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Abstract
Echogenic liposomes (ELIP) encapsulate gas bubbles and drugs within lipid vesicles, but the
mechanisms of ultrasound-mediated drug release from ELIP are not well understood. The effect of
cavitation activity on drug release from ELIP was investigated in flowing solutions using two
fluorescent molecules: a lipophilic drug (rosiglitazone) and a hydrophilic drug substitute (calcein).
ELIP samples were exposed to pulsed Doppler ultrasound from a clinical diagnostic ultrasound
scanner at pressures above and below the inertial and stable cavitation thresholds. Control samples
were exposed to a surfactant, Triton X-100 (positive control), or to flow alone (negative control).
Fluorescence techniques were used to detect release. Encapsulated microbubbles reduced the
measured fluorescence intensity and this effect should be considered when assessing drug release
from ELIP. The origin of this effect is not specific to ELIP. Release of rosiglitazone or calcein
compared to the negative control was only observed with detergent treatment, but not with
ultrasound exposure, despite the presence of stable and inertial cavitation activity. Release of
rosiglitazone or calcein from ELIP exposed to diagnostic ultrasound was not observed, even in the
presence of cavitation activity. Ultrasound-mediated drug delivery strategies with ELIP will thus
rely on passage of the drug-loaded liposomes to target tissues.
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1. Introduction
Cardiovascular disease, which includes coronary and peripheral arterial disease, heart
failure, and stroke, is the leading cause of death in the United States [1,2]. Cardiovascular
disease is caused by the development of atheromatous plaques within arteries [2].
Atheromas contain peroxisome proliferator-activated receptor gamma (PPARγ), which
when activated can inhibit atheroma progression [3–5]. Rosiglitazone is a PPARγ agonist
that has demonstrated anti-atherosclerotic activity in pre-clinical studies [6–8]. Systemic
doses at concentrations required for therapeutic efficacy have resulted in serious and
sometimes fatal side effects, including myocardial infarction and heart failure [9,10]. Thus,
there is a need for more targeted delivery of this drug.

Targeted drug delivery may be achieved using echogenic liposomes (ELIP). ELIP solutions
contain vesicles composed of one or more lipid bilayers that surround an aqueous core and
encapsulated bubbles. Thus, ELIP can potentially serve as ultrasound contrast agents and
drug delivery vehicles simultaneously [11,12]. In addition, antibodies can be conjugated to
the ELIP surface and have been successfully targeted to vessels in vivo [13,14]. Kopechek,
et al., found that greater than 99% of the number of ELIP are less than 100 nm in diameter.
The remaining 1% range up to several microns in diameter, with a median diameter between
0.5 and 1 µm for the particle population above 0.4 µm [15]. Furthermore, ultrasound
backscatter and attenuation at high frequencies (>20 MHz) of solutions of ELIP only
matched theoretical models when microbubbles less than 100 nm were included. Although
bubbles smaller than 100 nm could play a role in high frequency ultrasound applications, it
is expected that they do not contribute substantially to the echogenicity observed from ELIP
using clinical diagnostic ultrasound frequencies (1–10 MHz) due to their small scattering
cross-sections at these frequencies. Though the location of the bubbles in ELIP solutions
remains uncertain, it is possible that some bubbles exist in solution external to the
liposomes. However, TEM and freeze fracture microscopic images provide evidence for the
existence of a population of nanometer and micron-sized bubbles that exist within liposomes
in ELIP solutions [12,15]. Several therapeutic agents have been loaded into ELIP, including
a thrombolytic enzyme (recombinant tissue-plasminogen activator), a vasodilator
(papaverine), and an oligonucleotide (NF-κB decoy) [16–18]. Ultrasound-mediated release
of these agents from ELIP has been previously investigated [18–22]. However, the
mechanisms of ultrasound-mediated drug release from ELIP are not well understood.

