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Abstract

Complex systems ensure resilience through multiple controllers acting at rapid and slower
timescales. The need for efficient information flow through complex systems encourages small-
world network structures. On the basis of these principles, a group of regions associated with top-
down control was examined. Functional magnetic resonance imaging showed that each region had
a specific combination of control signals; resting-state functional connectivity grouped the regions
into distinct ‘fronto-parietal’ and “‘cingulo-opercular’ components. The fronto-parietal component
seems to initiate and adjust control; the cingulo-opercular component provides stable ‘set-
maintenance’ over entire task epochs. Graph analysis showed dense local connections within
components and weaker ‘long-range’ connections between components, suggesting a small-world
architecture. The control systems of the brain seem to embody the principles of complex systems,
encouraging resilient performance.

Introduction

The brain learns and adapts to environmental change, while showing resilience to local
perturbation and damage. Complex adaptive systems seem to follow common organizational
principles across many levels of scale, from subcellular components to social systems that
resolve the tension between adaptability and resilience [1-4]. Here, we focus on two of these
principles that illuminate the organization of the brain at the systems level: (i) The
importance of multiple controlling variables, and (ii) the small-world architecture of
efficient information-processing networks.

Complex biological and social systems are often driven by several separate control
mechanisms with distinct functional properties [1]. Because the number of controlling
variables is usually at least two, but fewer than ten, this principle has been named the ‘rule
of hand’ [1]. The different controlling variables often affect the overall state of the system
through distinct mechanisms that operate on separable temporal scales [5,6]. Systems with
distinct rapid-acting and more slowly changing controlling variables can simultaneously be
highly stable, yet flexible. For example, the ecological state of a forest can be rapidly
affected by changes in the number of leaf-eating insects and more slowly by changes in the
growth of large tree species. The presence of multiple control mechanisms also increases the
resilience of a system to perturbation. For example, our sense of balance is supported in
parallel by the vestibular system, the visual system and peripheral joint-position sensors. If
any one of these three control variables is impaired, some level of balance is still maintained
by the remaining mechanisms.

© 2008 Elsevier Ltd. All rights reserved.
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Information flow through complex networks of nodes can be made efficient by structuring
the flow between the nodes in certain ways. Networks consisting of multiple densely
connected clusters with small numbers of connections between clusters (i.e. small-world
networks) are more efficient at information transmission (Figure 1) than are either randomly
connected or highly regular lattice networks [2,3,7]. Such ‘small-world’ networks are
ubiquitous. For example, the anatomical connections of the macaque visual system and the
neuronal connections of Caenorhabditis elegans have both been described as small-world
networks [2].

Here, we propose that the human brain implements top-down control in ways consistent
with the complex systems principles of using multiple controllers and small-world-like
architecture. We have chosen the study of top-down control as our example [8,9] because it
is a complex function, probably supported by sets of interrelated brain regions that configure
downstream processing in accordance with conscious goals [10,11].

Earlier studies [12,13] most commonly ascribed top-down control to several prefrontal
regions, mainly the dorsolateral prefrontal cortex (dIPFC) and dorsal anterior cingulate
cortex/medial superior frontal cortex (lACC/msFC). By contrast, we argue that top-down
control is not implemented by such a limited number of regions but rather by a larger
collection of functionally related regions. Second, based on both functional studies and
recently developed ‘functional connectivity’ methods [3,4,11,14-17] (Box 1), we make the
case that these regions are organized into relatively separate networks. Further, we present
evidence that these separate control networks function at different timescales, making
different contributions to the adaptability and stability of top-down control, respectively.
Lastly, we argue that the network structure of these regions develops and embodies efficient
small-world information processing.

Control implemented by a large set of distributed brain regions

Many single-unit and functional magnetic resonance imaging (fMRI) studies, showing that
the dIPFC can maintain task-relevant information during the delay between a cue and a
subsequent trial, have triggered intense focus on the lateral prefrontal cortex as a top-down
controller [12,18]. However, a series of recent event-related, and mixed blocked/event-
related human fMRI studies have shown that a large collection of lateral and medial frontal,
prefrontal and parietal brain regions also have important roles in top-down control [11,19—
26] (Figure 2).

Other fMRI, single-unit, event-related potentials and transcranial magnetic stimulation
studies support this broader view [27-30]. For example, several investigators have shown
that brain regions, including the inferior parietal lobule (IPL) [21,22,31] and anterior
prefrontal cortex (aPFC) [11,24,25,32,33], maintain task and context information. In
addition, fMRI studies have shown that the anterior insula/frontal operculum (al/fO) and
dACC/msFC carry a variety of control signals [11,20,23,26-28,34-36].

