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Biofilms formed by Candida albicans bloodstream isolates on catheters are an important clinical problem. Devising chemother-
apeutic strategies to treat these in situ is an attractive option. We report here that liposomal amphotericin effectively kills C. al-
bicans biofilms rapidly (12 h) and effectively (>90%) in a dose-dependent manner, whereas caspofungin displays an inverse con-
centration-dependent effect. This study has implications for considering the effective doses of antifungal agents used for catheter
lock therapy.

While there is no question that the use of various medical
devices has greatly facilitated the management of serious

medical and surgical conditions, the introduction of artificial ma-
terials into various anatomical locations has been accompanied by
the ability of Candida albicans to colonize and form biofilms on
devices such as shunts, stents, endotracheal tubes and various
types of catheters (1). In fact, it has been reported that biofilm-
forming C. albicans bloodstream isolates were significantly corre-
lated with increased mortality (2).

Bloodstream infections due to C. albicans remain an important
cause of morbidity and mortality worldwide. It was reported that
at least 1 in 4 hospitalized patients who contract a candidemia die
before discharge (3). The intensive care unit (ICU) is of pivotal
importance in terms of developing a candidemia, where the use of
central venous catheters is extremely common and associated with
candidal sepsis (4). It was reported that 45.4% cases of candidemia
were associated with the ICU, with an overall 30-day mortality of
26.4%. Removal of the central venous catheter was associated with
a significant reduction in mortality (5). There are currently no
guidelines for treating C. albicans-associated biomaterial infec-
tions with chemotherapeutic agents, other than physical removal
of the catheter (6). However, limited anecdotal evidence exists for
in situ use of antifungal lock therapy (ALT); nevertheless, the use
of amphotericin B deoxycholate to resolve a catheter-related in-
fection has been reported to be successful (7–9).

This study aims to investigate and compare the use of key an-
tifungal agents classes (azole, polyene, and echinocandin) against
a range of C. albicans bloodstream isolates growing as biofilms,
with the objective of advocating their use in ALT. One hundred C.
albicans bloodstream strains obtained from a Scottish candidemia
study were selected for testing (10). All isolates were maintained
on Sabouraud agar (SAB) at 30°C and propagated in yeast-pep-
tone-dextrose (Sigma, Poole, United Kingdom) medium in an
orbital shaker (100 rpm) at 30°C overnight. Cells were harvested,
washed in sterile phosphate-buffered saline (PBS; Sigma, Poole,
United Kingdom), then resuspended in RPMI 1640 buffered with
morpholinepropanesulfonic acid (MOPS; Sigma-Aldrich, Dorset,
United Kingdom), counted, and standardized using an improved
Neuber hemocytometer.

Initially, antifungal testing to determine planktonic MICs
(PMICs) was performed using the CLSI M-27A broth microdilu-

tion methodology (11). The following antifungal agents, prepared
in double-distilled water (ddH2O), were used in the course of this
study against 100 C. albicans isolates: liposomal amphotericin B
(AMB) (AmBisome; Gilead Sciences, Cambridge, United King-
dom), caspofungin (CSP) (Cancidas; Merck Sharp & Dohme,
Hertfordshire, United Kingdom), and voriconazole (VRZ)
(Vfend; Pfizer Pharmaceuticals). AMB, CSP, and VRZ were highly
effective against these isolates, exhibiting PMIC50 values of 0.125,
0.0625, and 0.125 mg/liter, respectively (Table 1). The PMIC90 for
all three antifungal agents was 0.125 mg/liter for all 100 isolates.
These data are in agreement with previous literature (12).

Next, sessile susceptibility testing was performed as described
previously (13). Biofilms were formed using standardized cell sus-
pensions (200 �l of 1 � 106 cells/ml), added to selected microtiter
wells, and incubated for 48 h at 37°C. After washing the biofilms,
each antifungal agent was then added in serially double-diluted
concentrations and incubated for a further 24 h at 37°C. A semi-
quantitative measure of biofilm killing was assessed using a form-
azan salt-based XTT (2,3-bis(2-methoxy-4-nitro-5-sulfo-phe-
nyl)-2H-tetrazolium-5-caboxanilide) reduction assay (13).
Sessile MICs (SMICs) were determined at a �80% XTT reduc-
tion. Testing of these isolates was performed in triplicate. All C.
albicans isolates formed robust biofilms, as assessed by XTT and
crystal violet (data not shown). AMB exhibited good overall activ-
ity, with SMIC50/90 of 4 and 16 mg/liter, respectively, ranging from
2 to 64 mg/liter. For CSP, the SMIC50/90 was 0.25 mg/liter and 1
mg/liter, respectively, ranging from �0.0625 to 8 mg/liter. VRZ
sessile activity was highly ineffective, with no notable activity
against any strain tested (SMIC50/90 of �64 mg/liter).