Acoustic cavitation has been associated with ultrasound-mediated drug release from
micelles and liposomes [23–25]. Under certain conditions, bubbles oscillate in a non-linear
manner and can expand rapidly before collapsing violently. This phenomenon is known as
“inertial” or “transient” cavitation [26]. “Stable” cavitation, occurs when bubbles oscillate
non-linearly without the associated sudden expansion or violent collapse [27]. Cavitation
can be detected by analyzing the acoustic emissions scattered from oscillating bubbles in
response to acoustic exposure. Inertial cavitation is associated with an increase in broadband
emissions as a result of rapid bubble collapse [28,29]. Stable cavitation, however, is detected
by the presence of subharmonics of the insonation frequency and corresponding
ultraharmonics [28,30]. Cavitation can cause microstreaming or microjetting along with
associated bioeffects [31–37]. Although these effects are undesirable for diagnostic
applications, they can potentially be advantageous for therapeutic treatments. Stable
cavitation has been associated with enhanced clot lysis and blood-brain barrier opening [38–
41]. Inertial cavitation has been associated with ultrasound-mediated drug release from
liposomes, enhanced gene transfection, and sonoporation of cells [24,42–44]. In light of
these results, it seems plausible that cavitation plays a role in ultrasound-mediated drug
release from ELIP. However, cavitation nucleated from echogenic liposomes has not been
previously investigated.
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In this study, two fluorescent molecules were separately loaded into ELIP and exposed to
pulsed Doppler ultrasound pulses: a lipophilic drug with anti-atherogenic properties
(rosiglitazone) and a water-soluble dye used as a hydrophilic drug substitute (calcein). Drug
release from liposomes can be detected using a self-quenching assay. Self-quenching can
occur as a result of molecular interactions between the fluorophores that renders them non-
fluorescent (e.g. dimerization or collisional self-quenching) or due to the inner filter effect
where absorption at the excitation or emission wavelengths occurs along the optical path
[45,46]. Encapsulation of molecules at a concentration sufficiently high to render the
fluorophores non-fluorescent, i.e. molecular interaction quenching, can result in little or no
detected fluorescence emissions from the sample. The liposome solution can be diluted such
that the concentration of unencapsulated molecules in solution drops below the self-
quenching threshold and fluorescence emissions from these molecules can be detected.
However, molecules encapsulated within the liposomes are not diluted and the concentration
remains above the molecular interaction self-quenching threshold. Release of encapsulated
contents into the diluted solution can cause relief of self-quenching, resulting in an increase
in the fluorescence signal. Relief of fluorescence self-quenching has also been used to detect
ultrasound-mediated calcein release from liposomes [25,47,48].

Chemical quenching is another technique used to detect drug release from liposomes. In
some cases, a quenching agent can be added to the sample, which binds to the
unencapsulated drug and quenches its fluorescence, while encapsulated molecules continue
to fluoresce. For example, cobalt ions quench calcein fluorescence. Thus cobalt chloride has
been used to detect calcein release from ELIP [45,49,50].

The objective of this study was to determine whether inertial or stable cavitation causes drug
release from flowing ELIP exposed to pulsed Doppler ultrasound from a clinical diagnostic
system. Rosiglitazone release was detected using a self-quenching assay and calcein release
was detected using a cobalt quenching assay. The long-term goal is to improve the
therapeutic treatment of cardiovascular disease by achieving image-guided targeted drug
delivery in vivo.

2. Material and Methods
2.1 ELIP Preparation

The lipids L-α-phosphatidylcholine (chicken egg; EPC), 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol] (DPPG),
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-diheptanoyl-sn-glycero-3-
phosphocholine (DHPC), and cholesterol (CH) were purchased from Avanti Polar Lipids
(Alabaster, AL, USA). Bovine serum albumin (BSA), calcein, and cobalt chloride were
purchased from Sigma-Aldrich (St. Louis, MO, USA), and rosiglitazone was purchased
from Cayman Chemical (Ann Arbor, MI, USA).

Rosiglitazone-loaded ELIP (R-ELIP) were prepared at the University of Texas Health
Science Center following a process previously described [51–53]. The lipids were dissolved
in chloroform at molar ratios of 27:42:8:8:15, EPC:DPPC:DPPG:DPPE:CH, and evaporated
under argon while rotating in a 50 °C water bath. This lipid composition has been shown to
maintain echogenicity for a longer time at physiologic temperature than other compositions
[51]. After desiccation for 8 hours, the lipid film was rehydrated at room temperature with a
0.32 M mannitol solution containing 1 mg/ml rosiglitazone to a final lipid concentration of
10 mg/ml. The resulting liposomes were sonicated in a water bath for 5 minutes. The free
rosiglitazone was separated from rosiglitazone-loaded liposomes by centrifugation at 13,000
g for 20 minutes and indicated greater than 90% encapsulation efficiency [54]. The resulting
pellet was resuspended in a 0.32 M mannitol solution, frozen at -80 °C for 1 hour and
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lyophilized for 24 hours. The final loading amount of rosiglitazone in each vial was 200 µg
in 2 mg lipid. R-ELIP vials were reconstituted with 200 µl of 0.2-µm filtered, deionized, and
air-saturated water (dissolved oxygen concentration of 105 ± 2.5% relative to the dissolved
oxygen concentration in air) to form an R-ELIP stock solution. Encapsulated nanobubbles
are formed during reconstitution. Thus, lyophilization conditions prior to that point,
including vacuum applied during lyophilization, do not diminish the echogenicity of the
reconstituted suspension. However, vacuum applied after reconstitution immediately
reduces echogenicity. For drug release experiments, the R-ELIP stock solution was diluted
with 0.5% BSA (w/v) in a phosphate buffered saline (PBS) solution (Sigma) to final
concentrations of 0.032 mg/ml lipid and 3.2 µg/ml (9 µM) rosiglitazone.

