y are statistically independent, their
mutual information is 0.
Mutual information is symmetrical, i.e.

ID �X, �Yð Þ ¼ ID �Y, �Xð Þ: ð11Þ

In sum, mutual information shown by Equation (9)
measures the dependency between the expression plasticity
of two arbitrary genes, no matter the dependency is linear
or non-linear.

DISCRETIZATION

To apply mutual information of expression plasticity, the
random variable domain must first be partitioned into
discrete bins. Butte and Kohane (14) used a straightfor-
ward method of evenly dividing a domain interval into a
certain number of sub-intervals and then approximating
the probabilities by the corresponding relative frequencies
of occurrence. The mutual information by this approach
depends much on the distribution type of the expression
plasticity variables and the distribution parameters.
Schreiber and Schmitz (26) proposed an adaptive partition-
ing method. Per this method, each resultant sub-interval
for a random variable contains approximately equal
number of occurrences. This method is more precise than
the straightforward one in finding the mutual information.
In Supplementary Text S1, we illustrate the procedure of
bin characterization by these two methods.
The two methods described earlier in the text may not

produce ideal results when the variable distribution types
are the same but the distribution parameters are different.
This is common, especially for gene expression data.
To improve the calculation of mutual information by
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Schreiber and Schmitz’s (26) method, we partition the
domains of the two random variables of expression plasti-
city under consideration according to a common standard,
while simultaneously making the intervals adaptive to the
respective data. We call this process ‘common adaptive
partitioning’. Let �xt and �yt0 denote two random vari-
ables of expression plasticity measured at time t and t0,
respectively, expressed as

�xt, �yt0ð Þ, t, t0 ¼ 1, . . . ,T: ð12Þ

whose means are denoted as (mX, mY) and standard devi-
ations denoted as (�X,�Y). Suppose q0,q1, . . . . . . ,q�,q�+1

� �
is a sequence of real numbers, q0=–1, q�+1=1 and
qt < qt+1 for 1 < t < � � 1. Except for the two infinities,
the other � parameters are to be determined later, which
are denoted as

� ¼ q1, q2, . . . . . . , q�
� �

: ð13Þ

The domains of �X and �Y are partitioned by a trans-
formation of the sequence into the following intervals,
expressed, respectively, as

�Xt ¼ �X+�Xqt�1, �X+�Xqt
� �

t ¼ 1,:::,�, �+1

�Yt0 ¼ �Y+�Yqt0�1, �Y+�Yqt0
� �

t0 ¼ 1, . . . ,�, �+1
ð14Þ

Let kXt , kYt0 and kX,Y
t,t0 denote the numbers of time-

dependent expression plasticity values from Equation
(12) located in the tth interval of X, in the t0th interval
of Y and in the tth interval of X while simultaneously in
the t0th interval of Y, respectively.
Our purpose is to select an optimal parameter set

described in Equation (13) that makes the time-dependent
expression plasticity profiles divided as evenly as possible
for both �X and �Y domains. This criterion is deter-
mined by a statistic

C ¼ min var kXt
� �

+var kYt0
� �� �

: ð15Þ

Several optimization techniques, such as simulated
annealing and genetic algorithms, have been available to
solve the optimization task described in Equation (15).
Supplementary Text S2 gives a procedure for uniformly
dividing time-dependent expression plasticity for the two
genes. After the time-dependent expression plasticity
profiles are divided per Equation (15), we calculate three
kinds of probabilities as follows:

pXt ¼
kXt
T

pYt0 ¼
kYt0

T

pX,Y
t,t0 ¼

kX,Y
t,t0

T

ð16Þ

where T is the total number of time points as defined
in Equation (12). These probabilities are then used to
calculate the mutual information between the expression
plasticity variables �X and �Y by Equations (1), (5) and
(9). The partition determined byC in Equation (15) is called
the common partition of expression plasticity variables �X
and �Y.

MUTUAL INFORMATION BETWEEN GROUPS AND
ENVIRONMENTS

In gene expression analysis, clustering is a first step
towards studying gene function by subdividing the genes
into a smaller number of categories and then comparing
dissimilarities among the categories (23,27). In each
category or group, there are a set of functionally similar
genes. From the perspective of mutual information, we
want to know whether the grouping result is reasonable
and how the groups are related with each other. To solve
these problems, the mutual information between and
within groups should first be defined.

For any two groups, G1 and G2, there are a number of
genes with a similar dynamic expression plasticity trajec-
tory. Let X and Y denote an arbitrary gene from groups
G1 and G2, respectively. According to a common partition
D for G1 and G2, the mutual information of expression
plasticity �X and �Y between the two groups according
to a common partition D is defined as

IDðG1,G2Þ ¼
1

G1j j � G2j j

X
�X2G1

X
�Y2G2

ID �X, �Yð Þ, ð17Þ

where jG1j and jG2j are the numbers of genes in G1 and G2,
respectively.