We next undertook a comparative time-kill evaluation of C.
albicans biofilms (n � 10) (Fig. 1). These isolates exhibiting good
biofilm formation were selected based on high biomass and met-
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abolic activity. Biofilms were washed prior to addition of AMB,
CSP, and VRZ at concentrations of 1�, 2�, 4�, and 8� the
MIC50. Biofilms were incubated in the presence of each antifungal
compound for 2, 4, 8, 12, 24, 48, and 72 h, and their metabolic
activities were assessed using an XTT reduction assay. Untreated

biofilms containing RPMI 1640 served as appropriate compara-
tive controls for each isolate at each time point. Ten replicate
biofilms were included for each condition tested, with testing per-
formed on two separate occasions. A two-way analysis of variance
(ANOVA) was performed on transformed data using SPSS Soft-
ware (Chicago, IL) and a Bonferroni posttest to allow different
drug concentrations or different time points to be compared.
AMB challenge was shown to be rapid and dose-dependent for all
concentrations tested, with a �90% kill observed for all concen-
trations after 12 h (Fig. 1A). Significant differences were observed
between each concentration, except between 2� and 4� SMIC50,
at each time point up until 12 h (P � 0.0001). No significant
differences were observed thereafter. At 8� SMIC50, the activity
was significantly more rapid after 4 and 8 h (P � 0.0001), reducing
metabolism by 60% and 94%, respectively. CSP challenge showed
significant differences between concentrations tested in a time-
dependent manner (P � 0.0001), but with an inverse relationship
between time-kill characteristics and the concentration tested, i.e.,
the most effective and rapid concentration of CSP was 1�
SMIC50, resulting in a 99% kill after 24 h (Fig. 1B). This was fol-
lowed by 2�, 4�, and 8� SMIC50, which caused 98, 90, and 85%
reductions after 24 h, respectively. Both 1� and 2� SMIC50 were
significantly superior compared to 4� and 8� SMIC50 from 12 h
onwards (P � 0.0001). VRZ time-kill studies showed dose-depen-
dent characteristics, but with only an 18% kill after 72 h at 8�
MIC50 (Fig. 1C). No significant differences were observed be-
tween any of the concentrations tested (P � 0.05).

Collectively, these data demonstrate that both AMB and CSP
have the potential for direct in situ treatment of C. albicans bio-
films on infected catheters, indwelling biomaterials, or tissue.
While AMB did not achieve a 99% kill like that of CSP after 24 h,
its kill was rapidly effective (�95%) after only 12 h of treatment.
Moreover, at 1� MIC50, the activity was not significantly different
from that of the other concentrations tested at this time, suggest-
ing saturation of the drug within the biofilm. This may be because
of the liposomal formulation of AMB that permits greater diffu-
sion through the biofilm. It has been shown that liposomal for-
mulations have the potential for treatment of catheters in vivo
(14). In vitro investigations have also reported the potential ben-
efit of this approach, either as a single agent or in combination
with EDTA (15–17), though the range of concentrations tested is
highly variable. In contrast, CSP showed paradoxical activity
against the C. albicans biofilms (18). Recent literature suggests
adaptive resistance to echinocandins through cell wall remodel-
ling, specifically increased chitin content (19). It is plausible that
higher concentrations of CSP induce these adaptive changes, ac-
counting for this effect.

Recent clinical data have shown that patients with defined bio-

TABLE 1 Planktonic and sessile sensitivities of Candida albicans biofilms treated with three antifungal classes

Parameter

MIC value (mg/liter) witha:

VRZ AMB CSP

PMIC SMFC 50% SMFC 80% PMIC SMFC 50% SMFC 80% PMIC SMFC 50% SMFC 80%

MIC range �0.0625–2 �64 �64 �0.0625–0.25 �0.5–32 2–64 0.0625–0.25 �0.0625–0.5 �0.0625–8
MIC50 0.125 �64 �64 0.0625 0.5 4 0.0625 �0.0625 0.25
MIC90 0.125 �64 �64 0.125 2 16 0.125 0.5 1
a SMFC 50% and SMFC 80%, sessile minimum fungicidal concentration at a 50% and 80% reduction of XTT metabolism, respectively, in comparison to an untreated control.

FIG 1 Time-kill kinetics of Candida albicans biofilms challenged with lipo-
somal amphotericin B (A), caspofungin (B), and voriconazole (C) at 1�, 2�,
4�, and 8� SMIC50 and measured by the XTT reduction assay. Data points
represent 10 individual clinical isolates in replicate (n � 10). This was analyzed
by a two-way ANOVA, with error bars representing the standard deviations.
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film-forming bloodstream C. albicans isolates experienced a short
length of hospital stay and low mortality rates when treated with
echinocandins and liposomal amphotericin B (20). These obser-
vations generally support our findings, yet clinically not all pa-
tients respond to antifungal treatment equally. This may be partly
because of the level of biofilm formation by individual strains
and/or differential biofilm response to different antifungal classes.
Interestingly, none of the antifungal agents tested killed the bio-
films in their entirety, suggesting adjunctive therapy is required
(15). Further studies are required to understand how to maximize
antifungal activity against C. albicans biofilms and improve their
clinical management.
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