Calcein-loaded ELIP (C-ELIP) were prepared and reconstituted in a similar manner as
previously described [50]. The lipid formulation was EPC:DPPG:DPPE:DHPC:CH in molar
ratios of 69:8:8:4:15. This formulation is identical to the formulation used in a previous
study by the authors, allowing for direct comparison between studies [50]. The lipid film
was rehydrated at room temperature with a 0.32 M mannitol solution containing 62 µg/ml
(100 µM) calcein. After three freeze-thaw cycles the C-ELIP solution was lyophilized for 24
hours. Unencapsulated calcein did not need to be separated from liposomes because the
cobalt quenching technique that was used blocks fluorescence from unencapsulated calcein.
C-ELIP vials were reconstituted with 0.2-µm filtered, deionized, and air-saturated water to a
lipid concentration of 10 mg/ml to form a stock solution. For drug release experiments, the
C-ELIP stock solution was diluted in 50 mM MOPS buffer and 110 mM NaCl to a final
lipid concentration of 0.33 mg/ml, which corresponded to 2.1 µg/ml (3.4 µM) total calcein.
The solution containing 50 mM MOPS buffer and 110 mM NaCl was used in previous C-
ELIP experiments to maintain isosmolarity with mannitol and calcein [50]. The final
concentrations of unencapsulated rosiglitazone and calcein were below the fluorescence
inner-filter effect self-quenching thresholds, as shown in Figure 1.

2.2 Spectrofluorometric Analysis
A Shimadzu spectrofluorometer (RF5301-PC, Shimadzu, Kyoto, Japan) was used to
measure fluorescence intensity and a Shimadzu spectrophotometer (UV-1700, Shimadzu)
was used for absorbance measurements. For ultrasound-mediated drug release studies,
rosiglitazone fluorescence was detected with an excitation wavelength of 317 nm and an
emission wavelength of 372 nm. Calcein fluorescence was detected at an excitation
wavelength of 496 nm and an emission wavelength of 520 nm. For R-ELIP and C-ELIP
measurements, the slit widths (bandwidths of incident and detected light) were set to 3 nm
for excitation and 5 nm for emission. The “sensitivity” (a gain setting on the instrument) was
set to “high” for rosiglitazone and “low” for calcein measurements. A sub-micro quartz
cuvette was used for all measurements (100 µl, 10 mm pathlength, Starna Cells, Atascadero,
CA). Rosiglitazone and calcein fluorescence standard curves are plotted in Figure 1 as a
function of concentration. The fluorescence increases with concentration for both
rosiglitazone and calcein until the inner-filter effect self-quenching thresholds, above which
the fluorescence decreases with concentration.

2.3 Effect of Encapsulated Bubbles on Fluorescence Measurements
A series of spectrofluorometric measurements were performed in order to reveal the
relationship between rosiglitazone and calcein concentration and absolute fluorescence
intensity. Due to concerns that encapsulated bubbles in ELIP solutions could affect
fluorescence measurements by scattering both the excitation and emission light, the
fluorescence intensity and absorbance of C-ELIP was measured before and after applying
vacuum to eliminate the bubbles. For these measurements a calcein concentration of 1 µM
was encapsulated in C-ELIP and diluted in calcein solutions to achieve known total
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concentrations. This calcein concentration was chosen to be below the inner filter effect self-
quenching threshold so that both encapsulated and unencapsulated calcein fluorescence were
measured. Thus, calcein release that may occur due to exposure to vacuum would not cause
an increase in fluorescence. Because bubbles scatter light, the absorbance was measured at a
wavelength of 496 nm as an independent indicator of the effect of bubbles on the passage of
the excitation light beam through the sample. The number density of encapsulated bubbles
increases with lipid concentration [55]. Thus, the fluorescence intensity and absorbance
were measured at different lipid concentrations to determine the effect of different number
densities of bubbles. Fluorescence and absorbance measurements were also obtained at
different calcein concentrations. To remove encapsulated bubbles from the solution after the
initial fluorescence and absorbance were measured, vacuum was applied to each C-ELIP
sample for 60 s at a pressure of -70 kPa using a 5-L stainless steel chamber connected to a
vacuum pump (2522B-01, Welch Vacuum Technology, Niles, IL, USA). To confirm that
bubbles did not remain in the solution after vacuum was applied, B-mode images were
acquired using a Philips CL15-7 transducer array on a clinical diagnostic ultrasound scanner
(HDI 5000, Philips Medical Systems, Bothell, WA).