The calculation of the dependence of gene expression in
response to different environments is based on the mutual
information of environmentally induced expression plasti-
city. There is an alternative to calculating such depend-
ence, which is based on the mutual information of gene
expression between two environments. Let X denote
an arbitrary gene from a group G. In this group, this
across-environment mutual information according to a
common partition D is defined as

IDL,H Gð Þ ¼
1

Gj j

X
X2G

ID XL,XHð Þ, ð18Þ

where jGj is the number of genes in G; XL and XH are the
expression profiles of a gene in environment L and H,
respectively.

Equation (17) provides a procedure for calculating the
mutual information of dynamic expression plasticity
between different groups of genes. The reconstruction of
regulatory networks from dynamic expression plasticity
trajectories can shed light on the mechanistic pattern of
how genes respond differently to environmental change
according to their biological function. Equation (18) can
be used to study the dependence of the expression of
individual genes between different environments. By
accumulating all genes within groups, different groups
can be compared for the extent of such dependence.

RESULTS

Working example

In previous work by Wang et al. (23), a dynamic model
was developed and used to identify unique groups of genes
based on their differential response to the local environ-
ment. Specifically, vein bypass grafts, exposed to either
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high or low flow, were harvested at 2 h, 1 day, 7 days or 28
days after implantation (20). Microarray analysis of
14 958 genes was used to define and cluster the temporal
response of the transcriptional profile induced by the
local flow environment. Wang et al.’s model identified
eight groups, symbolized by A (0.0116), B (0.0123),
C (0.3354), D (0.3831), E (0.1134), F (0.0359),
G (0.0100) and H (0.0083), where the numbers in
parentheses are the proportions of genes belonging to a
particular group. These groups display different patterns
of environment-induced changes in gene expression tra-
jectories. Our mutual information approach was applied
to reconstruct a regulatory network that encompassed
the dynamics of gene expression. Our analysis was based
on three scenarios: (i) reconstructing an overall network
by jointly using time-series gene expression data from the
two flow environments; (ii) reconstructing a network by
using the expression plasticity between high and low flows;
and (iii) reconstructing two networks by using time-series
gene expression data separately for two flows.

According to scenario (i), a sparse network of gene ex-
pression was obtained (Figure 1), in which a few pairs of
gene groups have regulatory connections. Of all pair-wise
relationships, group A shares the highest level of mutual
information with group H, followed by the level of mutual
information between groups H and F, groups B and E,
groups A and F, groups B and F and so forth. Several
pairs of groups share very low mutual information.
It appears that groups C, D and G are substantially dis-
similar to the rest of the groups, with each of these groups
only weakly connected with two other clusters.

Scenario (ii) emphasizes the similarities of gene groups
in terms of their pattern of differential expression over two
different flows. Figure 2a provides a quantitative descrip-
tion of the level of regulatory connections among eight
gene groups identified by Wang et al.’s (23) dynamic
model. Although many connections are observed, the
levels of mutual information are highly variable. To
respond to environmental changes from one flow to

next, groups A and H, groups H and F, and groups F
and D would adjust their expression profiles in a highly
similar way. As such, we conclude that groups A,H, F and
D share substantial overlapping information, compared
with other clusters in the network. The significant
overlap and network autonomy among these four
groups is further underscored by the configuration of
group D, which, except for weak connections with
groups C and B, only demonstrates the dominant connec-
tion to group F.
To reconstruct the networks per scenario (iii), we

calculated with the common partition D the mutual infor-
mation of expression dynamics of genes Xj and Yj from
two groups G1 and G2, respectively, in a particular envir-
onment j using

IDj G1,G2ð Þ ¼
1

G1j j � G2j j

X
Xj2G1

X
Yj2G2

ID Xj,Yj

� �
:

Figure 2. Regulatory network of eight groups of rabbit genes expressed
in high and low flows. (a) Between-group network reconstruction based
on average value of expression between the two treatments. (b) Within-
and between-group network reconstruction based on gene expression
separately in low and high flows. The thickness of a circle represents
the level of mutual information between two treatments within a group,
whereas the thickness of lines represents the level of mutual informa-
tion between two groups in low (green) and high flows (red). The lines
representing mutual information below the average level are omitted.

Figure 1. An overall regulatory network of eight groups of rabbit
genes constructed by jointly using expression data from high and low
flows.
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This equation was used to calculate group-wise depend-
ence separately for each different environment. It is inter-
esting to see that the degree of dependence between groups
is not identical for low and high flows (Figure 2b). For
example, groups A is associated with groups C and D in
the low flow, but this association does not occur in the
high flow. Figure 2b provides a quantitative measure of
the difference in the level of group-wise mutual informa-
tion of gene expression between the two treatments. In
addition, the amount of mutual information of the two
treatments for the same group varies, depending on group
type. Group G is most highly associated between low and
high flows, followed by groups H, E and F. Within group
D, the two flows are weakly associated. The results given
in Figure 2 provide a comprehensive characterization of
regulatory networks of genes related to vein graft re-
modeling, which are expressed differently in response to
low and high flow environments.