Posner and Petersen’s [10] classic model of attentional control proposed that different
control regions carry out distinct functions. Consistent with this idea, our cross-studies
analyses of mixed blocked/event-related fMRI data, which examined three different types of
control signals, showed that one set of control regions carried task set-maintenance signals
[al/fO, dACC/msFC, anterior prefrontal cortex (aPFC)], whereas other regions showed
predominantly feedback and adjustment (the dIPFC and IPL), or control initiation activity
[the intraparietal sulcus (IPS) and dorsal frontal cortex (dFC)] [11].

Trends Cogn Sci. Author manuscript; available in PMC 2013 April 22.
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Control regions separate into fronto-parietal and cingulo-opercular

networks

Cataloging functional differences between brain regions alone provides limited insight into
how these regions relate to one another in information processing terms. Hence, recent
studies have used resting state functional connectivity MRI (rs-fcMRI) to examine
functional relationships between sets of regions [16]. Two recent studies employing rs-
fcMRI, one using graph theory and hierarchical clustering [8] and the other using
independent component analysis (ICA) [37], have shown that the control regions of the
brain separate into distinct networks. Along with the identification of these networks using
ICA [37], visualization of network structure across different correlation thresholds
demonstrates that the separation is independent of specific graph definition thresholds (see
supplementary material, Movie 1).

Here, we refer to the two distinct control networks as the “fronto-parietal” and ‘cingulo-
opercular’ networks. The fronto-parietal network consists of the dIPFC, IPL, dFC, IPS,
precuneus and middle cingulate cortex (mCC). The cingulo-opercular network includes the
aPFC, al/fO, dACC/msFC and thalamus (Figure 2). Our functional connectivity analyses
also showed that the cerebellum forms a separate but related cluster of regions that is
interposed between the fronto-parietal and cingulo-opercular networks (Figure 2a; see
supplementary material, Movie 1).

Distinct functions of control networks: adaptive control and set-
maintenance

Mixed blocked/event-related fMRI designs can separate brain signals based on differences
in their temporal profiles [14,38]. In our mixed blocked/event-related fMRI analyses [11],
the fronto-parietal network contains signals that potentially initiate and adjust control on a
trial-to-trial basis, whereas the cingulo-opercular network provides stable ‘set-maintenance’
over the entire task epoch.

Regions in the fronto-parietal control network respond to cues signifying task onset. In
addition, they respond differentially to events that carry performance feedback information
(e.g. correct versus error trials) [11]. The fronto-parietal control network seems to include
parts of the dorsal attention network proposed by Corbetta and Shulman [39], and also
additional regions commonly associated with top-down control in cue-delay-trial paradigms
(the dIPFC and IPL) [12,18,31]. The fronto-parietal control network, then, seems to combine
brain regions that initiate attentional control in response to cues with regions that process
performance feedback on a trial-by-trial basis to adjust control settings [8,9,37].

In addition to the control initiation and adjustment signals also seen in the fronto-parietal
network, the cingulo-opercular network carries set-maintenance activity that extends across
the performance of many trials of a task. Hence, the hallmark feature of the cingulo-
opercular network is set-maintenance activity that spans the entire task epoch [11].
Consistent with our data, several other fMRI studies have also associated the aPFC, dACC/
msFC and al/fO with important task control functions [24,27,33,36,40]. Several recent
studies have implicated the dACC/msFC [36,41], in addition to the al/fO and aPFC, in
decision making [40]. It stands to reason that some of the same brain regions that safely
maintain task goals are also involved in making (and/or monitoring) choices in accordance
with those task goals.

In our mixed blocked/event-related fMRI studies [11], a set of cerebellar regions displayed
only error-related activity, consistent with the view that the cerebellum processes error
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information in the service of performance optimization [42,43]. Interestingly, the cerebellar
error regions were connected to the dIPFC and IPL in the fronto-parietal network, and to the
thalamus in the cingulo-opercular network, all regions characterized by error-related
(feedback and adjustment) activity [44] (Figure 2). These results suggest that the cerebellum
sends error codes to both networks and/or that it receives error information from one or both
of the control networks of the brain.

Dual-networks model of top-down control

The combination of studies outlined earlier [8,11,37,45] suggests that human behavior draws
on two different types of top-down control (Figure 3). The fronto-parietal and cingulo-
opercular systems both seem to maintain task-relevant information, but for different
purposes and using different mechanisms [11,18,23,25,32,33,46-49]. Hence, we argue that
more adaptive control (fronto-parietal) and stable set-maintenance (cingulo-opercular) rely
on distinct types of ‘sustained’ activity.