2.4 Flow Phantom Setup
A diagram of the flow phantom setup is shown in Figure 2. A peristaltic pump (Rabbit,
Rainin, Oakland, CA) was used to pump 10 ml of R-ELIP or C-ELIP solutions at a rate of
2.5 ml/min through tubing submersed in a tank of 0.2-µm filtered, deionized, degassed water
(dissolved oxygen concentration of 25% ± 5%) maintained at 37 °C. Latex tubing (0.125”
ID, Piercan, San Marcos, CA) was used for R-ELIP experiments. Low-density polyethylene
tubing (0.106” inner diameter, 5/32” outer diameter, McMaster-Carr, Elmhurst, IL) was
used for C-ELIP experiments because it was found that latex interfered with the cobalt
quenching assay. A calibrated linear array transducer (CL15-7) driven by a clinical
diagnostic ultrasound scanner (HDI 5000, Philips Medical Systems) was placed 1.0 cm
above the tubing and used to insonify ultrasound-treated samples with 6.0-MHz Doppler
pulses (pulse duration of 3.33 µs, pulse repetition frequency of 1250 Hz). A 10-MHz center
frequency hydrophone (Valpey-Fisher, Hopkinton, MA) was used as a passive cavitation
detector (PCD). The PCD was aligned orthogonally and confocally to the pulsed Doppler
focus of the CL15-7 transducer and placed at a distance of 2.0 cm from the center of the
tubing.

The CL15-7 transducer and the 10-MHz PCD were calibrated in 0.2-µm filtered, deionized,
degassed water at room temperature using a 0.2-mm PVDF needle hydrophone (Precision
Acoustics Ltd., Dorchester, UK). A computer-controlled, motorized three-axis orthogonal
translation system (Velmex NF90 Series, Velmex Inc., Bloomfield, NY) was used to step
the hydrophone throughout the ultrasound field. The hydrophone signal at each point was
acquired with a digital oscilloscope (WaveRunner-2 LT572, LeCroy, Chestnut Ridge, NY)
and transferred to a PC for analysis in order to determine the axial and transverse beam
profiles. The focal depths were 10 mm and 20 mm for the CL15-7 and PCD, respectively,
and the -3 dB beamwidths were 0.5 mm for both the CL15-7 transducer and the PCD.

2.5 Cavitation Detection and Analysis
Received signals from the PCD were amplified with an RF power amplifier (50A15, AR,
Souderton, PA), digitized (8 bits, 100 MHz sampling rate, 10 µs window) using an
oscilloscope (Waverunner LT584, LeCroy, Chestnut Ridge, NY), and saved to a PC using
MATLAB (Mathworks, Natick, MA). Traces containing 500 received pulses each were
acquired throughout the ultrasound exposures using sequence mode with a 25-ms trigger
delay and the power spectrum was computed for each pulse. The average power spectrum
was computed by averaging the linear power spectra from 2500 pulses. Reference signals
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were acquired with degassed water in the flow system to measure the scattering from just the
tubing. To identify ultrasound pressures that were above or below the stable cavitation (SC)
and inertial cavitation (IC) thresholds for R-ELIP, the on-screen mechanical index (MI) was
increased incrementally and PCD signals were acquired at each output setting as R-ELIP
were pumped through the latex tubing. Stable cavitation activity was indicated by a 10 dB
increase in the subharmonic peak at 3 MHz, and inertial cavitation activity was indicated by
a 10 dB increase in the broadband emission level.

The method used to quantify cavitation activity was based on the work of Somaglino, et al.
[24]. The following equation was derived to compute the cavitation pressure, Pc(f), at a
distance of 20 mm from the focus:

(1)

where 〈|Vs(f)|2〉 and 〈|Vref(f)|2〉 are the average power spectra of the emissions received by
the PCD from the ELIP samples and reference (degassed water), respectively, Gamp(f) is the
gain of the hydrophone pre-amplifier, SPCD(f) is the PCD sensitivity, and αt(f) is the total
attenuation of any materials between the ELIP sample and the detector (i.e. the tubing wall).

To determine the frequency-dependent PCD sensitivity, the pressure at the focus of a 30-
MHz transducer (Aperture diameter of 6 mm, focal distance of 19 mm, Harisonic HI-988,
Olympus-NDT, Waltham, MA) was measured at 0.1-MHz intervals between 2 and 20 MHz
using a 0.2-mm PVDF needle hydrophone (Precision Acoustics, Dorchester, UK). The
needle hydrophone was removed, the PCD was aligned confocally with the 30-MHz
transducer, and signals were acquired at the same frequencies. The pressures determined
from hydrophone measurements were divided by the voltages measured by the PCD to
determine the sensitivity, SPCD(f).

The attenuation of latex and polyethylene tubing was determined by slicing it lengthwise
and placing it at the foci of two confocally-aligned 30-MHz transducers (Harisonic HI-988,
Olympus-NDT, Waltham, MA). After acquiring the transmitted pulses at 0.25-MHz
intervals between 3 and 30 MHz, the tubing was removed and free-field measurements were
acquired at the same frequencies. The ratio of the signals with and without tubing was
calculated at each frequency to determine the frequency-dependent total attenuation (or
insertion loss) of the tubing, αt(f), shown in Figure 3. Note that this signal processing
corrects for the frequency-dependent attenuation of the tubing but not any effects due to
diffraction of the curved tubing.