Computer simulation

The basic idea of using mutual information to reconstruct
networks for genes expressed in a single environment has
been available in the literature. Some studies critically
analysed the advantages of information-based approaches
over those based on classic Euclidean distance and
Pearson correlation measures (1,15). Thus, we will not
focus on methodological comparisons in this article,
rather than on the investigation of the advantage of our
information-based approach in studying gene expression
plasticity.
We simulated two data sets each of three equally sized

groups of genes expressed in a time course. In the first data
set, genes are measured in a single environment, whereas
the second data set contains genes measured in two differ-
ent treatments. Our model was used to analyse these
two sets of data, having results to be in a good agreement
with the actual case of each data set (Figure 3). However,
it is impossible that a good result can be obtained for gene
expression in two environments using a traditional single-
environment approach.

DISCUSSION

Many biological processes including plant and animal de-
velopment are coordinated by cell-to-cell communication
regulated by genes (5). High-throughput measurement
techniques have now led to the identification of tens of
thousands of genes involved in sensing external cues.
However, the dynamic interplay between genes is highly
complex and cannot be understood by a simple approach
(28). The reconstruction of gene regulatory networks can
be a valuable tool for identifying the key mechanisms that
shape the dynamics of cellular and transcriptional
processes (6,29).
External stimuli or agents can alter the speed and dir-

ection of cellular processes through differential expression
of the gene set. There exist specific mechanisms that
shepherd the signal into the nucleus, where signal integra-
tion occurs by complex transcription factor networks.
In this article, we describe a procedure for quantitative

modelling of biological regulatory networks regulated by
gene expression using mutual information. Beyond classic
correlation parameters, mutual information can measure
and evaluate the non-linear dependencies of random vari-
ables (12,14,24). We extended this information-based
approach to assess and detect the non-linear dependencies
of genes both between and within different gene groups of
a particular function.

Our model has combined two complexities of network
reconstruction. First, although much previous work
focuses on static (steady-state) gene regulation, improved
biotechnologies have allowed the measures of dynamic
gene expression data during a biological process. The
availability of dynamic data enables geneticists to better
study the regulatory machineries underlying cellular
processes (2) but, meanwhile, brings about a difficulty
in analysing and interpreting expression data. Second,
as gene expression is environment dependent (5), the
reconstruction of regulatory networks by integrating
environmental impact is crucial. By taking into account
dynamic and environment-dependent complexities of gene
expression, our model allows the reconstruction of more
mechanistic and, therefore, more powerful regulatory
networks.

The new model based on mutual information can effect-
ively handle any dynamic relationships of genes, linear or
non-linear, a characteristic better than classic Euclidean
distance and Pearson correlation measures (15), and
thereby should be able to find its broader application in
computational biology. The model was used to analyse a
time-series data set of gene expression measured for vein
bypass grafts subjected to two distinct conditions, high
and low blood flow, leading to the construction of
genetic network that connects different groups of genes
with different response trajectories to the local environ-
ment (23). The model can quantify the mutual dynamic

Figure 3. Regulatory network constructed from simulated data sets of
genes expressed in a single environment (a) and two different environ-
ments (b).
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relationships of different genes in terms of their differen-
tial expression to environmental change. The model was
validated through computer simulation, showing its prac-
tical usefulness. In practice, when the number of genes
is large, some inference procedure for selecting important
groups, such as some permutation procedure, may be
helpful and can be implemented.

There is much room for the model to be improved.
First, our model assumes a normal distribution of gene
expression, which is reasonable for microarray data.
However, an increasing body of expression data is being
collected by high throughput cDNA sequencing (RNA-
Seq). The current model will need to be modified to ac-
commodate the feature of Poisson distribution, which
characterizes the data obtain from RNA-Seq (30).
Second, the ultimate goal of network construction is to
identify key genes or elements that can determine or
alter the behaviour of an outcome, such as the critical
stenosis that leads to vein bypass graft failure. Thus, the
incorporation of outcome variables into the network and
the estimation of direct or indirect effects of each gene on
the outcome are essential for mechanistic characterization.
Third, it is likely that the regulation of gene elements
is under global genetic control (31). The integration of
mutual information into genetic mapping will provide a
powerful means of identifying expression quantitative trait
loci that control regulatory networks. The characteriza-
tion of expression quantitative trait loci will enable gen-
eticists to gain a better understanding of the aetiology
underlying complex traits or diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Texts 1 and 2.
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