The fronto-parietal network seems to actively maintain task-relevant information about one
or a small number of trials, to implement control parameter adjustments more rapidly
(Figure 3). We believe that cue-delay-target paradigms [12] detect this type of task control
information as “sustained’ activity between a cue and the following target. The fronto-
parietal network might also use error-related information to affect processing on the
subsequent trial or for a limited number of subsequent trials.

Distinct from the maintenance activity seen between a cue and the following target in cue-
delay-target paradigms, the cingulo-opercular network carries sustained activity that spans
across the trials in a task epoch. The feedback signals received by the cingulo-opercular
network, rather than causing immediate adjustments, might perhaps be integrated over many
repetitions in a more protracted iterative fashion [36,50] (Figure 3).

Our dual-networks model of control (Figure 3) thus stands in contrast to several earlier
models that ascribed top-down control functions primarily to the lateral PFC [18,49,51]. We
argue that the lateral PFC does not constitute the lone top-down controller of the brain
[18,51]. Instead, we contend that functionally and anatomically distinguishable regions of
prefrontal (the dIPFC and aPFC), frontal (the dFC, dACC/msFC and al/fO) and parietal
cortex (the IPL, IPS and precuneus) contribute specific individual control functions [11] as
nodes within two separate control networks [8,9,37,52]. Our proposed dual-networks model
can account for the recent finding by Rossi et a/. [53] that large lateral PFC lesions
(apparently sparing the aPFC, dACC/msFC and, possibly, the al/fO) severely impair the
ability of a macaque to adjust behavior in response to frequent cue changes, whereas its
ability to maintain set seems to be unaffected. By comparison, these results seem to be
problematic for single-mechanism lateral PFC accounts of top-down control.

Furthermore, the finding that spatially adjacent prefrontal, frontal and parietal regions are
separated into different clusters [9,11,37] seems inconsistent with the proposal that the PFC
contains a single hierarchically organized mechanism that implements increasingly more
abstract forms of control along a caudo-rostral gradient [13,49]. If the control system of the
brain formed a single hierarchy, we would expect its functional connectivity to be more
regular (Figure 1), such that each level was connected locally to the levels above and below.

The adaptive control and set-maintenance systems we propose are not only functionally, but
also cytoarchitectonically distinct. Only the cingulo-opercular network contains von
Economo neurons [54] — large layer V projection neurons found most abundantly in
humans. This cytoarchitectonic dissociation suggests that the cingulo-opercular and fronto-
parietal networks might have taken different evolutionary paths [54-56] (Box 2).

Trends Cogn Sci. Author manuscript; available in PMC 2013 April 22.
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Please note that although we propose that control processes can be broken down into at least
two basic types: rapid-adapting and set-maintenance, we do not feel that the control regions
are interchangeable. We maintain that different nodes within each network carry out
specialized processes that contribute to the overall functions of the networks.

Small-world control network architecture supports efficient information
processing

Watts and Strogatz [2] highlighted that the connectional topology of many complex systems
is neither completely regular (lattice) nor completely random. In a lattice, a given node or
brain region is only locally connected to the next n nodes. Local connectivity is high and
nodes are well clustered, but any signal traveling far across the network is significantly
slowed because it has to cross too many nodes. One can think of a regular network as a
system with only a local bus line that makes every stop (Figure 1).

By replacing some of the short-range links with long-range connections, Watts and Strogatz
preserved local clustering, while also introducing between-cluster short cuts. Such a small-
world network has a local bus line in addition to an express bus that directly connects
different clusters without unnecessary stops.

These architectures can be described mathematically in terms of clustering coefficient (Cp)
and characteristic path length (Lp). Cp describes the density of local clustering by measuring
the fraction of neighbors of a given node that are also neighbors of each other, whereas Lp
counts how many connections information has to traverse, on average, when traveling across
the network.

Several investigators have suggested that the brain is organized in such a way that clusters of
regions with similar functions segregate into networks, whereas sparse connections between
networks enable the effective functional integration of processing streams [3,57-59].

Resting state connectivity studies [60], including our own [8,9], support this notion.
Consistent with these observations, our graph-theoretical analyses of control networks
revealed small-world organization, as indicated by relatively high Cp and small Lp [8].