The average cavitation pressure for each sample was determined using the cavitation
pressures computed with equation 1. The inertial cavitation pressures were computed by
averaging over 0.5-MHz bands centered about the inharmonics at 4 and 10 MHz, avoiding
the fundamental, harmonic, subharmonic, and ultraharmonic signals. The stable cavitation
pressures were computed by averaging over 0.5-MHz bands, which corresponded to the -3
dB bandwidths, of the subharmonic peak at 3 MHz and the ultrahamonic peak at 9 MHz. To
correct for the subharmonic and ultraharmonic increase due to broadband noise from inertial
cavitation, the calculated inertial cavitation pressure was subtracted from the calculated
stable cavitation pressure.

2.6 Drug Release Measurements
2.6.1 Rosiglitazone-loaded ELIP Experiments—A self-quenching assay was used to
detect rosiglitazone release because there are no known quenching agents for rosiglitazone.
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Measurements with a 1.5 mm path length sub-micro cuvette indicated that at least some of
the rosiglitazone self-quenching is due to the inner filter effect. It is unknown whether
molecular interaction quenching also plays a significant role. R-ELIP samples were pumped
through the system with one of five treatments (with N=5 in each): no ultrasound sham
(negative control), 0.05% w/v Triton X-100 detergent (positive control), pulsed Doppler
ultrasound below the stable cavitation (SC) and inertial cavitation (IC) thresholds, pulsed
Doppler ultrasound above the SC threshold but below the IC threshold, or pulsed Doppler
ultrasound above the SC and IC thresholds. The on-screen MIs and corresponding peak
rarefactional pressures are listed in Table 1. An MI of 0.8 was the maximum output
permitted by the ultrasound scanner at the pulse duration and pulse repetition frequency
settings used in this study. The spatial-peak temporal-average intensity (Ispta) was calculated
from calibration measurements to be 0.17 W/cm2 at an MI of 0.8, a pulse duration of 3.33
µs, and a pulse repetition frequency of 1250 Hz. After one pass through the system, samples
were collected for spectrofluorometric analysis.

2.6.2 Calcein-loaded ELIP Experiments—Calcein release was detected using a cobalt
quenching assay. At the beginning of each experiment cobalt chloride was added to the C-
ELIP solution at a concentration of 150 µM in order to quench unencapsulated calcein.
Samples from five C-ELIP vials were exposed to pulsed Doppler ultrasound at an MI of 0.8
(above SC and IC thresholds) in the flow system while cavitation activity was monitored.
Negative controls were performed with the contents of five other C-ELIP vials that were
passed through the flow system without ultrasound exposure. The fluorescence intensity of
each sample was measured before and after flow. In addition, a 300 µl aliquot from each
sample was treated with 1% Triton X-100 detergent to release all encapsulated calcein
(positive control) and the fluorescence intensity was measured again.

2.7 Statistical Analysis
Statistical analysis was performed with a 2-tailed Student’s t-test using OpenEPI (Emory
University, Atlanta, GA). Drug concentrations before and after ultrasound or detergent
treatments were compared with negative controls. A p-value below 0.05 was the threshold
used to determine statistical significance.

3. Results
3.1 Effect of Encapsulated Bubbles on Calcein Fluorescence Measurements

Figure 4 shows the fluorescence intensity and absorbance measured for solutions of free
calcein plus C-ELIP in 0.5% BSA in PBS before and after vacuum was applied. The total
calcein (free plus encapsulated) for these data points was fixed at 6 µM. The calcein
encapsulated in C-ELIP was below the self-quenching threshold and therefore contributes to
the total fluorescence measured. The amount of C-ELIP in each solution ranged from 0.0 mg
lipid/ml to 0.6 mg lipid/ml. Figure 5 plots the fluorescence intensity and absorbance
measured for three different fixed lipid concentrations with varying amounts of total calcein
concentration (obtained by adjusting the amount of free calcein added). For both figures,
before vacuum was applied, the fluorescence intensity decreased while the absorbance
increased with increasing lipid concentration at constant total calcein concentration. This
change in fluorescence intensity indicates that either the lipid or encapsulated microbubbles
affect the spectrofluorometric measurements. Vacuum was applied to remove encapsulated
bubbles from solution while leaving the lipid concentration the same. Removal of
microbubbles was verified by a subsequent total loss of echogenicity in B-mode images of
the solutions after vacuum. After vacuum, the fluorescence intensity increased and the
absorbance decreased for all lipid concentrations, indicating that microbubbles were the
primary influence on fluorescence and absorbance measurements. The lipid concentration
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also affected the fluorescence and absorbance measurements, but to a much lesser degree.
Calcein release from C-ELIP would not cause an increase in fluorescence intensity because
the encapsulated calcein concentration was below the self-quenching threshold. Thus, these
results demonstrate that at sufficiently high number densities, the encapsulated bubbles in C-
ELIP solutions can significantly affect calcein fluorescence and absorbance measurements.

It was necessary to remove microbubble artifacts before obtaining fluorescence
measurements. R-ELIP and C-ELIP samples maintained echogenicity when pumped from a
room temperature reservoir (22 °C ± 1 °C) through a 37 °C water bath (Figure 6a).
However, when the samples were subsequently gently cooled back to room temperature over
five minutes they lost all echogenicity (Figure 6b), indicating a dissolution of microbubbles.
Since encapsulated microbubbles were no longer present after cooling, the microbubble
artifact in fluorescence measurements was avoided. Therefore all fluorescence and
absorbance measurements for drug release were made after the solutions cooled to room
temperature and lost echogenicity (confirmed with B-mode imaging).

3.2 Cavitation Activity
The average power spectrum of R-ELIP, obtained from PCD measurements, is shown in
Figure 7 at different MIs (i.e. insonation pressures). The increase in subharmonic power at 3
and 9 MHz indicates the onset of stable cavitation at an MI of 0.32. The increase in
broadband noise level at an MI of 0.8 indicates the presence of inertial cavitation activity.
Thus, MIs of 0.8, 0.32, and 0.19 were chosen for drug release experiments in order to
compare the effects of IC, SC, and the absence of IC or SC on drug release from ELIP. The
average inertial and stable cavitation pressures of R-ELIP, computed using Equation 1, are
shown in Figure 8 at each ultrasound output setting. Representative B-mode images of R-
ELIP at each MI are shown in Figure 9.

3.3 Lack of Drug Release
The fluorescence intensity of rosiglitazone in R-ELIP solutions is plotted in Figure 10 before
and after flow only (negative control), ultrasound, or detergent (positive control) treatment.
The increase in fluorescence intensity after 0.05% Triton X-100 treatment was statistically
significant compared to the negative control (p = 0.02), indicating release of encapsulated
rosiglitazone. The fluorescence intensity of all samples increased over time, possibly due to
passive diffusion or effects of the flow system. However, ultrasound exposure did not cause
a statistically significant increase in fluorescence intensity compared with the negative
control, regardless of the ultrasound pressure. Therefore, although inertial and stable
cavitation activity was detected, there was no associated release of drug.

The fluorescence intensity of C-ELIP solutions containing cobalt chloride is plotted in
Figure 11 for flow alone (negative control) and pulsed Doppler ultrasound exposure at an
MI of 0.8. There was no statistically significant difference between the fluorescence
intensity of C-ELIP after negative control compared with ultrasound exposures (p = 0.98).
The fluorescence intensity decreased significantly after adding Triton X-100, confirming
that encapsulated calcein was released by the detergent and quenched by cobalt chloride (p <
0.0001). The power spectrum of C-ELIP with cobalt chloride is compared with degassed
water in Figure 12. The broadband noise and half-harmonic peaks (3 and 9 MHz) are
elevated, indicating that inertial and stable cavitation activity were present during the
insonation. The average detected inertial cavitation pressure was 15.7 ± 0.6 relative linear
pressure units and the average detected stable cavitation pressure was -0.2 ± 0.2 relative
linear pressure units. Therefore, while significant inertial cavitation activity was detected, no
calcein release was observed.
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4. Discussion
It was found that fluorescence measurements of C-ELIP solutions at high lipid
concentrations can be affected by encapsulated bubbles. The microbubbles scatter both
excitation and emission light and thus reduce the detected fluorescence intensity,
independent of the drug concentration. The reduction in fluorescence due to light scattering
from bubbles must be accounted for in studies that use a quenching assay to detect drug
release if encapsulated bubbles are present. The results in Figure 4 suggest that at
sufficiently low lipid concentrations (i.e. low number densities of encapsulated bubbles),
such as the concentrations used in this study, the effect of encapsulated bubbles on
fluorescence measurements is minimal. However, some previous studies have used higher
lipid concentrations where the effect of encapsulated bubbles was significant [22,50]. If
microbubbles are present, a change in fluorescence after ultrasound exposure could be due
to the destruction of microbubbles and not due to drug release. Thus, microbubbles can
confound the interpretation of spectrofluorometric data as a metric for drug release. Several
studies have used fluorescence self-quenching assays to detect calcein release from
liposomes [25,47,48], and in one case the effect of encapsulated bubbles on fluorescence
measurements led to the erroneous conclusion that 47% of encapsulated calcein was
released by color Doppler ultrasound pulses [22]. The effect of encapsulated bubbles on the
self-quenching assay can be avoided by removing the bubbles from the sample prior to
measuring the fluorescence. In this study, the bubbles were removed by reducing the
temperature of the ELIP solution from 37 to 22 °C over 5 minutes prior to the fluorescence
measurements. It is critical for future ultrasound-mediated drug release and delivery
experiments that use optical techniques to account for this microbubble artifact properly.