Recent developmental rs-fcMRI data suggest that the structure of inter-regional networks in
children is characterized by an abundance of local (short-range) connections. Over
development, some local connections regress, whereas the strength of some long-range
connections (short cuts) increase [9], mimicking the progression from a more lattice-like to a
small-world structure [2] (Figure 1). In children aged between seven and nine years, the rs-
fcMRI connectivity between the control regions of the brain correlates strongly with
anatomical proximity. For example, in children, the dIPFC is more closely connected to the
anatomically adjacent aPFC than to the IPL, even though the dIPFC and IPL are functionally
more closely related in adults [9]. Consistent with the original description of small-world
dynamics by Watts and Strogatz, the adult dual-networks control architecture emerges from
a more regular organization [9] (Figure 1).

Conclusions and future directions

Evidence suggests that the principles of (i) multiple controlling variables and (ii) small-
world connectivity hold true for the human brain, in particular for higher cognitive
functions, such as top-down control.

Trends Cogn Sci. Author manuscript; available in PMC 2013 April 22.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Dosenbach et al.

Page 6

In contradistinction to prior models, we argue that top-down control is driven by a fairly
large collection of brain regions. These regions are distributed throughout the prefrontal,
frontal and parietal cortex, in addition to the insula, cerebellum and thalamus.

Although previous models [18] treated control as a single continuously measurable entity,
we believe top-down control in typical populations to be an amalgam of distinct processes,
carried out by different brain regions, grouped into at least two separate control networks.

We propose that human behavior is, at the same time, flexible and highly stable because it
can rely on at least two fairly parallel control networks: one optimized for rapid adaptive
control (fronto-parietal) and the other for stable set-maintenance (cingulo-opercular). It
stands to reason that the dual-networks control architecture is additionally advantageous
because it increases the overall resilience of top-down control to damage or other
perturbations. Although we have identified two control networks, it seems likely that
additional controllers might exist, operating at other temporal and/or spatial scales.

In the future, our approach for studying top-down control networks should be expanded to
include many more brain regions and functions. Similar to others who have advocated the
elucidation of the human structural connectome [61], our final goal would be the
visualization of all major functional relationships between all of the functional areas of the
brain — a human functional connectome [61]. A human connectome based on both structural
and functional connectivity data could then be annotated using activation studies that
provide additional functional context. The development of the human connectome could be
charted from birth to old age, and also examined in special populations [62], such as
attention-deficit hyperactivity disorder [63], obsessive-compulsive disorder, Tourette
syndrome, stroke [64] and traumatic brain injury patients, to better understand the systems-
level pathophysiology of these important disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1
Complex systems methods for studying top-down control

Our proposed dual-networks model of top-down control is built on several different
imaging methods and analysis tools.

Mixed blocked/event-related fMRI design

Mixed blocked/event-related fMRI designs [14] separately code for task epochs, cues and
different types of trials. Hence, mixed designs enable the separate extraction of start-cue
signals related to control initiation, sustained signals related to set-maintenance, and
error-related signals. Error-related activations (error > correct activation) represent an
easily obtainable surrogate marker for at least a subset of feedback signals.

Cross-studies analyses

Complex systems theory predicts that top-down control is probably supported by a fairly
large number of brain regions. By combining fMRI activation data across a variety of
tasks using meta-analytic techniques, such as voxel-wise conjunction and fixed-effects
meta-analytic images, general control regions can be identified reliably [11].

Rs-fcMRI

Recently popularized rs-fcMRI measures low frequency correlations (usually < 0.1 Hz)
in the blood oxygenation level-dependent (BOLD) signal at rest. Statistically reliable
low-frequency BOLD signal correlations might, at least in part, reflect a history of
Hebbian coactivation. However, the exact nature of the rs-fcMRI signal and its
relationship to structural connections remain to be elucidated. It is our contention, that rs-
fcMRI measures provide a robust measure of the long-term functional relatedness of
brain regions [16].

Graph theory

Graph theory is a branch of mathematics designed for exploring network relationships.
Graphs consist of nodes (in our case ROIs) and edges (BOLD correlations between
ROIs). Graph theory enables the simultaneous display of large numbers of nodes and the
connections between them. Recent work has generated a variety of graph metrics, such as
Cp and characteristic Lp (see text) [3,4,57,61].

Spring embedding

Spring-embedding algorithms, such as the Kamada—Kawai method, optimize graph
layout in 2D by identifying the lowest-energy state of a given graph [17]. Such
algorithms consider connected nodes as being attracted towards each other, proportional
to their Lp, whereas nodes that are weakly connected or unconnected are pushed apart.