The goal of this study was to determine the relationship between inertial or stable cavitation
activity and release of rosiglitazone or calcein from ELIP. Ultrasound-mediated drug release
from ELIP was not observed, even though significant inertial and stable cavitation activity
was detected. Inertial cavitation also did not enhance the permeability of the lipid membrane
to cobalt chloride, a much smaller molecule than calcein or rosiglitazone. Thus, the presence
of cavitation activity is not sufficient to trigger the release of calcein or rosiglitazone from
ELIP, indicating that inertial and stable cavitation activity is not a reliable indicator of drug
release from ELIP. Schroeder, et al., suggested that cavitation activity can enable drug
diffusion out of liposomes by forming transient pores in the liposomal membranes, which
rapidly reseal after sonication is stopped [56]. However, the pulses generated by the
diagnostic ultrasound scanner in this study were very short (less than 5 µs), which may have
been too short to form pores that would persist long enough to allow measurable drug
diffusion out of the liposomes. For example, Lin et al. (2004) demonstrated continuous
calcein release from liposomes exposed to 20-kHz ultrasound, which abruptly stopped at the
cessation of ultrasound insonation [47]. In addition, Evjen, et al., also used longer sonication
durations to induce calcein release from liposomes (1.5-ms pulses with a 25% duty cycle)
[25].

Another possibility is that the lipid-stabilized gas bubbles are not associated with the
liposomes in ELIP solutions. In this case, it is possible that cavitation events were not
located close enough to the lipid bilayers to affect their permeability. Although Evjen, et al.,
[25] previously correlated cavitation activity with calcein release from liposomes, the
ultrasound spatial-peak temporal-average intensity (Ispta) was 5500 W/cm2. At such a high
intensity it is very possible that cavitation was nucleated by impurities in the surrounding
fluid, rather than by encapsulated bubbles such as those in ELIP solutions. Thus, it may be
necessary to use much higher ultrasound intensities than those that can be achieved with a
clinical diagnostic ultrasound scanner. In addition, ultrasound-induced heating, which is
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influenced by the insonation frequency and intensity, can potentially cause drug release from
liposomes [47].

Cavitation activity has been shown to play a role in sonoporation of living cells [44]. There
are a couple of important differences between cellular membranes and liposomal
membranes. One difference is that because cells are usually attached on several sides to
other cells or to the extracellular matrix, the cellular membranes may have less freedom of
motion than liposomes suspended in solution. As a result, shear forces that affect membrane
integrity may be higher for cellular membranes [57]. Also, membrane proteins are present in
cellular membranes but not in liposomal membranes and these could potentially affect the
stability of the lipid membrane. Smith, et al., demonstrated that a thrombolytic protein,
recombinant tissue-type plasminogen activator, can be released from ELIP using color
Doppler ultrasound pulses [20]. It is hypothesized that some of the rt-PA is incorporated into
the lipid bilayer. Thus, inclusion of a protein in the lipid bilayer may make the liposome
susceptible to sonoporation, which could be used as a strategy for ultrasound-triggered drug
release.

Besides modifying the lipid bilayer with proteins, it may be possible to also change the lipid
formulation or the type of encapsulated gas. Conical lipids have been found to destabilize
lipid membranes when compared to cylindrical lipids, resulting in enhanced ultrasound-
mediated calcein release [25,58]. Also, a previous study observed greater ultrasound-
mediated calcein release from ELIP containing perfluorocarbon or argon gas compared with
air-containing ELIP [49]. Thus, inclusion of heavier gases may improve the ability to trigger
calcein release.

Ultrasound-mediated delivery of rhodamine has been demonstrated in excised murine aortas
using rhodamine-labeled ELIP [59]. Also, ultrasound-mediated delivery of calcein into the
arterial wall has been demonstrated in vivo using C-ELIP [60]. Anti-smooth muscle cell
actin-conjugated C-ELIP were injected directly into the artery at the site of treatment after
flow was stopped and continuous 1-MHz ultrasound was delivered for 120 s at an acoustic
output intensity setting of 2 W/cm2. Ultrasound-enhanced calcein uptake in the arterial wall
was evident on fluorescence images compared with control vessels containing C-ELIP that
were not exposed to ultrasound. However, even if encapsulated calcein was not released
upon ultrasound exposure, unencapsulated calcein may have penetrated the arterial wall
during insonation. Another possibility is that intact calcein-containing liposomes may have
penetrated the arterial wall during insonation without releasing calcein.

In clinical applications it may be advantageous to avoid cavitation-induced drug release
from ELIP into the bloodstream. Cavitation activity has been associated with enhanced
endothelial permeability [40,41,59]. Thus, ultrasound-triggered cavitation could potentially
cause delivery of antibody-conjugated ELIP, which can be targeted to the vessel wall, across
the endothelium. However, if cavitation activity simultaneously caused drug release from
ELIP, some of the released drug could be carried downstream. On the other hand, without
cavitation-induced drug release from ELIP the intact liposomes could potentially be
delivered into the arterial wall, where macrophages could phagocytose the liposomes and
induce release of encapsulated drugs. Thus, further studies are warranted to pursue targeted
drug delivery from ELIP.

5. Conclusions
No ultrasound-mediated release of rosiglitazone or calcein was detected from R-ELIP or C-
ELIP, respectively, even though inertial and stable cavitation activity was detected. These
results demonstrate that cavitation activity is not correlated with ultrasound-mediated release
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of rosiglitazone or calcein from echogenic liposomes. These findings will inform future in
vivo strategies for ultrasound-mediated drug delivery with ELIP.
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HIGHLIGHTS

• Calcein and rosiglitazone were encapulsated in echogenic liposomes

• Encapsulated bubbles affected fluorescence and absorbance measurements

• Clinical ultrasound induced stable and inertial cavitation of echogenic liposomes

• Cavitation activity did not cause drug release from echogenic liposomes
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Figure 1.
Fluorescence intensity of (A) calcein and (B) rosiglitazone as a function of concentration.
Calcein fluorescence self-quenched due to the inner filter effect at concentrations above 6
µg/ml, which agrees with the 10 mm cuvette results obtained by Memoli et al. [46].
Rosiglitazone fluorescence self-quenched at concentrations above 75 µg/ml. Error bars
represent the mean ± standard deviation of three measurements. For this figure only, the slit
widths were changed to 1.5 nm (excitation and emission) for rosiglitazone and 3 nm
(excitation and emission) for calcein in order to avoid saturating the detector at peak
fluorescence concentrations.
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Figure 2.
A diagram of experimental setup. A 10-MHz focused hydrophone was confocally-aligned
with the pulsed Doppler sample volume (shown in Figure 9) from a CL15-7 transducer
array.
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Figure 3.
Attenuation of latex and polyethylene tubing as a function of frequency, measured with two
confocally-aligned 30-MHz focused transducers.
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Figure 4.
Effect of lipid concentration on fluorescence intensity at a fixed total calcein concentration.
The mean (A) fluorescence intensity and (B) absorbance of C-ELIP diluted in calcein
solution to 6 µM at different lipid concentrations before and after vacuum treatment is
plotted. Error bars represent the standard deviation of measurements from three C-ELIP
vials. Arrows indicate the lipid concentrations used in subsequent experiments reported
herein.
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Figure 5.
Effect of total calcein concentration on fluorescence intensity for fixed lipid concentrations.
The mean (A) fluorescence intensity and (B) absorbance of C-ELIP plus free calcein
solutions before and after vacuum is plotted. The C-ELIP encapsulated 1 µM of calcein and
was added to yield final lipid concentrations of 0.0 µg/ml, 0.2 µg/ml or 0.6 µg/ml. Free
calcein was added to give the total calcein concentrations listed on the abscissa. Error bars
represent the standard deviation of measurements from three C-ELIP vials.
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Figure 6.
B-mode images of C-ELIP in polyethylene tubing (A) after temperature transitioning from
room temperature (21 °C) to physiologic temperature (37 °C) and (B) after cycling back
from physiologic temperature to room temperature. Temperature transitioning from 37 °C to
22 °C caused a loss of echogenicity.
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Figure 7.
Power spectrum of R-ELIP obtained from PCD measurements at different MIs.
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Figure 8.
Average detected inertial and stable cavitation pressures of R-ELIP solutions, computed
using Equation 1. Error bars represent the standard deviation from five R-ELIP vials.
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Figure 9.
Representative B-mode images of R-ELIP before and after exposure to pulsed Doppler
ultrasound at on-screen MIs of 0.8, 0.32, and 0.19. Flow direction is left to right.
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Figure 10.
Fluorescence intensity of rosiglitazone in R-ELIP solution before and after treatment.
Statistical significance relative to flow only (negative control) is indicated with an asterisk.
Error bars represent the standard deviation from five R-ELIP vials.
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Figure 11.
Fluorescence intensity of C-ELIP solution containing cobalt chloride before and after flow
alone (sham) or pulsed Doppler ultrasound treatment (MI=0.8). Error bars represent mean ±
standard deviation from five vials of C-ELIP.
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Figure 12.
Power spectrum of C-ELIP solution containing cobalt chloride, compared with degassed
water. The increase in broadband signal indicates the presence of inertial cavitation activity.
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Table 1

Ultrasound parameters for R-ELIP experiments. Note that the on-screen MI and in situ MI are different due to
the lack of tissue attenuation and derating used in the calculation of the on-screen MI.

On-Screen MI In Situ Peak Rarefactional
Pressure (MPa)

Stable Cavitation Inertial Cavitation

0.8 1.15 Above Threshold Above Threshold

0.32 0.49 Above Threshold Below Threshold

0.19 0.26 Below Threshold Below Threshold
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