Graph movies

Static graph displays are limited, in that they provide a single snapshot of a network at a
specific connection strength threshold. This limitation can be overcome by combining
multiple graphs at different correlation thresholds into a movie (see supplementary
material, Movie 1).
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Box 2
Set-maintenance functions might have evolved later than adaptive control

The presence of parallel top-down control networks in the human brain might be
explained by the different evolutionary trajectories of the two networks. Evidence for this
idea stems from cytoarchitectonic studies in different primate species, including humans.

Von Economo neurons are a class of layer V projection neurons fairly specific to
hominids. They are increasingly more abundant in the more advanced species of apes
(and some cetaceans), with highest abundance in humans.

Importantly, von Economo neurons are not uniformly distributed. The ACC and bilateral
al/fO carry particularly large numbers of von Economo neurons [54]. These data provide
a cytological separation between the cingulo-opercular set-maintenance and fronto-
parietal rapid-control networks.

The structural distinctiveness of the human dACC/msFC and al/fO might be a reflection
of the much greater reliance on stable set-maintenance in goal-directed behavior that is
characteristic of hominoid primates, particularly humans. These data suggest that the
recent evolution of the cingulo-opercular network in primates might have facilitated
improved set-maintenance abilities, whereas the fronto-parietal control system took on its
current role somewhat earlier.

Behavioral data also support the idea that human set-maintenance functions (assisted by
the cingulo-opercular network) might be more developed. Stoet ef a/. [56] showed that
humans are better at set-maintenance than macaques leading to less interference, but
higher set-switching costs.
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Figure 1.

Schematic depicting regular, small-world and random graphs. Small-world graphs can be
generated by replacing local connections in regular (lattice) graphs with longer-range short-
cuts. (a) Sample regular graph (lattice) containing 22 nodes and 52 edges. In regular graphs,
each node is only connected to the next n nodes around the ring in a regular pattern. Regular
graphs have long Lp and high Cp. (b) Data-derived graph containing 22 nodes [regions of
interest (ROIs)] and 52 edges (functional connections) that seems small-world-like. Densely
intraconnected clusters (black, yellow and blue) are linked through long-range short cuts
(highlighted in red). Small-world networks are *clumpy’, as reflected by high Cp and much
shorter Lp than regular graphs. This type of network organization enables faster information
transfer between any pair of nodes. (c) Sample random graph containing 22 nodes and 52
edges. Random graphs have moderately short Lp and low Cp. Functional connectivity
diagrams of actual brain regions are neither regular nor random but more small-world like.
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Figure 2.

Distinct fronto-parietal and cingulo-opercular control networks. (a) The network structure of
human control networks is displayed in a two-dimensional graph layout. Black lines indicate
strong resting state functional connections between brain regions. The thickness of the lines
indicates the relative connection strength (r). A spring-embedding algorithm (Net-Draw)
was used to generate the 2D graph layout [17]. This algorithm treats each connection as a
spring; thus, brain regions with similar patterns of connections are brought closer together in
2D space. This method arranges the nodes of a graph in ‘connection space’ rather than
anatomical space. Regions sharing connections are placed close together, whereas minimally
connected regions are spatially distant. For example, the left and right IPS have similar
connectivity profiles and are therefore positioned closely adjacent in the network graph. For
each region (circle), the central color indicates which network it belongs to (black = cingulo-
opercular; blue = cerebellar and yellow = fronto-parietal). The outer color indicates the
predominant control signal type of each region (red = set-maintenance; blue = error-related
and yellow = start cue-related). At the displayed correlation threshold (r = 0.15), the cingulo-
opercular and fronto-parietal networks are not directly connected to each other but each
network is connected to the cerebellar error-network through regions that also carry error
information (the thalamus, dIPFC and IPL). This architecture suggests that both networks
might be communicating error signals (or codes) to and from the cerebellum, in parallel. (b)
Distinct cingulo-opercular (black) and fronto-parietal (yellow) control networks, in addition
to cerebellar regions (blue circles) are shown on an inflated surface rendering of the human
brain [55].
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Model of proposed parallel rapid-adaptive and set-maintenance networks for human top-
down control. Thin arrows schematize strong functional connections and boxed arrows
schematize putative flow of information. The fronto-parietal and cingulo-opercular control

networks might be organized in parallel. Both networks would thus interpret cues,

implement top-down control and process bottom-up feedback. The fronto-parietal network
might maintain task-relevant information in a more readily accessible form to adjust control
rapidly. The cingulo-opercular network might stably maintain task sets across entire task
epochs [9], perhaps in a less easily accessible, or remote, form. Adapted, with permission,
from [9] Proceedings of the National Academy of Sciences. Copyright (2007) National

Academy of Sciences, U.S.A.
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